Complex Spaces ${ }^{1}$

Czesław Byliński
Warsaw University
Białystok

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We introduce the concept of n-dimensional complex space. We prove a number of simple but useful theorems concerning addition, multiplication by scalars and similar basic concepts. We introduce metric and topology. We prove that an n-dimensional complex space is a Hausdorf space and that it is regular.

MML Identifier: COMPLSP1.

The articles [20], [16], [12], [1], [21], [5], [22], [7], [8], [3], [17], [11], [2], [18], [19], [6], [4], [9], [10], [15], [14], and [13] provide the notation and terminology for this paper. We follow the rules: k, n will be natural numbers, r, r^{\prime}, r_{1} will be real numbers, and $c, c^{\prime}, c_{1}, c_{2}$ will be elements of \mathbb{C}. In this article we present several logical schemes. The scheme FuncDefUniq concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
for all functions f_{1}, f_{2} from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f_{1}(x)=\mathcal{F}(x)$ and for every element x of \mathcal{A} holds $f_{2}(x)=\mathcal{F}(x)$ holds $f_{1}=f_{2}$ for all values of the parameters.

The scheme UnOpDefuniq deals with a non-empty set \mathcal{A} and a unary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
for all unary operations u_{1}, u_{2} on \mathcal{A} such that for every element x of \mathcal{A} holds $u_{1}(x)=\mathcal{F}(x)$ and for every element x of \mathcal{A} holds $u_{2}(x)=\mathcal{F}(x)$ holds $u_{1}=u_{2}$ for all values of the parameters.

The scheme BinOpDefuniq deals with a non-empty set \mathcal{A} and a binary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
for all binary operations o_{1}, o_{2} on \mathcal{A} such that for all elements a, b of \mathcal{A} holds $o_{1}(a, b)=\mathcal{F}(a, b)$ and for all elements a, b of \mathcal{A} holds $o_{2}(a, b)=\mathcal{F}(a, b)$ holds $o_{1}=o_{2}$
for all values of the parameters.

[^0]The binary operation $+\mathbb{C}$ on \mathbb{C} is defined as follows:
(Def.1) for all c_{1}, c_{2} holds ${ }_{C}\left(c_{1}, c_{2}\right)=c_{1}+c_{2}$.
The following propositions are true:
(1) $+_{\mathbb{C}}$ is commutative.
(2) $+_{\mathbb{C}}$ is associative.
(3) $0_{\mathbb{C}}$ is a unity w.r.t. $+_{\mathbb{C}}$.
(4) $1_{+_{C}}=0_{\mathbb{C}}$.
(5) $+_{\mathbb{C}}$ has a unity.

The unary operation $-_{\mathbb{C}}$ on \mathbb{C} is defined as follows:
(Def.2) for every c holds $-_{\mathbb{C}}(c)=-c$.
Next we state three propositions:
(6) $-_{\mathbb{C}}$ is an inverse operation w.r.t. $+_{\mathbb{C}}$.
(7) $+_{\mathbb{C}}$ has an inverse operation.
(8) The inverse operation w.r.t. $+_{\mathbb{C}}=-\mathbb{C}$.

The binary operation $-_{\mathbb{C}}$ on \mathbb{C} is defined by:
(Def.3) $\quad-\mathbb{C}=+_{\mathbb{C}} \circ\left(\mathrm{id}_{\mathbb{C}},-\mathbb{C}^{C}\right.$.
The following proposition is true
(9) $\quad{ }_{-\mathbb{C}}\left(c_{1}, c_{2}\right)=c_{1}-c_{2}$.

The binary operation \mathbb{C} on \mathbb{C} is defined by:
(Def.4) for all c_{1}, c_{2} holds $\cdot \mathbb{C}\left(c_{1}, c_{2}\right)=c_{1} \cdot c_{2}$.
The following propositions are true:
(10) © © is commutative.
(11) $\cdot \mathbb{C}$ is associative.
(12) $1_{\mathbb{C}}$ is a unity w.r.t. ${ }^{C}$.
(13) $\quad 1_{\cdot C}=1_{C}$.
(14) © has a unity.
(15) © \mathbb{C} is distributive w.r.t. $+\mathbb{C}$.

