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Summary. We introduce the concept of n-dimensional complex
space. We prove a number of simple but useful theorems concerning ad-
dition, multiplication by scalars and similar basic concepts. We introduce
metric and topology. We prove that an n-dimensional complex space is a
Hausdorf space and that it is regular.

MML Identifier: COMPLSP1.

The articles (20, [16], [12], [1], (21], [5], [22], [7], (8], (3], (17], [11], [2], [18], [19];
6], [4], [9], [10], [15], [14], and [13] provide the notation and terminology for
this paper. We follow the rules: k, n will be natural numbers, r, r’, r; will be
real numbers, and ¢, ¢/, ¢1, co will be elements of C. In this article we present
several logical schemes. The scheme FuncDefUnig concerns a non-empty set A,
a non-empty set B, and a unary functor F yielding an element of B and states
that:

for all functions f1, fo from A into B such that for every element z of A holds
fi(x) = F(x) and for every element x of A holds fy(z) = F(z) holds f1 = f,
for all values of the parameters.

The scheme UnOpDefuniq deals with a non-empty set .4 and a unary functor
F yielding an element of A and states that:

for all unary operations w1, ug on A such that for every element x of A holds
ui(z) = F(x) and for every element x of A holds ug(z) = F(x) holds u; = us
for all values of the parameters.

The scheme BinOpDefuniq deals with a non-empty set .4 and a binary functor
F yielding an element of A4 and states that:

for all binary operations o1, 02 on A such that for all elements a, b of A holds
o1(a, b) = F(a,b) and for all elements a, b of A holds 02(a, b) = F(a,b) holds
01 = 09
for all values of the parameters.
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The binary operation +¢ on C is defined as follows:
(Def.1)  for all ¢1, ¢2 holds +¢ (¢1, ¢2) = ¢1 + co.
The following propositions are true:
1
2
3
4
5
The unary operation —¢ on C is defined as follows:
(Def.2)  for every ¢ holds —¢(c) = —ec.

Next we state three propositions:

+¢ is commutative.

+¢ is associative.

Oc is a unity w.r.t. +¢.
14+, =0c.

+¢ has a unity.

N N N /N /N
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(6) —c is an inverse operation w.r.t. +¢.

(7)  +¢ has an inverse operation.

(8)  Theinverse operation w.r.t. +¢ = —¢.

The binary operation —¢ on C is defined by:
(Def.3) —¢ = +¢c o (ide, —¢).

The following proposition is true

9) —cl(er, e2) =c1 —ca.

The binary operation -¢c on C is defined by:
(Def.4)  for all ¢1, co holds ¢ (c1, c2) =1 - ¢a.

The following propositions are true:

(10)  -¢ is commutative.

(11) ¢ is associative.

(12)  1¢ is a unity w.r.t. .

13) 1. =lc.

(14)  -c has a unity.

(15)  -¢ is distributive w.r.t. +c.

Let us consider ¢. The functor -£ yields a unary operation on C and is defined
by:
(Def.5) £ =-2(c,ide).
We now state two propositions:
(16) £(d)=ec-C.
(17) £ is distributive w.r.t. +¢.
The function |- |- from C into R is defined by:
(Def.6)  for every c holds | - | (c) = |¢|.
In the sequel z, z1, zo will be finite sequences of elements of C. We now

define two new functors. Let us consider zi, zo. The functor z; + zo yields a
finite sequence of elements of C and is defined by:
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(Def.7) 21+ 20 = 42 (21, 22).
The functor z; — z5 yielding a finite sequence of elements of C is defined as
follows:

(Def.8) 21 — 29 = —2 (21, 22)-
Let us consider z. The functor —z yielding a finite sequence of elements of
C is defined by:
(Det9) —z=—¢ 2.
Let us consider ¢, z. The functor ¢ - z yielding a finite sequence of elements
of C is defined by:
(Def.10) ¢ z="-§ 2.
Let us consider z. The functor |z| yields a finite sequence of elements of R
and is defined as follows:
(Def11) |zl =|"|q - 2
Let us consider n. The functor C"* yielding a non-empty set of finite sequences
of C is defined by:
(Def.12) C* =C".
We follow a convention: z, z, 21, 22, 23 will denote elements of C* and A, B
will denote subsets of C". One can prove the following propositions:
(18) lenz =n.
(19)  For every element z of C° holds z = e¢.
(20)  &c is an element of C°.
(21) If k € Segn, then z(k) € C.
(22) If k € Segn, then z(k) is an element of C.
(23) If for every k such that k € Segn holds z1(k) = z2(k), then z; = 2.
Let us consider n, z1, zo0. Then 21 + 29 is an element of C".
Next we state three propositions:
(24) 1If k € Segn and ¢1 = 2z1(k) and cg = 2z3(k), then (21 + 22)(k) = ¢1 + co.
(25) 21420 =20+ 2.
(26) 21 + (22 + Zg) = (21 + Zg) + z3.
Let us consider n. The functor 0¢ yielding a finite sequence of elements of
C is defined by:

(Def.13)  0f =n+— Oc.
Let us consider n. Then 0f is an element of C".
Next we state two propositions:
(27) If k € Segn, then 0Z (k) = Oc¢.
(28) z40¢ =z and z = 0¢ + 2.
Let us consider n, z. Then —z is an element of C".

