Lattice of Subgroups of a Group. Frattini Subgroup

Wojciech A. Trybulec¹ Warsaw University

Summary. We define the notion of a subgroup generated by a set of elements of a group and two closely connected notions, namely lattice of subgroups and the Frattini subgroup. The operations on the lattice are the intersection of subgroups (introduced in [18]) and multiplication of subgroups, which result is defined as a subgroup generated by a sum of carriers of the two subgroups. In order to define the Frattini subgroup and to prove theorems concerning it we introduce notion of maximal subgroup and non-generating element of the group (see page 30 in [6]). The Frattini subgroup is defined as in [6] as an intersection of all maximal subgroups. We show that an element of the group belongs to the Frattini subgroup of the group if and only if it is a non-generating element. We also prove theorems that should be proved in [1] but are not.

MML Identifier: GROUP_4.

The notation and terminology used here are introduced in the following articles: [3], [13], [4], [11], [20], [10], [19], [8], [16], [5], [17], [2], [15], [18], [14], [12], [21], [7], [9], and [1]. Let D be a non-empty set, and let F be a finite sequence of elements of D, and let X be a set. Then F - X is a finite sequence of elements of D.

In this article we present several logical schemes. The scheme SubsetD deals with a non-empty set \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\{d: \mathcal{P}[d]\}, \text{ where } d \text{ is an element of } \mathcal{A}, \text{ is a subset of } \mathcal{A}$

for all values of the parameters.

The scheme MeetSbgEx deals with a group \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists a subgroup H of \mathcal{A} such that the carrier of $H = \bigcap \{A : \bigvee_K [A =$ the carrier of $K \land \mathcal{P}[K]]\}$, where A is a subset of \mathcal{A} , and K is a subgroup of \mathcal{A} provided the parameters have the following property:

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1

• there exists a subgroup H of \mathcal{A} such that $\mathcal{P}[H]$.

For simplicity we adopt the following rules: X denotes a set, k, l, m, n denote natural numbers, i, i_1 , i_2 , i_3 , j denote integers, G denotes a group, a, b, c denote elements of G, A, B denote subsets of G, H, H₁, H₂, H₃, K denote subgroups of G, N₁, N₂ denote normal subgroups of G, h denotes an element of H, F, F₁, F₂ denote finite sequences of elements of the carrier of G, and I, I_1 , I_2 denote finite sequences of elements of Z. The scheme SubgrSep deals with a group \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists X such that $X \subseteq \operatorname{SubGr} \mathcal{A}$ and for every subgroup H of \mathcal{A} holds $H \in X$ if and only if $\mathcal{P}[H]$

for all values of the parameters.

Let *i* be an element of \mathbb{Z} . The functor @i yields an integer and is defined by: (Def.1) @i = i.

We now state the proposition

(1) For every element i of \mathbb{Z} holds @i = i.

Let us consider *i*. The functor @i yielding an element of \mathbb{Z} is defined as follows:

 $(Def.2) \quad @i = i.$

Next we state several propositions:

- (2) @i = i.
- (3) If a = h, then $a^n = h^n$.
- (4) If a = h, then $a^i = h^i$.
- (5) If $a \in H$, then $a^n \in H$.
- (6) If $a \in H$, then $a^i \in H$.

Let us consider G, F. The functor $\prod F$ yielding an element of G is defined as follows:

(Def.3) $\prod F$ = the operation of $G \odot F$.

Next we state a number of propositions:

- (7) $\prod F$ = the operation of $G \odot F$.
- (8) $\prod (F_1 \cap F_2) = \prod F_1 \cdot \prod F_2.$
- (9) $\prod (F \cap \langle a \rangle) = \prod F \cdot a.$
- (10) $\prod (\langle a \rangle \cap F) = a \cdot \prod F.$
- (11) $\prod \varepsilon_{\text{the carrier of } G} = 1_G.$
- (12) $\prod \langle a \rangle = a.$
- (13) $\prod \langle a, b \rangle = a \cdot b.$
- (14) $\prod \langle a, b, c \rangle = (a \cdot b) \cdot c \text{ and } \prod \langle a, b, c \rangle = a \cdot (b \cdot c).$
- (15) $\prod(n \longmapsto a) = a^n.$
- (16) $\prod (F \{1_G\}) = \prod F.$
- (17) If len $F_1 = \text{len } F_2$ and for every k such that $k \in \text{Seg}(\text{len } F_1)$ holds $F_2((\text{len } F_1 - k) + 1) = (\pi_k F_1)^{-1}$, then $\prod F_1 = (\prod F_2)^{-1}$.

