Construction of Finite Sequences over Ring and Left-, Right-, and Bi-Modules over a Ring ¹

Michał Muzalewski Warsaw University Białystok Lesław W. Szczerba Siedlce University

Summary. This text includes definitions of finite sequences over rings and left-, right-, and bi-module over a ring, treated as functions defined for *all* natural numbers, but almost everywhere equal to zero. Some elementary theorems are proved, in particular for each category of sequences the schema of existence is proved. In all four cases, *i.e* for rings, left-, right-, and bi-modules are almost exactly the same, hovewer we do not know how to do the job in Mizar in a different way. The paper is mostly based on [2]. In particular the notion of initial segment of natural numbers is introduced which differs from that of [2] by starting with zero. This proved to be more convenient for algebraic purposes.

MML Identifier: ALGSEQ_1.

The notation and terminology used in this paper are introduced in the following papers: [8], [3], [5], [1], [4], [6], and [7]. We adopt the following rules: i, k, l, m, n will be natural numbers and x will be arbitrary. We now state four propositions:

- (2)² If m < n + 1, then m < n or m = n.
- (4)³ If k < 2, then k = 0 or k = 1.
- (5) For every real number x holds x < x + 1.
- (7)⁴ If k < l and $l \le k + 1$, then l = k + 1.

Let us consider n. The functor PSeg n yields a set and is defined by:

(Def.1) $PSeg n = \{k : k < n\}.$

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C3

²The proposition (1) was either repeated or obvious.

³The proposition (3) was either repeated or obvious.

⁴The proposition (6) was either repeated or obvious.

Let us consider n. Then $\operatorname{PSeg} n$ is sets of natural numbers.

We now state a number of propositions:

- (8) $\operatorname{PSeg} n = \{k : k < n\}.$
- (9) If $x \in \operatorname{PSeg} n$, then x is a natural number.
- (10) $k \in \operatorname{PSeg} n$ if and only if k < n.
- (11) $PSeg 0 = \emptyset$ and $PSeg 1 = \{0\}$ and $PSeg 2 = \{0, 1\}$.
- (12) $n \in \operatorname{PSeg}(n+1).$
- (13) $n \le m$ if and only if $\operatorname{PSeg} n \subseteq \operatorname{PSeg} m$.
- (14) If $\operatorname{PSeg} n = \operatorname{PSeg} m$, then n = m.
- (15) If $k \le n$, then $\operatorname{PSeg} k = \operatorname{PSeg} k \cap \operatorname{PSeg} n$ and $\operatorname{PSeg} k = \operatorname{PSeg} n \cap \operatorname{PSeg} k$.
- (16) If $\operatorname{PSeg} k = \operatorname{PSeg} k \cap \operatorname{PSeg} n$ or $\operatorname{PSeg} k = \operatorname{PSeg} n \cap \operatorname{PSeg} k$, then $k \le n$.
- (17) $\operatorname{PSeg} n \cup \{n\} = \operatorname{PSeg}(n+1).$

In the sequel R is a field structure and x is a scalar of R. Let us consider R. A function from N into the carrier of R is said to be an algebraic sequence of R if:

(Def.2) there exists n such that for every i such that $i \ge n$ holds it $(i) = 0_R$.

In the sequel p, q denote algebraic sequences of R. Next we state the proposition

$$(19)^5 \quad \operatorname{dom} p = \mathbb{N}.$$

Let us consider R, p, k. We say that the length of p is at most k if and only if:

(Def.3) for every *i* such that $i \ge k$ holds $p(i) = 0_R$.

We now state the proposition

(20) the length of p is at most k if and only if for every i such that $i \ge k$ holds $p(i) = 0_R$.

Let us consider R, p. The functor len p yielding a natural number is defined as follows:

(Def.4) the length of p is at most len p and for every m such that the length of p is at most m holds len $p \le m$.

We now state several propositions:

- (21) $i = \operatorname{len} p$ if and only if the length of p is at most i and for every m such that the length of p is at most m holds $i \leq m$.
- (22) For every *i* such that $i \ge \text{len } p$ holds $p(i) = 0_R$.
- (23) If $p(k) \neq 0_R$, then $\operatorname{len} p > k$.
- (24) If for every *i* such that i < k holds $p(i) \neq 0_R$, then $\operatorname{len} p \geq k$.

(25) If len p = k + 1, then $p(k) \neq 0_R$.

Let us consider R, p. The functor support p yields sets of natural numbers and is defined as follows:

⁵The proposition (18) was either repeated or obvious.

