Complex Spaces ¹

Czesław Byliński Warsaw University Białystok Andrzej Trybulec Warsaw University Białystok

Summary. We introduce the concept of *n*-dimensional complex space. We prove a number of simple but useful theorems concerning addition, multiplication by scalars and similar basic concepts. We introduce metric and topology. We prove that an *n*-dimensional complex space is a Hausdorf space and that it is regular.

MML Identifier: COMPLSP1.

The articles [20], [16], [12], [1], [21], [5], [22], [7], [8], [3], [17], [11], [2], [18], [19], [6], [4], [9], [10], [15], [14], and [13] provide the notation and terminology for this paper. We follow the rules: k, n will be natural numbers, r, r', r_1 will be real numbers, and c, c', c_1, c_2 will be elements of \mathbb{C} . In this article we present several logical schemes. The scheme *FuncDefUniq* concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:

for all functions f_1 , f_2 from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f_1(x) = \mathcal{F}(x)$ and for every element x of \mathcal{A} holds $f_2(x) = \mathcal{F}(x)$ holds $f_1 = f_2$ for all values of the parameters.

The scheme UnOpDefuniq deals with a non-empty set \mathcal{A} and a unary functor \mathcal{F} yielding an element of \mathcal{A} and states that:

for all unary operations u_1 , u_2 on \mathcal{A} such that for every element x of \mathcal{A} holds $u_1(x) = \mathcal{F}(x)$ and for every element x of \mathcal{A} holds $u_2(x) = \mathcal{F}(x)$ holds $u_1 = u_2$ for all values of the parameters.

The scheme BinOpDefuniq deals with a non-empty set \mathcal{A} and a binary functor \mathcal{F} yielding an element of \mathcal{A} and states that:

for all binary operations o_1 , o_2 on \mathcal{A} such that for all elements a, b of \mathcal{A} holds $o_1(a, b) = \mathcal{F}(a, b)$ and for all elements a, b of \mathcal{A} holds $o_2(a, b) = \mathcal{F}(a, b)$ holds $o_1 = o_2$

for all values of the parameters.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1

The binary operation $+_{\mathbb{C}}$ on \mathbb{C} is defined as follows:

(Def.1) for all c_1, c_2 holds $+_{\mathbb{C}}(c_1, c_2) = c_1 + c_2$.

The following propositions are true:

- (1) $+_{\mathbb{C}}$ is commutative.
- (2) $+_{\mathbb{C}}$ is associative.
- (3) $0_{\mathbb{C}}$ is a unity w.r.t. $+_{\mathbb{C}}$.
- $(4) \quad \mathbf{1}_{+_{\mathbb{C}}} = \mathbf{0}_{\mathbb{C}}.$
- (5) $+_{\mathbb{C}}$ has a unity.

The unary operation $-_{\mathbb{C}}$ on \mathbb{C} is defined as follows:

(Def.2) for every c holds $-_{\mathbb{C}}(c) = -c$.

Next we state three propositions:

- (6) $-_{\mathbb{C}}$ is an inverse operation w.r.t. $+_{\mathbb{C}}$.
- (7) $+_{\mathbb{C}}$ has an inverse operation.
- (8) The inverse operation w.r.t. $+_{\mathbb{C}} = -_{\mathbb{C}}$.
- The binary operation $-_{\mathbb{C}}$ on \mathbb{C} is defined by:

(Def.3) $-_{\mathbb{C}} = +_{\mathbb{C}} \circ (\mathrm{id}_{\mathbb{C}}, -_{\mathbb{C}}).$

The following proposition is true

(9) $-_{\mathbb{C}}(c_1, c_2) = c_1 - c_2.$

The binary operation $\cdot_{\mathbb{C}}$ on \mathbb{C} is defined by:

(Def.4) for all c_1 , c_2 holds $\cdot_{\mathbb{C}}(c_1, c_2) = c_1 \cdot c_2$.

