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Summary. We introduce the concept of n-dimensional complex
space. We prove a number of simple but useful theorems concerning ad-
dition, multiplication by scalars and similar basic concepts. We introduce
metric and topology. We prove that an n-dimensional complex space is a
Hausdorf space and that it is regular.

MML Identifier: COMPLSP1.

The articles [20], [16], [12], [1], [21], [5], [22], [7], [8], [3], [17], [11], [2], [18], [19],
[6], [4], [9], [10], [15], [14], and [13] provide the notation and terminology for
this paper. We follow the rules: k, n will be natural numbers, r, r ′, r1 will be
real numbers, and c, c′, c1, c2 will be elements of � . In this article we present
several logical schemes. The scheme FuncDefUniq concerns a non-empty set A,
a non-empty set B, and a unary functor F yielding an element of B and states
that:

for all functions f1, f2 from A into B such that for every element x of A holds
f1(x) = F(x) and for every element x of A holds f2(x) = F(x) holds f1 = f2

for all values of the parameters.
The scheme UnOpDefuniq deals with a non-empty set A and a unary functor

F yielding an element of A and states that:
for all unary operations u1, u2 on A such that for every element x of A holds

u1(x) = F(x) and for every element x of A holds u2(x) = F(x) holds u1 = u2

for all values of the parameters.
The scheme BinOpDefuniq deals with a non-empty set A and a binary functor

F yielding an element of A and states that:
for all binary operations o1, o2 on A such that for all elements a, b of A holds

o1(a, b) = F(a, b) and for all elements a, b of A holds o2(a, b) = F(a, b) holds
o1 = o2

for all values of the parameters.
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The binary operation + � on � is defined as follows:

(Def.1) for all c1, c2 holds + � (c1, c2) = c1 + c2.

The following propositions are true:

(1) + � is commutative.

(2) + � is associative.

(3) 0 � is a unity w.r.t. + � .

(4) 1+ � = 0 � .

(5) + � has a unity.

The unary operation − � on � is defined as follows:

(Def.2) for every c holds − � (c) = −c.

Next we state three propositions:

(6) − � is an inverse operation w.r.t. + � .

(7) + � has an inverse operation.

(8) The inverse operation w.r.t.+ � = − � .

The binary operation − � on � is defined by:

(Def.3) − � = + � ◦ (id � ,− � ).

The following proposition is true

(9) − � (c1, c2) = c1 − c2.

The binary operation · � on � is defined by:

(Def.4) for all c1, c2 holds · � (c1, c2) = c1 · c2.

The following propositions are true:

(10) · � is commutative.

(11) · � is associative.

(12) 1 � is a unity w.r.t. · � .

(13) 1· � = 1 � .

(14) · � has a unity.

(15) · � is distributive w.r.t. + � .

Let us consider c. The functor ·c� yields a unary operation on � and is defined
by:

(Def.5) ·c� = ·◦� (c, id � ).

We now state two propositions:

(16) ·c� (c′) = c · c′.

(17) ·c� is distributive w.r.t. + � .

The function | · | � from � into
�

is defined by:

(Def.6) for every c holds | · | � (c) = |c|.

In the sequel z, z1, z2 will be finite sequences of elements of � . We now
define two new functors. Let us consider z1, z2. The functor z1 + z2 yields a
finite sequence of elements of � and is defined by:
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(Def.7) z1 + z2 = +◦� (z1, z2).

The functor z1 − z2 yielding a finite sequence of elements of � is defined as
follows:

(Def.8) z1 − z2 = −◦� (z1, z2).

Let us consider z. The functor −z yielding a finite sequence of elements of
� is defined by:

(Def.9) −z = − � · z.

Let us consider c, z. The functor c · z yielding a finite sequence of elements
of � is defined by:

(Def.10) c · z = ·c� ·z.

Let us consider z. The functor |z| yields a finite sequence of elements of
�

and is defined as follows:

(Def.11) |z| = | · | � · z.

Let us consider n. The functor � n yielding a non-empty set of finite sequences
of � is defined by:

(Def.12) � n = � n .

We follow a convention: x, z, z1, z2, z3 will denote elements of � n and A, B
will denote subsets of � n . One can prove the following propositions:

(18) len z = n.

(19) For every element z of � 0 holds z = ε � .

(20) ε � is an element of � 0 .

(21) If k ∈ Seg n, then z(k) ∈ � .

(22) If k ∈ Seg n, then z(k) is an element of � .

(23) If for every k such that k ∈ Seg n holds z1(k) = z2(k), then z1 = z2.

Let us consider n, z1, z2. Then z1 + z2 is an element of � n .

Next we state three propositions:

(24) If k ∈ Seg n and c1 = z1(k) and c2 = z2(k), then (z1 + z2)(k) = c1 + c2.

(25) z1 + z2 = z2 + z1.