- (18) If G is an Abelian group, then for every permutation P of Seg(len F_1) such that $F_2 = F_1 \cdot P$ holds $\prod F_1 = \prod F_2$.
- (19) If G is an Abelian group and F_1 is one-to-one and F_2 is one-to-one and rng $F_1 = \operatorname{rng} F_2$, then $\prod F_1 = \prod F_2$.
- (20) If G is an Abelian group and len $F = \text{len } F_1$ and len $F = \text{len } F_2$ and for every k such that $k \in \text{Seg}(\text{len } F)$ holds $F(k) = \pi_k F_1 \cdot \pi_k F_2$, then $\prod F = \prod F_1 \cdot \prod F_2$.
- (21) If rng $F \subseteq \overline{H}$, then $\prod F \in H$.

Let us consider G, I, F. Let us assume that len F = len I. The functor F^I yields a finite sequence of elements of the carrier of G and is defined as follows:

(Def.4) $\operatorname{len}(F^{I}) = \operatorname{len} F$ and for every k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $(F^{I})(k) = \pi_{k} F^{@(\pi_{k}I)}$.

One can prove the following propositions:

- (22) If len F = len I and len $F_1 = \text{len } F$ and for every k such that $k \in \text{Seg}(\text{len } F)$ holds $F_1(k) = \pi_k F^{\otimes (\pi_k I)}$, then $F_1 = F^I$.
- (23) If len F = len I, then for every k such that $k \in \text{Seg}(\text{len } F)$ holds $(F^{I})(k) = \pi_{k} F^{@(\pi_{k}I)}.$
- (24) If $\operatorname{len} F = \operatorname{len} I$, then $\operatorname{len}(F^I) = \operatorname{len} F$.
- (25) If len $F_1 = \text{len } I_1$ and len $F_2 = \text{len } I_2$, then $(F_1 \cap F_2)^{I_1 \cap I_2} = F_1^{I_1} \cap F_2^{I_2}$.
- (26) If len F = len I and rng $F \subseteq \overline{H}$, then $\prod (F^I) \in H$.
- (27) $\varepsilon_{\text{the carrier of }G}^{\varepsilon_{\mathbb{Z}}} = \varepsilon.$
- (28) $\langle a \rangle^{\langle @i \rangle} = \langle a^i \rangle.$
- (29) $\langle a, b \rangle^{\langle @i, @j \rangle} = \langle a^i, b^j \rangle.$
- (30) $\langle a, b, c \rangle^{\langle @i_1, @i_2, @i_3 \rangle} = \langle a^{i_1}, b^{i_2}, c^{i_3} \rangle.$
- (31) $F^{\operatorname{len} F \longmapsto @(+1)} = F.$
- (32) $F^{\operatorname{len} F \longmapsto @(+0)} = \operatorname{len} F \longmapsto 1_G.$
- (33) If len I = n, then $(n \mapsto 1_G)^I = n \mapsto 1_G$.

Let us consider G, A. The functor gr(A) yielding a subgroup of G is defined as follows:

(Def.5) $A \subseteq$ the carrier of gr(A) and for every H such that $A \subseteq$ the carrier of H holds gr(A) is a subgroup of H.

We now state a number of propositions:

- (34) If $A \subseteq$ the carrier of H_1 and for every H_2 such that $A \subseteq$ the carrier of H_2 holds H_1 is a subgroup of H_2 , then $H_1 = \operatorname{gr}(A)$.
- (35) $A \subseteq$ the carrier of gr(A).
- (36) If $A \subseteq$ the carrier of H, then gr(A) is a subgroup of H.
- (37) $a \in \operatorname{gr}(A)$ if and only if there exist F, I such that $\operatorname{len} F = \operatorname{len} I$ and $\operatorname{rng} F \subseteq A$ and $\prod (F^I) = a$.
- (38) If $a \in A$, then $a \in \operatorname{gr}(A)$.
- (39) $\operatorname{gr}(\emptyset_{\text{the carrier of }G}) = \{\mathbf{1}\}_G.$

- (40) $\operatorname{gr}(\overline{H}) = H.$
- (41) If $A \subseteq B$, then gr(A) is a subgroup of gr(B).
- (42) $\operatorname{gr}(A \cap B)$ is a subgroup of $\operatorname{gr}(A) \cap \operatorname{gr}(B)$.
- (43) The carrier of $\operatorname{gr}(A) = \bigcap \{B : \bigvee_H [B = \text{the carrier of } H \land A \subseteq \overline{H}] \}.$
- (44) $\operatorname{gr}(A) = \operatorname{gr}(A \setminus \{1_G\}).$

We now define two new predicates. Let us consider G, a. We say that a is non-generating if and only if:

(Def.6) for every A such that gr(A) = G holds $gr(A \setminus \{a\}) = G$.

a is generating stands for a is not non-generating.

We now state the proposition

 $(46)^2$ 1_G is non-generating.

Let us consider G, H. We say that H is maximal if and only if:

(Def.7) $H \neq G$ and for every K such that $H \neq K$ and H is a subgroup of K holds K = G.