The following propositions are true:

- (10) $\cdot_{\mathbb{C}}$ is commutative.
- (11) $\cdot_{\mathbb{C}}$ is associative.
- (12) $1_{\mathbb{C}}$ is a unity w.r.t. $\cdot_{\mathbb{C}}$.
- (13) $\mathbf{1}_{\cdot_{\mathbb{C}}} = \mathbf{1}_{\mathbb{C}}.$
- (14) $\cdot_{\mathbb{C}}$ has a unity.
- (15) $\cdot_{\mathbb{C}}$ is distributive w.r.t. $+_{\mathbb{C}}$.

Let us consider c. The functor $\cdot_{\mathbb{C}}^{c}$ yields a unary operation on \mathbb{C} and is defined by:

(Def.5) $\cdot^{c}_{\mathbb{C}} = \cdot^{\circ}_{\mathbb{C}}(c, \mathrm{id}_{\mathbb{C}}).$

We now state two propositions:

- (16) $\cdot^c_{\mathbb{C}}(c') = c \cdot c'.$
- (17) $\cdot^{c}_{\mathbb{C}}$ is distributive w.r.t. $+_{\mathbb{C}}$.

The function $|\cdot|_{\mathbb{C}}$ from \mathbb{C} into \mathbb{R} is defined by:

(Def.6) for every c holds $|\cdot|_{\mathbb{C}}(c) = |c|$.

In the sequel z, z_1 , z_2 will be finite sequences of elements of \mathbb{C} . We now define two new functors. Let us consider z_1 , z_2 . The functor $z_1 + z_2$ yields a finite sequence of elements of \mathbb{C} and is defined by:

(Def.7) $z_1 + z_2 = +^{\circ}_{\mathbb{C}}(z_1, z_2).$

The functor $z_1 - z_2$ yielding a finite sequence of elements of \mathbb{C} is defined as follows:

(Def.8) $z_1 - z_2 = -_{\mathbb{C}}^{\circ}(z_1, z_2).$

Let us consider z. The functor -z yielding a finite sequence of elements of $\mathbb C$ is defined by:

(Def.9) $-z = -_{\mathbb{C}} \cdot z$.

Let us consider c, z. The functor $c \cdot z$ yielding a finite sequence of elements of \mathbb{C} is defined by:

(Def.10) $c \cdot z = \cdot_{\mathbb{C}}^c \cdot z.$

Let us consider z. The functor |z| yields a finite sequence of elements of \mathbb{R} and is defined as follows:

(Def.11) $|z| = |\cdot|_{\mathbb{C}} \cdot z.$

Let us consider n. The functor \mathbb{C}^n yielding a non-empty set of finite sequences of \mathbb{C} is defined by:

 $(\text{Def.12}) \quad \mathbb{C}^n = \mathbb{C}^n.$

We follow a convention: x, z, z_1, z_2, z_3 will denote elements of \mathbb{C}^n and A, B will denote subsets of \mathbb{C}^n . One can prove the following propositions:

- (18) len z = n.
- (19) For every element z of \mathbb{C}^0 holds $z = \varepsilon_{\mathbb{C}}$.
- (20) $\varepsilon_{\mathbb{C}}$ is an element of \mathbb{C}^0 .
- (21) If $k \in \text{Seg } n$, then $z(k) \in \mathbb{C}$.
- (22) If $k \in \text{Seg } n$, then z(k) is an element of \mathbb{C} .
- (23) If for every k such that $k \in \text{Seg } n$ holds $z_1(k) = z_2(k)$, then $z_1 = z_2$. Let us consider n, z_1, z_2 . Then $z_1 + z_2$ is an element of \mathbb{C}^n .

Next we state three propositions:

(24) If
$$k \in \text{Seg } n$$
 and $c_1 = z_1(k)$ and $c_2 = z_2(k)$, then $(z_1 + z_2)(k) = c_1 + c_2$.

- $(25) z_1 + z_2 = z_2 + z_1.$
- (26) $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3.$

Let us consider n. The functor $0^n_{\mathbb{C}}$ yielding a finite sequence of elements of \mathbb{C} is defined by:

(Def.13) $0^n_{\mathbb{C}} = n \longmapsto 0_{\mathbb{C}}.$

Let us consider n. Then $0^n_{\mathbb{C}}$ is an element of \mathbb{C}^n .