(26) z1 + (z2 + z3) = (z1 + z2) + z3.

Let us consider n. The functor 0n� yielding a finite sequence of elements of
� is defined by:

(Def.13) 0n� = n 7−→ 0 � .

Let us consider n. Then 0n� is an element of � n .

Next we state two propositions:

(27) If k ∈ Seg n, then 0n� (k) = 0 � .

(28) z + 0n� = z and z = 0n� + z.

Let us consider n, z. Then −z is an element of � n .

Next we state several propositions:

(29) If k ∈ Seg n and c = z(k), then (−z)(k) = −c.
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(30) z + (−z) = 0n� and (−z) + z = 0n� .

(31) If z1 + z2 = 0n� , then z1 = −z2 and z2 = −z1.

(32) −(−z) = z.

(33) If −z1 = −z2, then z1 = z2.

(34) If z1 + z = z2 + z or z1 + z = z + z2, then z1 = z2.

(35) −(z1 + z2) = (−z1) + (−z2).

Let us consider n, z1, z2. Then z1 − z2 is an element of � n .

Next we state a number of propositions:

(36) If k ∈ Seg n and c1 = z1(k) and c2 = z2(k), then (z1 − z2)(k) = c1 − c2.

(37) z1 − z2 = z1 + (−z2).

(38) z − 0n� = z.

(39) 0n� − z = −z.

(40) z1 − (−z2) = z1 + z2.

(41) −(z1 − z2) = z2 − z1.

(42) −(z1 − z2) = (−z1) + z2.

(43) z − z = 0n� .

(44) If z1 − z2 = 0n� , then z1 = z2.

(45) (z1 − z2) − z3 = z1 − (z2 + z3).

(46) z1 + (z2 − z3) = (z1 + z2) − z3.

(47) z1 − (z2 − z3) = (z1 − z2) + z3.

(48) (z1 − z2) + z3 = (z1 + z3) − z2.

(49) z1 = (z1 + z) − z.

(50) z1 + (z2 − z1) = z2.

(51) z1 = (z1 − z) + z.

Let us consider n, c, z. Then c · z is an element of � n .

One can prove the following propositions:

(52) If k ∈ Seg n and c′ = z(k), then (c · z)(k) = c · c′.

(53) c1 · (c2 · z) = (c1 · c2) · z.

(54) (c1 + c2) · z = c1 · z + c2 · z.

(55) c · (z1 + z2) = c · z1 + c · z2.

(56) 1 � · z = z.

(57) 0 � · z = 0n� .

(58) (−1 � ) · z = −z.

Let us consider n, z. Then |z| is an element of
�

n .

Next we state four propositions:

(59) If k ∈ Seg n and c = z(k), then |z|(k) = |c|.

(60) |0n� | = n 7−→ 0.

(61) |−z| = |z|.

(62) |c · z| = |c| · |z|.
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Let z be a finite sequence of elements of � . The functor |z| yields a real
number and is defined by:

(Def.14) |z| =
√

∑

(2|z|).

One can prove the following propositions:

(63) |0n� | = 0.

(64) If |z| = 0, then z = 0n� .

(65) 0 ≤ |z|.

(66) | − z| = |z|.

(67) |c · z| = |c| · |z|.

(68) |z1 + z2| ≤ |z1| + |z2|.

(69) |z1 − z2| ≤ |z1| + |z2|.

(70) |z1| − |z2| ≤ |z1 + z2|.

(71) |z1| − |z2| ≤ |z1 − z2|.

(72) |z1 − z2| = 0 if and only if z1 = z2.

(73) If z1 6= z2, then 0 < |z1 − z2|.

(74) |z1 − z2| = |z2 − z1|.

(75) |z1 − z2| ≤ |z1 − z| + |z − z2|.

Let us consider n, and let A be an element of 2
� n

. We say that A is open if
and only if:

(Def.15) for every x such that x ∈ A there exists r such that 0 < r and for every
z such that |z| < r holds x + z ∈ A.

Let us consider n, and let A be an element of 2
� n

. We say that A is closed
if and only if:

(Def.16) for every x such that for every r such that r > 0 there exists z such
that |z| < r and x + z ∈ A holds x ∈ A.

We now state four propositions:

(76) For every element A of 2
� n

such that A = ∅ holds A is open.

(77) For every element A of 2
� n

such that A = � n holds A is open.

(78) For every family A1 of subsets of � n such that for every element A of
2

� n

such that A ∈ A1 holds A is open for every element A of 2
� n

such
that A =

⋃

A1 holds A is open.

(79) For all subsets A, B of � n such that A is open and B is open for every
element C of 2

� n

such that C = A ∩ B holds C is open.

Let us consider n, x, r. The functor Ball(x, r) yielding a subset of � n is
defined by:

(Def.17) Ball(x, r) = {z : |z − x| < r}.