(Def.5) support p = PSeg(len p).

Next we state two propositions:

- (26) For every y being sets of natural numbers holds $y = \operatorname{support} p$ if and only if $y = \operatorname{PSeg}(\operatorname{len} p)$.
- (27) $k = \operatorname{len} p$ if and only if $\operatorname{PSeg} k = \operatorname{support} p$.

The scheme AlgSeqLambdaF concerns field structure \mathcal{A} , a natural number \mathcal{B} , and a unary functor \mathcal{F} yielding a scalar of \mathcal{A} and states that:

there exists an algebraic sequence p of \mathcal{A} such that $\operatorname{len} p \leq \mathcal{B}$ and for every k such that $k < \mathcal{B}$ holds $p(k) = \mathcal{F}(k)$

for all values of the parameters.

One can prove the following proposition

(28) If $\operatorname{len} p = \operatorname{len} q$ and for every k such that $k < \operatorname{len} p$ holds p(k) = q(k), then p = q.

The following proposition is true

(29) For every R such that the carrier of $R \neq \{0_R\}$ for every k there exists an algebraic sequence p of R such that len p = k.

Let us consider R, x. The functor $\langle x \rangle$ yielding an algebraic sequence of R is defined by:

(Def.6) $\operatorname{len}\langle x \rangle \leq 1 \text{ and } \langle x \rangle(0) = x.$

One can prove the following propositions:

(30) $p = \langle x \rangle$ if and only if len $p \le 1$ and p(0) = x.

- (31) $p = \langle 0_R \rangle$ if and only if len p = 0.
- (32) $p = \langle 0_R \rangle$ if and only if support $p = \emptyset$.
- (33) $\langle 0_R \rangle(i) = 0_R.$
- (34) $p = \langle 0_R \rangle$ if and only if rng $p = \{0_R\}$.

In the sequel R will be an associative ring and V will be a left module over R. Let us consider R, V. The functor Θ_V yields a vector of V and is defined by:

(Def.7) $\Theta_V = 0_{\text{the carrier of } V}.$

One can prove the following proposition

(35) $\Theta_V = 0_{\text{the carrier of } V}.$

In the sequel x denotes a vector of V. Let us consider R, V. A function from \mathbb{N} into the carrier of the carrier of V is said to be an algebraic sequence of V if: (Def.8) there exists n such that for every i such that $i \ge n$ holds it $(i) = \Theta_V$.

In the sequel p, q will denote algebraic sequences of V. The following proposition is true

 $(37)^6 \quad \text{dom} \, p = \mathbb{N}.$

Let us consider R, V, p, k. We say that the length of p is at most k if and only if:

⁶The proposition (36) was either repeated or obvious.

(Def.9) for every *i* such that $i \ge k$ holds $p(i) = \Theta_V$.

We now state the proposition

(38) the length of p is at most k if and only if for every i such that $i \ge k$ holds $p(i) = \Theta_V$.

Let us consider R, V, p. The functor len p yields a natural number and is defined as follows:

(Def.10) the length of p is at most len p and for every m such that the length of p is at most m holds len $p \le m$.

One can prove the following propositions:

- (39) $i = \operatorname{len} p$ if and only if the length of p is at most i and for every m such that the length of p is at most m holds $i \leq m$.
- (40) For every *i* such that $i \ge \operatorname{len} p$ holds $p(i) = \Theta_V$.
- (41) If $p(k) \neq \Theta_V$, then len p > k.
- (42) If for every *i* such that i < k holds $p(i) \neq \Theta_V$, then len $p \ge k$.
- (43) If len p = k + 1, then $p(k) \neq \Theta_V$.

Let us consider R, V, p. The functor support p yields sets of natural numbers and is defined by:

(Def.11) support p = PSeg(len p).

We now state two propositions:

- (44) For every y being sets of natural numbers holds $y = \operatorname{support} p$ if and only if $y = \operatorname{PSeg}(\operatorname{len} p)$.
- (45) $k = \operatorname{len} p$ if and only if $\operatorname{PSeg} k = \operatorname{support} p$.

The scheme AlgSeqLambdaLM deals with an associative ring \mathcal{A} , a left module \mathcal{B} over \mathcal{A} , a natural number \mathcal{C} , and a unary functor \mathcal{F} yielding a vector of \mathcal{B} and states that:

there exists an algebraic sequence p of \mathcal{B} such that $\operatorname{len} p \leq \mathcal{C}$ and for every k such that $k < \mathcal{C}$ holds $p(k) = \mathcal{F}(k)$

for all values of the parameters.