Let us consider c. The functor $\cdot \underset{\mathbb{C}}{c}$ yields a unary operation on \mathbb{C} and is defined by:
(Def.5) $\quad \quad_{\mathbb{C}}^{c}=\stackrel{\circ}{\mathbb{C}}\left(c, \mathrm{id}_{\mathbb{C}}\right)$.
We now state two propositions:
(16) $\cdot \stackrel{c}{\mathbb{C}}\left(c^{\prime}\right)=c \cdot c^{\prime}$.
(17) $\cdot_{\mathbb{C}}^{c}$ is distributive w.r.t. $+\mathbb{C}$.

The function $|\cdot|_{\mathbb{C}}$ from \mathbb{C} into \mathbb{R} is defined by:
(Def.6) for every c holds $|\cdot|_{\mathbb{C}}(c)=|c|$.
In the sequel z, z_{1}, z_{2} will be finite sequences of elements of \mathbb{C}. We now define two new functors. Let us consider z_{1}, z_{2}. The functor $z_{1}+z_{2}$ yields a finite sequence of elements of \mathbb{C} and is defined by:
(Def.7) $z_{1}+z_{2}=+{ }_{C}^{\circ}\left(z_{1}, z_{2}\right)$.
The functor $z_{1}-z_{2}$ yielding a finite sequence of elements of \mathbb{C} is defined as follows:
(Def.8) $z_{1}-z_{2}={ }_{\odot}^{\circ}\left(z_{1}, z_{2}\right)$.
Let us consider z. The functor $-z$ yielding a finite sequence of elements of \mathbb{C} is defined by:
(Def.9) $-z=-_{\mathbb{C}} \cdot z$.
Let us consider c, z. The functor $c \cdot z$ yielding a finite sequence of elements of \mathbb{C} is defined by:
(Def.10) $c \cdot z=\cdot{ }_{C}^{c} \cdot z$.
Let us consider z. The functor $|z|$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:
(Def.11) $\quad|z|=|\cdot|_{\mathbb{C}} \cdot z$.
Let us consider n. The functor \mathbb{C}^{n} yielding a non-empty set of finite sequences of \mathbb{C} is defined by:
(Def.12) $\quad \mathbb{C}^{n}=\mathbb{C}^{n}$.
We follow a convention: $x, z, z_{1}, z_{2}, z_{3}$ will denote elements of \mathbb{C}^{n} and A, B will denote subsets of \mathbb{C}^{n}. One can prove the following propositions:
(18) $\operatorname{len} z=n$.
(19) For every element z of \mathbb{C}^{0} holds $z=\varepsilon_{\mathbb{C}}$.
(20) $\varepsilon_{\mathbb{C}}$ is an element of \mathbb{C}^{0}.
(21) If $k \in \operatorname{Seg} n$, then $z(k) \in \mathbb{C}$.
(22) If $k \in \operatorname{Seg} n$, then $z(k)$ is an element of \mathbb{C}.
(23) If for every k such that $k \in \operatorname{Seg} n$ holds $z_{1}(k)=z_{2}(k)$, then $z_{1}=z_{2}$.

Let us consider n, z_{1}, z_{2}. Then $z_{1}+z_{2}$ is an element of \mathbb{C}^{n}.
Next we state three propositions:
(24) If $k \in \operatorname{Seg} n$ and $c_{1}=z_{1}(k)$ and $c_{2}=z_{2}(k)$, then $\left(z_{1}+z_{2}\right)(k)=c_{1}+c_{2}$.
(25) $z_{1}+z_{2}=z_{2}+z_{1}$.
(26) $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$.

Let us consider n. The functor $0_{\mathbb{C}}^{n}$ yielding a finite sequence of elements of \mathbb{C} is defined by:
(Def.13) $\quad 0_{\mathbb{C}}^{n}=n \longmapsto 0_{\mathbb{C}}$.
Let us consider n. Then $0_{\mathbb{C}}^{n}$ is an element of \mathbb{C}^{n}.
Next we state two propositions:
(27) If $k \in \operatorname{Seg} n$, then $0_{\mathbb{C}}^{n}(k)=0_{\mathbb{C}}$.
(28) $z+0_{\mathbb{C}}^{n}=z$ and $z=0_{\mathbb{C}}^{n}+z$.