Next we state several propositions:
(29) If k € Segn and ¢ = z(k), then (—z)(k) = —c.
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(8]
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Ifz14+2z=2042z0r 21 +2 =2+ 29, then 21 = 29.
—(21 4+ 22) = (—21) + (—22).
Let us consider n, z1, zo. Then z; — 25 is an element of C”.

(30) z+4(—2)=02 and (—z) + z = 0.

(31) If z1 + 29 = OF, then 23 = —29 and 29 = —23.
(32) —(—2)=-=z.

(33)  If —z1 = —2, then 23 = 25.

(34)

(35)

w
at

Next we state a number of propositions:

36) If k€ Segn and ¢; = z1(k) and ca = 22(k), then (21 — 22)(k) = 1 — ca.
37 21— 29 =21+ (—2’2).

38) z2—-0¢ =z

39) 0 —z2=—z.

W
(s

Z1 — (—2’2) =21 + z9.
—(2:1 — 22) =29 — Z1.
—(21 — 22) = (—21) + 22.

z—z=0¢.

e
W DN =

If 21 — 29 = 0¢, then z; = 2.

(21 — 2’2) — 23 =21 — (22 + 2’3).

214 (22 — 23) = (21 + 22) — 23.

21 — (Zg — Zg) = (Z1 — Zg) + 23.

(21 — 22) + 23 = (21 + 23) — 29.

21 :(21+Z)—2.

21+ (22 — 21) = 2.

21=(21—2) + 2.

Let us consider n, ¢, z. Then c- z is an element of C™.

N N N N N N N N N N N N N S S
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One can prove the following propositions:

(52) Ifk € Segn and ¢ = z(k), then (c-2)(k) =c- .
(53)  c1-(ca-2)=(c1-¢c2)- 2.

(54) (aa+c2)-z=c1-z+cy- 2.

(55) c¢-(z1+22)=c-z1+c- 2.

(56) 1lec-z=-=z.

(57) O -2 =0p.

(58) (—1l¢) 2= —=z.

Let us consider n, z. Then |z| is an element of R™.
Next we state four propositions:

(59) If k € Segn and ¢ = z(k), then |z|(k) = |c|.
(60) |0¢| =n 0.

(61)  |=z[ = [2].

(62) ez = le| - |z,



COMPLEX SPACES 155

Let z be a finite sequence of elements of C. The functor |z| yields a real
number and is defined by:

(Def.14)  |z| = VECJ2]).

One can prove the following propositions:

63) |02| = 0.

64) If |z] =0, then z = 0.
65) 0<|2.

66) |—z| =z

67) |c-z| =lc|-|z|

68) |z + 22| < |z1| + |22l

|21 — 22| < |21 + |22].
’21‘ — ‘2’2’ S ‘2’1 +22’.

AN N AN N N N N N N N N N N
N O
o ©

M N N N N N N~ N

71 21| — |z2| < |21 — 2.

72) |21 — 29| = 0 if and only if 21 = 2.
73 If 21 # 29, then 0 < |21 — 29|

74) |21 — 23] = |22 — 21

75) |1 — 2] <z — 2]+ |2 — 2l

Let us consider n, and let A be an element of 2" . We say that A is open if
and only if:

(Def.15)  for every z such that x € A there exists r such that 0 < r and for every
z such that |z| < r holds z + z € A.
Let us consider n, and let A be an element of 2" . We say that A is closed
if and only if:
(Def.16)  for every z such that for every r such that r > 0 there exists z such
that |z| < r and  + z € A holds x € A.
We now state four propositions:
(76)  For every element A of 2¢" such that A = () holds A is open.
(77)  For every element A of 2¢" such that A = C" holds A is open.

(78)  For every family A; of subsets of C" such that for every element A of
2" such that A € A; holds A is open for every element A of 2" such
that A =J A1 holds A is open.

(79)  For all subsets A, B of C" such that A is open and B is open for every
element C of 2" such that C = AN B holds C' is open.