The following three propositions are true:

(80) z ∈ Ball(x, r) if and only if |x − z| < r.

(81) If 0 < r, then x ∈ Ball(x, r).
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(82) Ball(z1, r1) is open.

Now we present two schemes. The scheme SubsetFD deals with a non-empty
set A, a non-empty set B, a unary functor F yielding an element of B, and a
unary predicate P, and states that:

{F(x) : P[x]}, where x is an element of A, is a subset of B
for all values of the parameters.

The scheme SubsetFD2 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, and a binary
predicate P, and states that:

{F(x, y) : P[x, y]}, where x is an element of A, and y is an element of B, is
a subset of C
for all values of the parameters.

Let us consider n, x, A. The functor ρ(x,A) yielding a real number is defined
by:

(Def.18) for every X being sets of real numbers such that X = {|x − z| : z ∈ A}
holds ρ(x,A) = inf X.

Let us consider n, A, r. The functor Ball(A, r) yields a subset of � n and is
defined as follows:

(Def.19) Ball(A, r) = {z : ρ(z,A) < r}.

Next we state a number of propositions:

(83) If for every r′ such that r′ > 0 holds r + r′ > r1, then r ≥ r1.

(84) For every X being sets of real numbers and for every r such that X 6= ∅
and for every r′ such that r′ ∈ X holds r ≤ r′ holds inf X ≥ r.

(85) If A 6= ∅, then ρ(x,A) ≥ 0.

(86) If A 6= ∅, then ρ(x + z,A) ≤ ρ(x,A) + |z|.

(87) If x ∈ A, then ρ(x,A) = 0.

(88) If x /∈ A and A 6= ∅ and A is closed, then ρ(x,A) > 0.

(89) If A 6= ∅, then |z1 − x| + ρ(x,A) ≥ ρ(z1, A).

(90) z ∈ Ball(A, r) if and only if ρ(z,A) < r.

(91) If 0 < r and x ∈ A, then x ∈ Ball(A, r).

(92) If 0 < r, then A ⊆ Ball(A, r).

(93) If A 6= ∅, then Ball(A, r1) is open.

Let us consider n, A, B. The functor ρ(A,B) yields a real number and is
defined as follows:

(Def.20) for every X being sets of real numbers such that X = {|x − z| : x ∈
A ∧ z ∈ B} holds ρ(A,B) = inf X.

Let X, Y be sets of real numbers. The functor X + Y yields sets of real
numbers and is defined as follows:

(Def.21) X + Y = {r + r1 : r ∈ X ∧ r1 ∈ Y }.

Next we state several propositions:
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(94) For all X, Y being sets of real numbers such that X 6= ∅ and Y 6= ∅
holds X + Y 6= ∅.

(95) For all X, Y being sets of real numbers such that X 6= ∅ and X is
lower bounded and Y 6= ∅ and Y is lower bounded holds X + Y is lower
bounded.

(96) For all X, Y being sets of real numbers such that X 6= ∅ and X is
lower bounded and Y 6= ∅ and Y is lower bounded holds inf(X + Y ) =
inf X + inf Y .

(97) For all X, Y being sets of real numbers such that Y is lower bounded
and X 6= ∅ and for every r such that r ∈ X there exists r1 such that
r1 ∈ Y and r1 ≤ r holds inf X ≥ inf Y .

(98) If A 6= ∅ and B 6= ∅, then ρ(A,B) ≥ 0.

(99) ρ(A,B) = ρ(B,A).

(100) If A 6= ∅ and B 6= ∅, then ρ(x,A) + ρ(x,B) ≥ ρ(A,B).

(101) If A ∩ B 6= ∅, then ρ(A,B) = 0.

Let us consider n. The open subsets of � n constitute a family of subsets of
� n defined by:

(Def.22) the open subsets of � n = {A : A is open }, where A is an element of 2
� n

.

The following proposition is true

(102) For every element A of 2
� n

holds A ∈ the open subsets of � n if and only
if A is open.

Let us consider n. The n -dimensional complex space is a topological space
defined by:

(Def.23) then -dimensional complex space = 〈 � n , the open subsets of � n〉.

We now state two propositions:

(103) The topology of
then -dimensional complex space = the open subsets of � n .

(104) The carrier of then -dimensional complex space = � n .

In the sequel p denotes a point of the n -dimensional complex space and V
denotes a subset of the n -dimensional complex space. Next we state several
propositions:

(105) p is an element of � n .

(106) V is a subset of � n .

(107) For every subset A of � n holds A is a subset of the
n -dimensional complex space.

(108) For every subset A of � n such that A = V holds A is open if and only
if V is open.

(109) For every subset A of � n holds A is closed if and only if Ac is open.

(110) For every subset A of � n such that A = V holds A is closed if and only
if V is closed.

(111) The n -dimensional complex space is a T2 space.
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(112) The n -dimensional complex space is a T3 space.
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