Let us consider n, z. Then $-z$ is an element of \mathbb{C}^{n}.
Next we state several propositions:
(29) If $k \in \operatorname{Seg} n$ and $c=z(k)$, then $(-z)(k)=-c$.

$$
\begin{align*}
& (30) \quad z+(-z)=0_{\mathbb{C}}^{n} \text { and }(-z)+z=0_{\mathbb{C}}^{n} . \tag{30}\\
& (31) \\
& \text { If } z_{1}+z_{2}=0_{\mathbb{C}}^{n} \text {, then } z_{1}=-z_{2} \text { and } z_{2}=-z_{1} . \\
& (32) \\
& \text { (}-z)=z . \\
& \text { (33) } \tag{35}\\
& \text { If }-z_{1}=-z_{2}, \text { then } z_{1}=z_{2} . \\
& (34) \\
& \text { If } z_{1}+z=z_{2}+z \text { or } z_{1}+z=z+z_{2} \text {, then } z_{1}=z_{2} . \\
& (35) \\
& -\left(z_{1}+z_{2}\right)=\left(-z_{1}\right)+\left(-z_{2}\right) .
\end{align*}
$$

Let us consider n, z_{1}, z_{2}. Then $z_{1}-z_{2}$ is an element of \mathbb{C}^{n}.
Next we state a number of propositions:
(36) If $k \in \operatorname{Seg} n$ and $c_{1}=z_{1}(k)$ and $c_{2}=z_{2}(k)$, then $\left(z_{1}-z_{2}\right)(k)=c_{1}-c_{2}$.
$z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)$.
(38) $z-0_{\mathbb{C}}^{n}=z$.
(39) $0_{\mathbb{C}}^{n}-z=-z$.
(40) $z_{1}-\left(-z_{2}\right)=z_{1}+z_{2}$.
(41) $-\left(z_{1}-z_{2}\right)=z_{2}-z_{1}$.
(42) $-\left(z_{1}-z_{2}\right)=\left(-z_{1}\right)+z_{2}$.
(43) $z-z=0_{\mathbb{C}}^{n}$.
(44) If $z_{1}-z_{2}=0_{\mathbb{C}}^{n}$, then $z_{1}=z_{2}$.
(45) $\left(z_{1}-z_{2}\right)-z_{3}=z_{1}-\left(z_{2}+z_{3}\right)$.
(46) $z_{1}+\left(z_{2}-z_{3}\right)=\left(z_{1}+z_{2}\right)-z_{3}$.
(47) $z_{1}-\left(z_{2}-z_{3}\right)=\left(z_{1}-z_{2}\right)+z_{3}$.
(48) $\left(z_{1}-z_{2}\right)+z_{3}=\left(z_{1}+z_{3}\right)-z_{2}$.
(49) $z_{1}=\left(z_{1}+z\right)-z$.
(50) $z_{1}+\left(z_{2}-z_{1}\right)=z_{2}$.
(51) $z_{1}=\left(z_{1}-z\right)+z$.

Let us consider n, c, z. Then $c \cdot z$ is an element of \mathbb{C}^{n}.
One can prove the following propositions:
(52) If $k \in \operatorname{Seg} n$ and $c^{\prime}=z(k)$, then $(c \cdot z)(k)=c \cdot c^{\prime}$.
(53) $c_{1} \cdot\left(c_{2} \cdot z\right)=\left(c_{1} \cdot c_{2}\right) \cdot z$.
(54) $\left(c_{1}+c_{2}\right) \cdot z=c_{1} \cdot z+c_{2} \cdot z$.
(55) $c \cdot\left(z_{1}+z_{2}\right)=c \cdot z_{1}+c \cdot z_{2}$.
(56) $1_{\mathbb{C}} \cdot z=z$.
(57) $\quad 0_{\mathbb{C}} \cdot z=0_{\mathbb{C}}^{n}$.
(58) $\quad\left(-1_{\mathbb{C}}\right) \cdot z=-z$.

Let us consider n, z. Then $|z|$ is an element of \mathbb{R}^{n}.
Next we state four propositions:
(59) If $k \in \operatorname{Seg} n$ and $c=z(k)$, then $|z|(k)=|c|$.
(60) $\left|0_{\mathbb{C}}^{n}\right|=n \longmapsto 0$.
(61) $\quad|-z|=|z|$.
(62) $\quad|c \cdot z|=|c| \cdot|z|$.

