Locally Connected Spaces

Beata Padlewska¹ Technical University of Białystok

Summary. This article is a continuation of [6]. We define a neighbourhood of a point and a neighbourhood of a set and prove some facts about them. Then the definitions of a locally connected space and a locally connected set are introduced. Some theorems on locally connected spaces are given (based on [5]). We also define a quasi-component of a point and prove some of its basic properties.

MML Identifier: CONNSP_2.

The papers [11], [10], [2], [13], [7], [1], [12], [9], [3], [8], [14], [6], and [4] provide the terminology and notation for this paper. Let X be a topological space, and let x be a point of X. A subset of X is called a neighborhood of x if:

(Def.1) $x \in \text{Int it.}$

Let X be a topological space, and let A be a subset of X. A subset of X is called a neighborhood of A if:

(Def.2) $A \subseteq \text{Int it.}$

In the sequel X will denote a topological space, x will denote a point of X, and A, U_1 will denote subsets of X. We now state a number of propositions:

- (2)² A is a neighborhood of U_1 if and only if $U_1 \subseteq \text{Int } A$.
- (3) For every x and for all subsets A, B of X such that A is a neighborhood of x and B is a neighborhood of x holds $A \cup B$ is a neighborhood of x.
- (4) For every x and for all subsets A, B of X holds A is a neighborhood of x and B is a neighborhood of x if and only if $A \cap B$ is a neighborhood of x.
- (5) For every subset U_1 of X and for every point x of X such that U_1 is open and $x \in U_1$ holds U_1 is a neighborhood of x.
- (6) For every subset U_1 of X and for every point x of X such that U_1 is a neighborhood of x holds $x \in U_1$.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1

²The proposition (1) was either repeated or obvious.

- (7) For all U_1 , x such that U_1 is a neighborhood of x there exists a subset V of X such that V is a neighborhood of x and V is open and $V \subseteq U_1$.
- (8) For all U_1 , x holds U_1 is a neighborhood of x if and only if there exists a subset V of X such that V is open and $V \subseteq U_1$ and $x \in V$.
- (9) U_1 is open if and only if for every x such that $x \in U_1$ there exists a subset A of X such that A is a neighborhood of x and $A \subseteq U_1$.
- (10) For every subset V of X holds V is a neighborhood of $\{x\}$ if and only if V is a neighborhood of x.
- (11) For every subset B of X and for every point x of $X \upharpoonright B$ and for every subset A of $X \upharpoonright B$ and for every subset A_1 of X and for every point x_1 of X such that $B \neq \emptyset_X$ and B is open and A is a neighborhood of x and $A = A_1$ and $x = x_1$ holds A_1 is a neighborhood of x_1 .
- (12) For every subset B of X and for every point x of $X \upharpoonright B$ and for every subset A of $X \upharpoonright B$ and for every subset A_1 of X and for every point x_1 of X such that A_1 is a neighborhood of x_1 and $A = A_1$ and $x = x_1$ holds A is a neighborhood of x.
- (13) For all subsets A, B of X such that A is a component of X and $A \subseteq B$ holds A is a component of B.
- (14) For every subspace X_1 of X and for every point x of X and for every point x_1 of X_1 such that $x = x_1$ holds $\text{Component}(x_1) \subseteq \text{Component}(x)$.

Let X be a topological space, and let x be a point of X. We say that X is locally connected in x if and only if:

(Def.3) for every subset U_1 of X such that U_1 is a neighborhood of x there exists a subset V of X such that V is a neighborhood of x and V is connected and $V \subseteq U_1$.

Let X be a topological space. We say that X is locally connected if and only if:

(Def.4) for every point x of X holds X is locally connected in x.

Let X be a topological space, and let A be a subset of X, and let x be a point of X. We say that A is locally connected in x if and only if:

(Def.5) there exists a point x_1 of $X \upharpoonright A$ such that $x_1 = x$ and $X \upharpoonright A$ is locally connected in x_1 .

The following proposition is true

 $(17)^3$ A is locally connected in x if and only if there exists a point x_1 of $X \upharpoonright A$ such that $x_1 = x$ and $X \upharpoonright A$ is locally connected in x_1 .

Let X be a topological space, and let A be a subset of X. We say that A is locally connected if and only if:

(Def.6) $X \upharpoonright A$ is locally connected.

One can prove the following propositions:

³The propositions (15)–(16) were either repeated or obvious.

- $(19)^4$ For every x holds X is locally connected in x if and only if for all subsets V, S of X such that V is a neighborhood of x and S is a component of V and $x \in S$ holds S is a neighborhood of x.
- (20)For every x holds X is locally connected in x if and only if for every subset U_1 of X such that U_1 is open and $x \in U_1$ there exists a point x_1 of $X \upharpoonright U_1$ such that $x_1 = x$ and $x \in \text{Int Component}(x_1)$.
- If X is locally connected, then for every subset S of X such that S is a (21)component of X holds S is open.
- (22)If X is locally connected in x, then for every subset A of X such that A is open and $x \in A$ holds A is locally connected in x.
- If X is locally connected, then for every subset A of X such that $A \neq \emptyset_X$ (23)and A is open holds A is locally connected.
- X is locally connected if and only if for all subsets A, B of X such that (24) $A \neq \emptyset_X$ and A is open and B is a component of A holds B is open.
- If X is locally connected, then for every subset E of X and for every (25)subset C of $X \upharpoonright E$ such that $E \neq \emptyset_X$ and $C \neq \emptyset_{X \upharpoonright E}$ and C is connected and C is open there exists a subset H of X such that H is open and H is connected and $C = E \cap H$.
- (26)X is a T₄ space if and only if for all subsets A, C of X such that $A \neq \emptyset$ and $C \neq \Omega_X$ and $A \subseteq C$ and A is closed and C is open there exists a subset G of X such that G is open and $A \subseteq G$ and $\overline{G} \subseteq C$.
- (27)Suppose X is locally connected and X is a T_4 space. Let A, B be subsets of X. Suppose $A \neq \emptyset$ and $B \neq \emptyset$ and A is closed and B is closed and $A \cap B = \emptyset$. Then if A is connected and B is connected, then there exist subsets R, S of X such that R is connected and S is connected and R is open and S is open and $A \subseteq R$ and $B \subseteq S$ and $R \cap S = \emptyset$.
- (28)For every point x of X and for every family F of subsets of X such that for every subset A of X holds $A \in F$ if and only if A is open closed and $x \in A$ holds $F \neq \emptyset$.

Let X be a topological space, and let x be a point of X. The quasi-component of xis a subset of X defined by:

there exists a family F of subsets of X such that for every subset A of (Def.7)X holds $A \in F$ if and only if A is open closed and $x \in A$ and $\bigcap F =$ the quasi-component of x.

We now state several propositions:

- A = the quasi-component of x if and only if there exists a family F of (29)subsets of X such that for every subset A of X holds $A \in F$ if and only if A is open closed and $x \in A$ and $\bigcap F = A$.
- (30) $x \in \text{the quasi-component of } x.$

⁴The proposition (18) was either repeated or obvious.

- (31) If A is open closed and $x \in A$, then if $A \subseteq$ the quasi-component of x, then A = the quasi-component of x.
- (32) The quasi-component of x is closed.
- (33) Component(x) \subseteq the quasi-component of x.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [5] Kazimierz Kuratowski. Wstep do teorii mnogości i topologii. PWN, Warszawa, 1977.
- [6] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [7] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [8] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [10] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [14] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received September 5, 1990