The following proposition is true

(46) If len p = len q and for every k such that k < len p holds p(k) = q(k), then p = q.

We now state the proposition

(47) For all R, V such that the carrier of the carrier of $V \neq \{\Theta_V\}$ for every k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V, x. The functor $\langle x \rangle$ yielding an algebraic sequence of V is defined as follows:

(Def.12) $\operatorname{len}\langle x \rangle \leq 1 \text{ and } \langle x \rangle(0) = x.$

One can prove the following propositions:

(48) $p = \langle x \rangle$ if and only if len $p \le 1$ and p(0) = x.

(49) $p = \langle \Theta_V \rangle$ if and only if len p = 0.

- (50) $p = \langle \Theta_V \rangle$ if and only if support $p = \emptyset$.
- (51) $\langle \Theta_V \rangle(i) = \Theta_V.$
- (52) $p = \langle \Theta_V \rangle$ if and only if $\operatorname{rng} p = \{\Theta_V\}.$

In the sequel V will denote a right module over R. Let us consider R, V. The functor Θ_V yields a vector of V and is defined as follows:

(Def.13) $\Theta_V = 0_{\text{the carrier of } V}.$

The following proposition is true

(53) $\Theta_V = 0_{\text{the carrier of } V}.$

Let us consider R, V. The functor Θ_V yields a vector of V and is defined as follows:

(Def.14) $\Theta_V = 0_{\text{the carrier of }V}.$

The following proposition is true

(54) $\Theta_V = 0_{\text{the carrier of } V}.$

In the sequel x will denote a vector of V. Let us consider R, V. A function from \mathbb{N} into the carrier of the carrier of V is called an algebraic sequence of V if:

(Def.15) there exists n such that for every i such that $i \ge n$ holds it $(i) = \Theta_V$.

In the sequel p, q will be algebraic sequences of V. We now state the proposition

 $(56)^7 \quad \text{dom} \, p = \mathbb{N}.$

Let us consider R, V, p, k. We say that the length of p is at most k if and only if:

(Def.16) for every *i* such that $i \ge k$ holds $p(i) = \Theta_V$.

Next we state the proposition

(57) the length of p is at most k if and only if for every i such that $i \ge k$ holds $p(i) = \Theta_V$.

Let us consider R, V, p. The functor len p yields a natural number and is defined by:

(Def.17) the length of p is at most len p and for every m such that the length of p is at most m holds len $p \le m$.

Next we state several propositions:

- (58) $i = \operatorname{len} p$ if and only if the length of p is at most i and for every m such that the length of p is at most m holds $i \leq m$.
- (59) For every *i* such that $i \ge \operatorname{len} p$ holds $p(i) = \Theta_V$.
- (60) If $p(k) \neq \Theta_V$, then $\operatorname{len} p > k$.
- (61) If for every *i* such that i < k holds $p(i) \neq \Theta_V$, then $\operatorname{len} p \ge k$.
- (62) If len p = k + 1, then $p(k) \neq \Theta_V$.

⁷The proposition (55) was either repeated or obvious.

Let us consider R, V, p. The functor support p yielding sets of natural numbers is defined by:

(Def.18) support p = PSeg(len p).

The following propositions are true:

- (63) For every y being sets of natural numbers holds $y = \operatorname{support} p$ if and only if $y = \operatorname{PSeg}(\operatorname{len} p)$.
- (64) $k = \operatorname{len} p$ if and only if $\operatorname{PSeg} k = \operatorname{support} p$.

The scheme AlgSeqLambdaRM deals with an associative ring \mathcal{A} , a right module \mathcal{B} over \mathcal{A} , a natural number \mathcal{C} , and a unary functor \mathcal{F} yielding a vector of \mathcal{B} and states that:

there exists an algebraic sequence p of \mathcal{B} such that $\operatorname{len} p \leq \mathcal{C}$ and for every k such that $k < \mathcal{C}$ holds $p(k) = \mathcal{F}(k)$

for all values of the parameters.

The following proposition is true

(65) If $\operatorname{len} p = \operatorname{len} q$ and for every k such that $k < \operatorname{len} p$ holds p(k) = q(k), then p = q.

