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Summary. The concept of countable sets is introduced and there
are shown some facts which deal with finite and countable sets. Besides,
the article includes theorems and lemmas on the sum and the product of
infinite cardinals. The most important of them is Hessenberg’s theorem
which says that for every infinite cardinal m the product m · m is equal
to m.
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The papers [20], [16], [3], [11], [9], [15], [5], [8], [7], [21], [19], [2], [1], [10], [22],
[12], [13], [18], [14], [17], [4], and [6] provide the terminology and notation for
this paper. For simplicity we follow the rules: X, Y are sets, D is a non-empty
set, m, n, n1, n2, n3, m2, m1 are natural numbers, A, B are ordinal numbers,
L, K, M , N are cardinal numbers, x is arbitrary, and f is a function. Next we
state a number of propositions:

(1) X is finite if and only if X is finite.

(2) X is finite if and only if X < ℵ0.

(3) If X is finite, then X ∈ ℵ0 and X ∈ ω.

(4) X is finite if and only if there exists n such that X = n .

(5) succA \ {A} = A.

(6) If A ≈ ord(n), then A = ord(n).

(7) A is finite if and only if A ∈ ω.

(8) A is not finite if and only if ω ⊆ A.

(9) M is finite if and only if M ∈ ℵ0.

(10) M is finite if and only if M < ℵ0.

(11) M is not finite if and only if ℵ0 ⊆ M .

(12) M is not finite if and only if ℵ0 ≤ M .

(13) If N is finite and M is not finite, then N < M and N ≤ M .
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(14) X is not finite if and only if there exists Y such that Y ⊆ X and

Y = ℵ0.

(15) ω is not finite and � is not finite.

(16) ℵ0 is not finite.

(17) X = ∅ if and only if X = 0.

(18) M 6= 0 if and only if 0 < M .

(19) 0 ≤ M .

(20) X = Y if and only if X+ = Y +.

(21) M = N if and only if N+ = M+.

(22) N < M if and only if N+ ≤ M .

(23) N < M+ if and only if N ≤ M .

(24) 0 < M if and only if 1 ≤ M .

(25) 1 < M if and only if 2 ≤ M .

(26) If M is finite but N ≤ M or N < M , then N is finite.

(27) A is a limit ordinal number if and only if for all B, n such that B ∈ A

holds B + ord(n) ∈ A.

(28) A+succ ord(n) = succA+ord(n) and A+ord(n+1) = succA+ord(n).

(29) There exists n such that A · succ1 = A + ord(n).

(30) If A is a limit ordinal number, then A · succ1 = A.

(31) If ω ⊆ A, then 1 + A = A.

Next we state a number of propositions:

(32) If M is not finite, then ord(M) is a limit ordinal number.

(33) If M is not finite, then M + M = M .

(34) If M is not finite but N ≤ M or N < M , then M + N = M and
N + M = M .

(35) If X is not finite but X ≈ Y or Y ≈ X, then X ∪Y ≈ X and X ∪ Y =

X .

(36) If X is not finite and Y is finite, then X ∪ Y ≈ X and X ∪ Y = X .

(37) If X is not finite but Y < X or Y ≤ X , then X ∪ Y ≈ X and

X ∪ Y = X .

(38) If M is finite and N is finite, then M + N is finite.

(39) If M is not finite, then M + N is not finite and N + M is not finite.

(40) If M is finite and N is finite, then M · N is finite.

(41) If K < L and M < N or K ≤ L and M < N or K < L and M ≤ N or
K ≤ L and M ≤ N , then K + M ≤ L + N and M + K ≤ L + N .

(42) If M < N or M ≤ N , then K + M ≤ K + N and K + M ≤ N + K and
M + K ≤ K + N and M + K ≤ N + K.

Let us consider X. We say that X is countable if and only if:

(Def.1) X ≤ ℵ0.
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One can prove the following propositions:

(43) If X is finite, then X is countable.

(44) ω is countable and � is countable.

(45) X is countable if and only if there exists f such that dom f = � and
X ⊆ rng f .

(46) If Y ⊆ X and X is countable, then Y is countable.

(47) If X is countable and Y is countable, then X ∪ Y is countable.

(48) If X is countable, then X ∩ Y is countable and Y ∩ X is countable.

(49) If X is countable, then X \ Y is countable.

(50) If X is countable and Y is countable, then X−. Y is countable.