Next we state the proposition

(48)³ If H is maximal and $a \notin H$, then $\operatorname{gr}(\overline{H} \cup \{a\}) = G$.

Let us consider G. The functor $\Phi(G)$ yields a subgroup of G and is defined as follows:

(Def.8) the carrier of $\Phi(G) = \bigcap \{A : \bigvee_H [A = \text{the carrier of } H \land H \text{ is maximal}]\}$ if there exists H such that H is maximal, $\Phi(G) = G$, otherwise.

We now state several propositions:

- (49) If there exists H such that H is maximal and the carrier of $H = \bigcap \{A : \bigvee_K [A = \text{the carrier of } K \land K \text{ is maximal }] \}$, then $H = \Phi(G)$.
- (50) If for every H holds H is not maximal, then $\Phi(G) = G$.
- (51) If there exists H such that H is maximal, then the carrier of $\Phi(G) = \bigcap \{A : \bigvee_K [A = \text{the carrier of } K \land K \text{ is maximal }] \}.$
- (52) If there exists H such that H is maximal, then $a \in \Phi(G)$ if and only if for every H such that H is maximal holds $a \in H$.
- (53) If for every H holds H is not maximal, then $a \in \Phi(G)$.
- (54) If H is maximal, then $\Phi(G)$ is a subgroup of H.
- (55) The carrier of $\Phi(G) = \{a : a \text{ is non-generating }\}.$
- (56) $a \in \Phi(G)$ if and only if a is non-generating.

Let us consider G, H_1 , H_2 . The functor $H_1 \cdot H_2$ yielding a subset of G is defined as follows:

Def.9)
$$H_1 \cdot H_2 = \overline{H_1} \cdot \overline{H_2}.$$

(

The following propositions are true:

(57) $H_1 \cdot H_2 = \overline{H_1} \cdot \overline{H_2}$ and $H_1 \cdot H_2 = H_1 \cdot \overline{H_2}$ and $H_1 \cdot H_2 = \overline{H_1} \cdot H_2$.

²The proposition (45) was either repeated or obvious.

³The proposition (47) was either repeated or obvious.

- (58) $H \cdot H = \overline{H}.$
- (59) $(H_1 \cdot H_2) \cdot H_3 = H_1 \cdot (H_2 \cdot H_3).$
- (60) $(a \cdot H_1) \cdot H_2 = a \cdot (H_1 \cdot H_2).$
- (61) $(H_1 \cdot H_2) \cdot a = H_1 \cdot (H_2 \cdot a).$
- (62) $(A \cdot H_1) \cdot H_2 = A \cdot (H_1 \cdot H_2).$
- (63) $(H_1 \cdot H_2) \cdot A = H_1 \cdot (H_2 \cdot A).$
- $(64) \quad N_1 \cdot N_2 = N_2 \cdot N_1.$
- (65) If G is an Abelian group, then $H_1 \cdot H_2 = H_2 \cdot H_1$.

Let us consider G, H_1, H_2 . The functor $H_1 \sqcup H_2$ yielding a subgroup of G is defined as follows:

(Def.10)
$$H_1 \sqcup H_2 = \operatorname{gr}(H_1 \cup H_2).$$

One can prove the following propositions:

- (66) $H_1 \sqcup H_2 = \operatorname{gr}(\overline{H_1} \cup \overline{H_2}).$
- (67) $a \in H_1 \sqcup H_2$ if and only if there exist F, I such that len F = len I and $\operatorname{rng} F \subseteq \overline{H_1} \cup \overline{H_2}$ and $a = \prod (F^I)$.
- $(68) \quad H_1 \sqcup H_2 = \operatorname{gr}(H_1 \cdot H_2).$
- (69) If $H_1 \cdot H_2 = H_2 \cdot H_1$, then the carrier of $H_1 \sqcup H_2 = H_1 \cdot H_2$.
- (70) If G is an Abelian group, then the carrier of $H_1 \sqcup H_2 = H_1 \cdot H_2$.
- (71) The carrier of $N_1 \sqcup N_2 = N_1 \cdot N_2$.
- (72) $N_1 \sqcup N_2$ is a normal subgroup of G.
- (73) $H \sqcup H = H.$
- $(74) \quad H_1 \sqcup H_2 = H_2 \sqcup H_1.$
- (75) $(H_1 \sqcup H_2) \sqcup H_3 = H_1 \sqcup (H_2 \sqcup H_3).$
- (76) $\{\mathbf{1}\}_G \sqcup H = H \text{ and } H \sqcup \{\mathbf{1}\}_G = H.$
- (77) $\Omega_G \sqcup H = G \text{ and } H \sqcup \Omega_G = G.$
- (78) H_1 is a subgroup of $H_1 \sqcup H_2$ and H_2 is a subgroup of $H_1 \sqcup H_2$.
- (79) H_1 is a subgroup of H_2 if and only if $H_1 \sqcup H_2 = H_2$.
- (80) If H_1 is a subgroup of H_2 , then H_1 is a subgroup of $H_2 \sqcup H_3$.
- (81) If H_1 is a subgroup of H_3 and H_2 is a subgroup of H_3 , then $H_1 \sqcup H_2$ is a subgroup of H_3 .
- (82) If H_1 is a subgroup of H_2 , then $H_1 \sqcup H_3$ is a subgroup of $H_2 \sqcup H_3$.
- (83) $H_1 \cap H_2$ is a subgroup of $H_1 \sqcup H_2$.
- $(84) \quad (H_1 \cap H_2) \sqcup H_2 = H_2.$
- (85) $H_1 \cap (H_1 \sqcup H_2) = H_1.$
- (86) $H_1 \sqcup H_2 = H_2$ if and only if $H_1 \cap H_2 = H_1$.