Next we state two propositions:

- (27) If $k \in \operatorname{Seg} n$, then $0^n_{\mathbb{C}}(k) = 0_{\mathbb{C}}$.
- (28) $z + 0^n_{\mathbb{C}} = z \text{ and } z = 0^n_{\mathbb{C}} + z.$

Let us consider n, z. Then -z is an element of \mathbb{C}^n . Next we state several propositions:

(29) If $k \in \text{Seg } n$ and c = z(k), then (-z)(k) = -c.

 $z + (-z) = 0^n_{\mathbb{C}}$ and $(-z) + z = 0^n_{\mathbb{C}}$. (30)If $z_1 + z_2 = 0^n_{\mathbb{C}}$, then $z_1 = -z_2$ and $z_2 = -z_1$. (31)-(-z) = z.(32)If $-z_1 = -z_2$, then $z_1 = z_2$. (33)(34)If $z_1 + z = z_2 + z$ or $z_1 + z = z + z_2$, then $z_1 = z_2$. $-(z_1 + z_2) = (-z_1) + (-z_2).$ (35)Let us consider n, z_1, z_2 . Then $z_1 - z_2$ is an element of \mathbb{C}^n . Next we state a number of propositions: (36)If $k \in \text{Seg } n$ and $c_1 = z_1(k)$ and $c_2 = z_2(k)$, then $(z_1 - z_2)(k) = c_1 - c_2$. (37) $z_1 - z_2 = z_1 + (-z_2).$ (38) $z - 0^n_{\mathbb{C}} = z.$ (39) $0^n_{\mathbb{C}} - z = -z.$ $(40) \quad z_1 - (-z_2) = z_1 + z_2.$ $(41) \quad -(z_1 - z_2) = z_2 - z_1.$ $-(z_1 - z_2) = (-z_1) + z_2.$ (42) $(43) \quad z - z = 0^n_{\mathbb{C}}.$ (44) If $z_1 - z_2 = 0^n_{\mathbb{C}}$, then $z_1 = z_2$. $(45) \quad (z_1 - z_2) - z_3 = z_1 - (z_2 + z_3).$ $(46) z_1 + (z_2 - z_3) = (z_1 + z_2) - z_3.$ $(47) z_1 - (z_2 - z_3) = (z_1 - z_2) + z_3.$ $(48) \quad (z_1 - z_2) + z_3 = (z_1 + z_3) - z_2.$ $z_1 = (z_1 + z) - z.$ (49) $z_1 + (z_2 - z_1) = z_2.$ (50) $z_1 = (z_1 - z) + z.$ (51)Let us consider n, c, z. Then $c \cdot z$ is an element of \mathbb{C}^n . One can prove the following propositions: (52)If $k \in \text{Seg } n$ and c' = z(k), then $(c \cdot z)(k) = c \cdot c'$. (53) $c_1 \cdot (c_2 \cdot z) = (c_1 \cdot c_2) \cdot z.$ (54) $(c_1 + c_2) \cdot z = c_1 \cdot z + c_2 \cdot z.$ (55) $c \cdot (z_1 + z_2) = c \cdot z_1 + c \cdot z_2.$ (56) $1_{\mathbb{C}} \cdot z = z.$ $(57) \quad 0_{\mathbb{C}} \cdot z = 0_{\mathbb{C}}^n.$ $(58) \quad (-1_{\mathbb{C}}) \cdot z = -z.$ Let us consider n, z. Then |z| is an element of \mathbb{R}^n . Next we state four propositions: If $k \in \text{Seg } n$ and c = z(k), then |z|(k) = |c|. (59)(60) $|0^n_{\mathbb{C}}| = n \longmapsto 0.$ |-z| = |z|.(61)(62) $|c \cdot z| = |c| \cdot |z|.$

Let z be a finite sequence of elements of \mathbb{C} . The functor |z| yields a real number and is defined by:

(Def.14)
$$|z| = \sqrt{\sum^{(2)} |z|}.$$

One can prove the following propositions:

- (63) $|0^n_{\mathbb{C}}| = 0.$
- (64) If |z| = 0, then $z = 0^n_{\mathbb{C}}$.
- $(65) \quad 0 \le |z|.$
- (66) |-z| = |z|.
- $(67) \quad |c \cdot z| = |c| \cdot |z|.$
- $(68) \quad |z_1 + z_2| \le |z_1| + |z_2|.$
- $(69) \quad |z_1 z_2| \le |z_1| + |z_2|.$
- $(70) \quad |z_1| |z_2| \le |z_1 + z_2|.$
- (71) $|z_1| |z_2| \le |z_1 z_2|.$
- (72) $|z_1 z_2| = 0$ if and only if $z_1 = z_2$.
- (73) If $z_1 \neq z_2$, then $0 < |z_1 z_2|$.
- (74) $|z_1 z_2| = |z_2 z_1|.$
- (75) $|z_1 z_2| \le |z_1 z| + |z z_2|.$

Let us consider n, and let A be an element of $2^{\mathbb{C}^n}$. We say that A is open if and only if:

(Def.15) for every x such that $x \in A$ there exists r such that 0 < r and for every z such that |z| < r holds $x + z \in A$.

Let us consider n, and let A be an element of $2^{\mathbb{C}^n}$. We say that A is closed if and only if:

(Def.16) for every x such that for every r such that r > 0 there exists z such that |z| < r and $x + z \in A$ holds $x \in A$.

We now state four propositions:

- (76) For every element A of $2^{\mathbb{C}^n}$ such that $A = \emptyset$ holds A is open.
- (77) For every element A of $2^{\mathbb{C}^n}$ such that $A = \mathbb{C}^n$ holds A is open.
- (78) For every family A_1 of subsets of \mathbb{C}^n such that for every element A of $2^{\mathbb{C}^n}$ such that $A \in A_1$ holds A is open for every element A of $2^{\mathbb{C}^n}$ such that $A = \bigcup A_1$ holds A is open.
- (79) For all subsets A, B of \mathbb{C}^n such that A is open and B is open for every element C of $2^{\mathbb{C}^n}$ such that $C = A \cap B$ holds C is open.

Let us consider n, x, r. The functor Ball(x, r) yielding a subset of \mathbb{C}^n is defined by:

(Def.17) Ball $(x, r) = \{z : |z - x| < r\}.$

The following three propositions are true:

- (80) $z \in \text{Ball}(x, r)$ if and only if |x z| < r.
- (81) If 0 < r, then $x \in \text{Ball}(x, r)$.

(82) Ball (z_1, r_1) is open.

Now we present two schemes. The scheme SubsetFD deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(x): \mathcal{P}[x]\}$, where x is an element of \mathcal{A} , is a subset of \mathcal{B} for all values of the parameters.

The scheme SubsetFD2 deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(x,y):\mathcal{P}[x,y]\}$, where x is an element of \mathcal{A} , and y is an element of \mathcal{B} , is a subset of \mathcal{C}

for all values of the parameters.

Let us consider n, x, A. The functor $\rho(x, A)$ yielding a real number is defined by:

(Def.18) for every X being sets of real numbers such that $X = \{|x - z| : z \in A\}$ holds $\rho(x, A) = \inf X$.

Let us consider n, A, r. The functor Ball(A, r) yields a subset of \mathbb{C}^n and is defined as follows:

(Def.19) Ball
$$(A, r) = \{z : \rho(z, A) < r\}.$$

Next we state a number of propositions:

- (83) If for every r' such that r' > 0 holds $r + r' > r_1$, then $r \ge r_1$.
- (84) For every X being sets of real numbers and for every r such that $X \neq \emptyset$ and for every r' such that $r' \in X$ holds $r \leq r'$ holds inf $X \geq r$.
- (85) If $A \neq \emptyset$, then $\rho(x, A) \ge 0$.
- (86) If $A \neq \emptyset$, then $\rho(x+z, A) \le \rho(x, A) + |z|$.
- (87) If $x \in A$, then $\rho(x, A) = 0$.
- (88) If $x \notin A$ and $A \neq \emptyset$ and A is closed, then $\rho(x, A) > 0$.
- (89) If $A \neq \emptyset$, then $|z_1 x| + \rho(x, A) \ge \rho(z_1, A)$.
- (90) $z \in \text{Ball}(A, r)$ if and only if $\rho(z, A) < r$.
- (91) If 0 < r and $x \in A$, then $x \in \text{Ball}(A, r)$.
- (92) If 0 < r, then $A \subseteq \text{Ball}(A, r)$.
- (93) If $A \neq \emptyset$, then $\text{Ball}(A, r_1)$ is open.

Let us consider n, A, B. The functor $\rho(A, B)$ yields a real number and is defined as follows:

(Def.20) for every X being sets of real numbers such that $X = \{|x - z| : x \in A \land z \in B\}$ holds $\rho(A, B) = \inf X$.

Let X, Y be sets of real numbers. The functor X + Y yields sets of real numbers and is defined as follows:

(Def.21) $X + Y = \{r + r_1 : r \in X \land r_1 \in Y\}.$

Next we state several propositions:

- (94) For all X, Y being sets of real numbers such that $X \neq \emptyset$ and $Y \neq \emptyset$ holds $X + Y \neq \emptyset$.
- (95) For all X, Y being sets of real numbers such that $X \neq \emptyset$ and X is lower bounded and $Y \neq \emptyset$ and Y is lower bounded holds X + Y is lower bounded.
- (96) For all X, Y being sets of real numbers such that $X \neq \emptyset$ and X is lower bounded and $Y \neq \emptyset$ and Y is lower bounded holds $\inf(X + Y) = \inf X + \inf Y$.
- (97) For all X, Y being sets of real numbers such that Y is lower bounded and $X \neq \emptyset$ and for every r such that $r \in X$ there exists r_1 such that $r_1 \in Y$ and $r_1 \leq r$ holds inf $X \geq \inf Y$.
- (98) If $A \neq \emptyset$ and $B \neq \emptyset$, then $\rho(A, B) \ge 0$.
- (99) $\rho(A, B) = \rho(B, A).$
- (100) If $A \neq \emptyset$ and $B \neq \emptyset$, then $\rho(x, A) + \rho(x, B) \ge \rho(A, B)$.
- (101) If $A \cap B \neq \emptyset$, then $\rho(A, B) = 0$.

Let us consider n. The open subsets of \mathbb{C}^n constitute a family of subsets of \mathbb{C}^n defined by:

(Def.22) the open subsets of $\mathbb{C}^n = \{A : A \text{ is open }\}$, where A is an element of $2^{\mathbb{C}^n}$.

The following proposition is true

(102) For every element A of $2^{\mathbb{C}^n}$ holds $A \in \text{the open subsets of } \mathbb{C}^n$ if and only if A is open.

Let us consider n. The n-dimensional complex space is a topological space defined by:

(Def.23) the *n*-dimensional complex space = $\langle \mathbb{C}^n$, the open subsets of $\mathbb{C}^n \rangle$.

We now state two propositions:

(103) The topology of

the *n*-dimensional complex space = the open subsets of \mathbb{C}^n .

(104) The carrier of the *n*-dimensional complex space $= \mathbb{C}^n$.

In the sequel p denotes a point of the n-dimensional complex space and V denotes a subset of the n-dimensional complex space. Next we state several propositions:

- (105) p is an element of \mathbb{C}^n .
- (106) V is a subset of \mathbb{C}^n .
- (107) For every subset A of \mathbb{C}^n holds A is a subset of the n-dimensional complex space.
- (108) For every subset A of \mathbb{C}^n such that A = V holds A is open if and only if V is open.
- (109) For every subset A of \mathbb{C}^n holds A is closed if and only if A^c is open.
- (110) For every subset A of \mathbb{C}^n such that A = V holds A is closed if and only if V is closed.
- (111) The *n*-dimensional complex space is a T_2 space.

(112) The *n*-dimensional complex space is a T_3 space.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [11] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [14] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [19] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received September 27, 1990