Let z be a finite sequence of elements of \mathbb{C}. The functor $|z|$ yields a real number and is defined by:
(Def.14)

$$
|z|=\sqrt{\sum\left({ }^{2}|z|\right)}
$$

One can prove the following propositions:

$$
\begin{equation*}
\left|0_{\mathbb{C}}^{n}\right|=0 \tag{63}
\end{equation*}
$$

(64) If $|z|=0$, then $z=0_{\mathbb{C}}^{n}$.
(65) $\quad 0 \leq|z|$.
(66) $\quad|-z|=|z|$.
(67) $|c \cdot z|=|c| \cdot|z|$.
(68) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
(69) $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
(70) $\quad\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}+z_{2}\right|$.
(71) $\quad\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right|$.
(72) $\quad\left|z_{1}-z_{2}\right|=0$ if and only if $z_{1}=z_{2}$.
(73) If $z_{1} \neq z_{2}$, then $0<\left|z_{1}-z_{2}\right|$.
(74) $\quad\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{1}\right|$.
(75) $\quad\left|z_{1}-z_{2}\right| \leq\left|z_{1}-z\right|+\left|z-z_{2}\right|$.

Let us consider n, and let A be an element of $2^{\mathbb{C}^{n}}$. We say that A is open if and only if:
(Def.15) for every x such that $x \in A$ there exists r such that $0<r$ and for every z such that $|z|<r$ holds $x+z \in A$.
Let us consider n, and let A be an element of $2^{\mathbb{C}^{n}}$. We say that A is closed if and only if:
(Def.16) for every x such that for every r such that $r>0$ there exists z such that $|z|<r$ and $x+z \in A$ holds $x \in A$.
We now state four propositions:
(76) For every element A of $2^{\mathbb{C}^{n}}$ such that $A=\emptyset$ holds A is open.
(77) For every element A of $2^{\mathbb{C}^{n}}$ such that $A=\mathbb{C}^{n}$ holds A is open.
(78) For every family A_{1} of subsets of \mathbb{C}^{n} such that for every element A of $2^{\mathbb{C}^{n}}$ such that $A \in A_{1}$ holds A is open for every element A of $2^{\mathbb{C}^{n}}$ such that $A=\bigcup A_{1}$ holds A is open.
(79) For all subsets A, B of \mathbb{C}^{n} such that A is open and B is open for every element C of $2^{\mathbb{C}^{n}}$ such that $C=A \cap B$ holds C is open.
Let us consider n, x, r. The functor $\operatorname{Ball}(x, r)$ yielding a subset of \mathbb{C}^{n} is defined by:
(Def.17)

$$
\operatorname{Ball}(x, r)=\{z:|z-x|<r\}
$$

The following three propositions are true:
(80) $\quad z \in \operatorname{Ball}(x, r)$ if and only if $|x-z|<r$.
(81) If $0<r$, then $x \in \operatorname{Ball}(x, r)$.
(82) $\operatorname{Ball}\left(z_{1}, r_{1}\right)$ is open.

Now we present two schemes. The scheme SubsetFD deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(x): \mathcal{P}[x]\}$, where x is an element of \mathcal{A}, is a subset of \mathcal{B} for all values of the parameters.

The scheme SubsetFD2 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a non-empty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, and a binary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(x, y): \mathcal{P}[x, y]\}$, where x is an element of \mathcal{A}, and y is an element of \mathcal{B}, is a subset of \mathcal{C} for all values of the parameters.

Let us consider n, x, A. The functor $\rho(x, A)$ yielding a real number is defined by:
(Def.18) for every X being sets of real numbers such that $X=\{|x-z|: z \in A\}$ holds $\rho(x, A)=\inf X$.
Let us consider n, A, r. The functor $\operatorname{Ball}(A, r)$ yields a subset of \mathbb{C}^{n} and is defined as follows:
(Def.19) $\operatorname{Ball}(A, r)=\{z: \rho(z, A)<r\}$.
Next we state a number of propositions:
(83) If for every r^{\prime} such that $r^{\prime}>0$ holds $r+r^{\prime}>r_{1}$, then $r \geq r_{1}$.
(84) For every X being sets of real numbers and for every r such that $X \neq \emptyset$ and for every r^{\prime} such that $r^{\prime} \in X$ holds $r \leq r^{\prime}$ holds inf $X \geq r$.
(85) If $A \neq \emptyset$, then $\rho(x, A) \geq 0$.