One can prove the following proposition

(66) For all R, V such that the carrier of the carrier of $V \neq \{\Theta_V\}$ for every k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V, x. The functor $\langle x \rangle$ yielding an algebraic sequence of V is defined by:

(Def.19)
$$\operatorname{len}\langle x \rangle \leq 1 \text{ and } \langle x \rangle(0) = x.$$

We now state several propositions:

- (67) $p = \langle x \rangle$ if and only if len $p \le 1$ and p(0) = x.
- (68) $p = \langle \Theta_V \rangle$ if and only if len p = 0.
- (69) $p = \langle \Theta_V \rangle$ if and only if support $p = \emptyset$.
- (70) $\langle \Theta_V \rangle(i) = \Theta_V.$
- (71) $p = \langle \Theta_V \rangle$ if and only if $\operatorname{rng} p = \{\Theta_V\}.$

In the sequel V is a bimodule over R. Let us consider R, V. The functor Θ_V yields a vector of V and is defined as follows:

(Def.20) $\Theta_V = 0_{\text{the carrier of } V}$.

One can prove the following proposition

(72) $\Theta_V = 0_{\text{the carrier of } V}.$

Let us consider R, V. The functor Θ_V yields a vector of V and is defined as follows:

(Def.21) $\Theta_V = 0_{\text{the carrier of } V}.$

We now state the proposition

(73) $\Theta_V = 0_{\text{the carrier of } V}.$

In the sequel x will denote a vector of V. Let us consider R, V. A function from \mathbb{N} into the carrier of the carrier of V is said to be an algebraic sequence of V if:

(Def.22) there exists n such that for every i such that $i \ge n$ holds it $(i) = \Theta_V$.

In the sequel p, q will be algebraic sequences of V. We now state the proposition

 $(75)^8 \quad \text{dom} \, p = \mathbb{N}.$

Let us consider R, V, p, k. We say that the length of p is at most k if and only if:

(Def.23) for every *i* such that $i \ge k$ holds $p(i) = \Theta_V$.

Next we state the proposition

(76) the length of p is at most k if and only if for every i such that $i \ge k$ holds $p(i) = \Theta_V$.

Let us consider R, V, p. The functor len p yielding a natural number is defined by:

(Def.24) the length of p is at most len p and for every m such that the length of p is at most m holds len $p \le m$.

One can prove the following propositions:

- (77) $i = \operatorname{len} p$ if and only if the length of p is at most i and for every m such that the length of p is at most m holds $i \leq m$.
- (78) For every *i* such that $i \ge \text{len } p$ holds $p(i) = \Theta_V$.
- (79) If $p(k) \neq \Theta_V$, then $\operatorname{len} p > k$.
- (80) If for every *i* such that i < k holds $p(i) \neq \Theta_V$, then len $p \ge k$.
- (81) If len p = k + 1, then $p(k) \neq \Theta_V$.

Let us consider R, V, p. The functor support p yielding sets of natural numbers is defined by:

(Def.25) support p = PSeg(len p).

We now state two propositions:

- (82) For every y being sets of natural numbers holds $y = \operatorname{support} p$ if and only if $y = \operatorname{PSeg}(\operatorname{len} p)$.
- (83) $k = \operatorname{len} p$ if and only if $\operatorname{PSeg} k = \operatorname{support} p$.

The scheme AlgSeqLambdaBM concerns an associative ring \mathcal{A} , a bimodule \mathcal{B} over \mathcal{A} , a natural number \mathcal{C} , and a unary functor \mathcal{F} yielding a vector of \mathcal{B} and states that:

there exists an algebraic sequence p of \mathcal{B} such that $\operatorname{len} p \leq \mathcal{C}$ and for every k such that $k < \mathcal{C}$ holds $p(k) = \mathcal{F}(k)$

for all values of the parameters.

We now state the proposition

 $^{^{8}}$ The proposition (74) was either repeated or obvious.

(84) If $\operatorname{len} p = \operatorname{len} q$ and for every k such that $k < \operatorname{len} p$ holds p(k) = q(k), then p = q.

The following proposition is true

(85) For all R, V such that the carrier of the carrier of $V \neq \{\Theta_V\}$ for every k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V, x. The functor $\langle x \rangle$ yields an algebraic sequence of V and is defined by:

(Def.26) $\operatorname{len}\langle x \rangle \leq 1 \text{ and } \langle x \rangle(0) = x.$

Next we state several propositions:

- (86) $p = \langle x \rangle$ if and only if len $p \le 1$ and p(0) = x.
- (87) $p = \langle \Theta_V \rangle$ if and only if len p = 0.
- (88) $p = \langle \Theta_V \rangle$ if and only if support $p = \emptyset$.
- (89) $\langle \Theta_V \rangle(i) = \Theta_V.$
- (90) $p = \langle \Theta_V \rangle$ if and only if $\operatorname{rng} p = \{\Theta_V\}.$

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received September 13, 1990