Let us consider n, x, r. The functor Ball(x,r) yielding a subset of C" is
defined by:

(Def.17)  Ball(z,r) ={z:|z —z| <r}.
The following three propositions are true:
(80) z e Ball(z,r) if and only if |z — z| < r.
(81) If 0 < r, then z € Ball(x,r).
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(82) Ball(z1,71) is open.
Now we present two schemes. The scheme SubsetF'D deals with a non-empty
set A, a non-empty set B, a unary functor F yielding an element of B, and a
unary predicate P, and states that:
{F(x) : P[z]}, where z is an element of A, is a subset of B
for all values of the parameters.
The scheme SubsetF'D2 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, and a binary
predicate P, and states that:
{F(x,y) : Plz,y]}, where x is an element of A, and y is an element of B, is
a subset of C
for all values of the parameters.
Let us consider n, z, A. The functor p(z, A) yielding a real number is defined
by:
(Def.18)  for every X being sets of real numbers such that X = {|z — 2| : z € A}
holds p(z, A) = inf X.
Let us consider n, A, r. The functor Ball(A,r) yields a subset of C" and is
defined as follows:
(Def.19)  Ball(A,r) ={z: p(z, A) <r}.
Next we state a number of propositions:
(83)  If for every 7’ such that ' > 0 holds r + 7’ > ry, then 7 > 7rq.
(84)  For every X being sets of real numbers and for every r such that X # ()
and for every r’ such that 7’ € X holds r < 7’ holds inf X > r.
If A# (), then p(z, A) > 0.
If A#0, then p(xz+ 2, A) < p(z, A) + |z|.
If x € A, then p(z, A) = 0.
If 2 ¢ Aand A # () and A is closed, then p(x, A) > 0.
If A# 0, then |z — x| + p(x, A) > p(z1, A).
z € Ball(A,r) if and only if p(z, A) < r.
If 0 <rand z € A, then x € Ball(A, 7).
If 0 <7, then A C Ball(A, 7).
If A+ (), then Ball(A,rq) is open.
Let us consider n, A, B. The functor p(A4, B) yields a real number and is
defined as follows:

co o o o
0 N O Ot

O © ©
NN = O

AN AN N N N N N N N
Ne) 09]
w =)
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(Def.20)  for every X being sets of real numbers such that X = {|z — 2| : = €
ANz € B} holds p(A, B) = inf X.

Let X, Y be sets of real numbers. The functor X 4+ Y yields sets of real
numbers and is defined as follows:

(Def2l) X+Y={r+ri:reXAreY}

Next we state several propositions:
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(94) For all X, Y being sets of real numbers such that X # () and Y # ()
holds X + Y # 0.

(95) For all X, Y being sets of real numbers such that X # () and X is
lower bounded and Y # ) and Y is lower bounded holds X + Y is lower
bounded.

(96) For all X, Y being sets of real numbers such that X # () and X is
lower bounded and Y # () and Y is lower bounded holds inf(X +Y) =
inf X +inf Y.

(97)  For all X, Y being sets of real numbers such that Y is lower bounded
and X # () and for every r such that » € X there exists r; such that
r1 €Y and 1 < r holds inf X > inf Y.

(98) If A#( and B # 0, then p(A,B) > 0.
(99)  p(A,B) = p(B, A).
100) If A+# 0 and B # 0, then p(z, A) + p(z, B) > p(4, B).
(101) If AN B # 0, then p(A, B) = 0.
Let us consider n. The opensubsets of C* constitute a family of subsets of
C" defined by:
(Def.22)  theopensubsetsof C* = {A : A is open }, where A is an element of 2¢" .

The following proposition is true
(102)  For every element A of 2" holds A € the open subsets of C" if and only
if A is open.

Let us consider n. The n-dimensional complex space is a topological space
defined by:

(Def.23)  then-dimensional complex space = (C", the open subsets of C™).

We now state two propositions:
(103)  The topology of
the n -dimensional complex space = the open subsets of C".
(104)  The carrier of the n-dimensional complex space = C™.

In the sequel p denotes a point of the n-dimensional complex space and V
denotes a subset of the m-dimensional complexspace. Next we state several
propositions:

(105)  pis an element of C".
(106) V is a subset of C".

(107)  For every subset A of C" holds A is a subset of the
n-dimensional complex space.

(108)  For every subset A of C" such that A =V holds A is open if and only
if V' is open.

(109)  For every subset A of C" holds A is closed if and only if A° is open.

(110)  For every subset A of C" such that A =V holds A is closed if and only
if V' is closed.

(111)  The n-dimensional complex space is a Ts space.
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(112)  The n-dimensional complex space is a T3 space.
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