The scheme Lambda2N deals with a binary functor F yielding a natural
number and states that:

there exists a function f from [: � , � :] into � such that for all n, m holds
f(〈〈n,m〉〉) = F(n,m)
for all values of the parameter.

In the sequel r will denote a real number. Next we state the proposition

(51) r 6= 0 or n = 0 if and only if rn 6= 0.

Let m, n be natural numbers. Then mn is a natural number.

One can prove the following propositions:

(52) If 2n1 · (2 · m1 + 1) = 2n2 · (2 · m2 + 1), then n1 = n2 and m1 = m2.

(53) [: � , � :] ≈ � and � = [: � , � :] .

(54) ℵ0 · ℵ0 = ℵ0.

(55) If X is countable and Y is countable, then [:X, Y :] is countable.

(56) D1 ≈ D and D1 = D .

We now state a number of propositions:

(57) [:Dn, Dm :] ≈ Dn+m and [: Dn, Dm :] = Dn+m .

(58) If D is countable, then Dn is countable.

(59) If dom f ≤ M and for every x such that x ∈ dom f holds f(x) ≤ N ,

then
⋃

f ≤ M · N .

(60) If X ≤ M and for every Y such that Y ∈ X holds Y ≤ N , then
⋃

X ≤ M · N .

(61) For every f such that dom f is countable and for every x such that
x ∈ dom f holds f(x) is countable holds

⋃
f is countable.

(62) If X is countable and for every Y such that Y ∈ X holds Y is countable,
then

⋃
X is countable.

(63) For every f such that dom f is finite and for every x such that x ∈ dom f

holds f(x) is finite holds
⋃

f is finite.

(64) If X is finite and for every Y such that Y ∈ X holds Y is finite, then
⋃

X is finite.
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(65) If D is countable, then D∗ is countable.

(66) ℵ0 ≤ D∗ .

Now we present three schemes. The scheme FraenCoun1 deals with a unary
functor F , and a unary predicate P, and states that:

{F(n) : P[n]} is countable
for all values of the parameters.

The scheme FraenCoun2 concerns a binary functor F , and a binary predicate
P, and states that:

{F(n1, n2) : P[n1, n2]} is countable
for all values of the parameters.

The scheme FraenCoun3 concerns a ternary functor F , and a ternary predi-
cate P, and states that:

{F(n1, n2, n3) : P[n1, n2, n3]} is countable
for all values of the parameters.

The following propositions are true:

(67) ℵ0 · n ≤ ℵ0 and n · ℵ0 ≤ ℵ0.

(68) If K < L and M < N or K ≤ L and M < N or K < L and M ≤ N or
K ≤ L and M ≤ N , then K · M ≤ L · N and M · K ≤ L · N .

(69) If M < N or M ≤ N , then K · M ≤ K · N and K · M ≤ N · K and
M · K ≤ K · N and M · K ≤ N · K.

(70) If K < L and M < N or K ≤ L and M < N or K < L and M ≤ N or
K ≤ L and M ≤ N , then K = 0 or KM ≤ LN .

(71) If M < N or M ≤ N , then K = 0 or KM ≤ KN and MK ≤ NK .

(72) M ≤ M + N and N ≤ M + N .

(73) If N 6= 0, then M ≤ M · N and M ≤ N · M .

(74) If K < L and M < N , then K + M < L + N and M + K < L + N .

(75) If K + M < K + N , then M < N .

(76) If X + Y = X and Y < X , then X \ Y = X .

One can prove the following propositions:

(77) If M is not finite, then M · M = M .

(78) If M is not finite and 0 < N but N ≤ M or N < M , then M · N = M

and N · M = M .

(79) If M is not finite but N ≤ M or N < M , then M · N ≤ M and
N · M ≤ M .

(80) If X is not finite, then [:X, X :] ≈ X and [: X, X :] = X .

(81) If X is not finite and Y is finite and Y 6= ∅, then [: X, Y :] ≈ X and

[:X, Y :] = X .

(82) If K < L and M < N , then K · M < L · N and M · K < L · N .

(83) If K · M < K · N , then M < N .

(84) If X is not finite, then X = ℵ0 · X .
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(85) If X 6= ∅ and X is finite and Y is not finite, then Y · X = Y .

(86) If D is not finite and n 6= 0, then Dn ≈ D and Dn = D .

(87) If D is not finite, then D = D∗ .
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[11] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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