In the sequel S_1 , S_2 are elements of SubGr G and o is a binary operation on SubGr G. Let us consider G. The functor SubJoin G yields a binary operation on SubGr G and is defined by:

(Def.11) for all S_1 , S_2 , H_1 , H_2 such that $S_1 = H_1$ and $S_2 = H_2$ holds (SubJoin G) $(S_1, S_2) = H_1 \sqcup H_2$.

Next we state two propositions:

- (87) If for all S_1 , S_2 , H_1 , H_2 such that $S_1 = H_1$ and $S_2 = H_2$ holds $o(S_1, S_2) = H_1 \sqcup H_2$, then o = SubJoin G.
- (88) If $H_1 = S_1$ and $H_2 = S_2$, then SubJoin $G(S_1, S_2) = H_1 \sqcup H_2$.

Let us consider G. The functor SubMeet G yields a binary operation on SubGr G and is defined as follows:

(Def.12) for all S_1, S_2, H_1, H_2 such that $S_1 = H_1$ and $S_2 = H_2$ holds (SubMeet G) $(S_1, S_2) = H_1 \cap H_2$.

One can prove the following two propositions:

- (89) If for all S_1 , S_2 , H_1 , H_2 such that $S_1 = H_1$ and $S_2 = H_2$ holds $o(S_1, S_2) = H_1 \cap H_2$, then o = SubMeet G.
- (90) If $H_1 = S_1$ and $H_2 = S_2$, then SubMeet $G(S_1, S_2) = H_1 \cap H_2$.

Let us consider G. The functor \mathbb{L}_G yielding a lattice is defined as follows:

(Def.13) $\mathbb{L}_G = \langle \operatorname{SubGr} G, \operatorname{SubJoin} G, \operatorname{SubMeet} G \rangle.$

One can prove the following propositions:

- (91) $\mathbb{L}_G = \langle \operatorname{SubGr} G, \operatorname{SubJoin} G, \operatorname{SubMeet} G \rangle.$
- (92) The carrier of $\mathbb{L}_G = \operatorname{Sub}\operatorname{Gr} G$.
- (93) The join operation of $\mathbb{L}_G = \operatorname{SubJoin} G$.
- (94) The meet operation of $\mathbb{L}_G =$ SubMeet G.
- (95) \mathbb{L}_G is a lower bound lattice.
- (96) \mathbb{L}_G is an upper bound lattice.
- (97) \mathbb{L}_G is a bound lattice.
- (98) $\perp_{\mathbb{L}_G} = \{\mathbf{1}\}_G.$
- (99) $\top_{\mathbb{L}_G} = \Omega_G.$
- (100) $n \mod 2 = 0 \text{ or } n \mod 2 = 1.$
- (101) $k \cdot n \mod k = 0 \text{ and } k \cdot n \mod n = 0.$
- (102) If k > 1, then $1 \mod k = 1$.
- (103) If $k \mod n = 0$ and $l = k m \cdot n$, then $l \mod n = 0$.
- (104) If $n \neq 0$ and $k \mod n = 0$ and l < n, then $(k+l) \mod n = l$.
- (105) If $k \mod n = 0$ and $l \mod n = 0$, then $(k+l) \mod n = 0$.
- (106) If $n \neq 0$ and $k \mod n = 0$ and $l \mod n = 0$, then $(k+l) \div n = (k \div n) + (l \div n)$.
- (107) If $k \neq 0$, then $k \cdot n \div k = n$.

References

 Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.

- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] M. I. Kargapolow and J. I. Mierzlakow. Podstawy teorii grup. PWN, Warszawa, 1989.
- [7] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. *Formalized Mathematics*, 1(5):829–832, 1990.
- [8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [10] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [12] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [13] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [14] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
- [15] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [16] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [18] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855–864, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [21] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215– 222, 1990.

Received August 22, 1990