If $A \neq \emptyset$, then $\rho(x+z, A) \leq \rho(x, A)+|z|$.
If $x \in A$, then $\rho(x, A)=0$.
(88) If $x \notin A$ and $A \neq \emptyset$ and A is closed, then $\rho(x, A)>0$.
(89) If $A \neq \emptyset$, then $\left|z_{1}-x\right|+\rho(x, A) \geq \rho\left(z_{1}, A\right)$.
(90) $z \in \operatorname{Ball}(A, r)$ if and only if $\rho(z, A)<r$.
(91) If $0<r$ and $x \in A$, then $x \in \operatorname{Ball}(A, r)$.
(92) If $0<r$, then $A \subseteq \operatorname{Ball}(A, r)$.
(93) If $A \neq \emptyset$, then $\operatorname{Ball}\left(A, r_{1}\right)$ is open.

Let us consider n, A, B. The functor $\rho(A, B)$ yields a real number and is defined as follows:
(Def.20) for every X being sets of real numbers such that $X=\{|x-z|: x \in$ $A \wedge z \in B\}$ holds $\rho(A, B)=\inf X$.
Let X, Y be sets of real numbers. The functor $X+Y$ yields sets of real numbers and is defined as follows:
(Def.21) $\quad X+Y=\left\{r+r_{1}: r \in X \wedge r_{1} \in Y\right\}$.
Next we state several propositions:
(94) For all X, Y being sets of real numbers such that $X \neq \emptyset$ and $Y \neq \emptyset$ holds $X+Y \neq \emptyset$.
(95) For all X, Y being sets of real numbers such that $X \neq \emptyset$ and X is lower bounded and $Y \neq \emptyset$ and Y is lower bounded holds $X+Y$ is lower bounded.
(96) For all X, Y being sets of real numbers such that $X \neq \emptyset$ and X is lower bounded and $Y \neq \emptyset$ and Y is lower bounded holds $\inf (X+Y)=$ $\inf X+\inf Y$.
(97) For all X, Y being sets of real numbers such that Y is lower bounded and $X \neq \emptyset$ and for every r such that $r \in X$ there exists r_{1} such that $r_{1} \in Y$ and $r_{1} \leq r$ holds $\inf X \geq \inf Y$.
(98) If $A \neq \emptyset$ and $B \neq \emptyset$, then $\rho(A, B) \geq 0$.
(99) $\quad \rho(A, B)=\rho(B, A)$.
(100) If $A \neq \emptyset$ and $B \neq \emptyset$, then $\rho(x, A)+\rho(x, B) \geq \rho(A, B)$.
(101) If $A \cap B \neq \emptyset$, then $\rho(A, B)=0$.

Let us consider n. The open subsets of \mathbb{C}^{n} constitute a family of subsets of \mathbb{C}^{n} defined by:
(Def.22) the open subsets of $\mathbb{C}^{n}=\{A: A$ is open $\}$, where A is an element of $2^{\mathbb{C}^{n}}$.
The following proposition is true
(102) For every element A of $2^{\mathbb{C}^{n}}$ holds $A \in$ the open subsets of \mathbb{C}^{n} if and only if A is open.
Let us consider n. The n-dimensional complex space is a topological space defined by:
(Def.23) the n-dimensional complex space $=\left\langle\mathbb{C}^{n}\right.$, the open subsets of $\left.\mathbb{C}^{n}\right\rangle$.
We now state two propositions:
(103) The topology of
the n-dimensional complex space $=$ the open subsets of \mathbb{C}^{n}.
(104) The carrier of the n-dimensional complex space $=\mathbb{C}^{n}$.

In the sequel p denotes a point of the n-dimensional complex space and V denotes a subset of the n-dimensional complex space. Next we state several propositions:
(105) $\quad p$ is an element of \mathbb{C}^{n}.
(106) $\quad V$ is a subset of \mathbb{C}^{n}.
(107) For every subset A of \mathbb{C}^{n} holds A is a subset of the n-dimensional complex space.
(108) For every subset A of \mathbb{C}^{n} such that $A=V$ holds A is open if and only if V is open.
(109) For every subset A of \mathbb{C}^{n} holds A is closed if and only if A^{c} is open.
(110) For every subset A of \mathbb{C}^{n} such that $A=V$ holds A is closed if and only if V is closed.
(111) The n-dimensional complex space is a T_{2} space.
(112) The n-dimensional complex space is a T_{3} space.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[10] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[14] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[17] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

