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Summary. This text includes definitions of finite sequences over
rings and left-, right-, and bi-module over a ring, treated as functions
defined for all natural numbers, but almost everywhere equal to zero.
Some elementary theorems are proved, in particular for each category of
sequences the schema of existence is proved. In all four cases, i.e for rings,
left-, right-, and bi-modules are almost exactly the same, hovewer we do
not know how to do the job in Mizar in a different way. The paper is
mostly based on [2]. In particular the notion of initial segment of natural
numbers is introduced which differs from that of [2] by starting with zero.
This proved to be more convenient for algebraic purposes.

MML Identifier: ALGSEQ 1.

The notation and terminology used in this paper are introduced in the following
papers: [8], [3], [5], [1], [4], [6], and [7]. We adopt the following rules: i, k,
l, m, n will be natural numbers and x will be arbitrary. We now state four
propositions:

(2)2 If m < n + 1, then m < n or m = n.

(4)3 If k < 2, then k = 0 or k = 1.

(5) For every real number x holds x < x + 1.

(7)4 If k < l and l ≤ k + 1, then l = k + 1.

Let us consider n. The functor PSeg n yields a set and is defined by:

(Def.1) PSeg n = {k : k < n}.

1Supported by RPBP.III-24.C3
2The proposition (1) was either repeated or obvious.
3The proposition (3) was either repeated or obvious.
4The proposition (6) was either repeated or obvious.
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Let us consider n. Then PSeg n is sets of natural numbers.

We now state a number of propositions:

(8) PSeg n = {k : k < n}.

(9) If x ∈ PSeg n, then x is a natural number.

(10) k ∈ PSeg n if and only if k < n.

(11) PSeg 0 = ∅ and PSeg 1 = {0} and PSeg 2 = {0, 1}.

(12) n ∈ PSeg(n + 1).

(13) n ≤ m if and only if PSeg n ⊆ PSeg m.

(14) If PSeg n = PSeg m, then n = m.

(15) If k ≤ n, then PSeg k = PSeg k∩PSeg n and PSeg k = PSeg n∩PSeg k.

(16) If PSeg k = PSeg k ∩ PSeg n or PSeg k = PSeg n ∩ PSeg k, then k ≤ n.

(17) PSeg n ∪ {n} = PSeg(n + 1).

In the sequel R is a field structure and x is a scalar of R. Let us consider R.
A function from � into the carrier of R is said to be an algebraic sequence of R

if:

(Def.2) there exists n such that for every i such that i ≥ n holds it(i) = 0R.

In the sequel p, q denote algebraic sequences of R. Next we state the propo-
sition

(19)5 dom p = � .

Let us consider R, p, k. We say that the length of p is at most k if and only
if:

(Def.3) for every i such that i ≥ k holds p(i) = 0R.

We now state the proposition

(20) the length of p is at most k if and only if for every i such that i ≥ k

holds p(i) = 0R.

Let us consider R, p. The functor len p yielding a natural number is defined
as follows:

(Def.4) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

We now state several propositions:

(21) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(22) For every i such that i ≥ len p holds p(i) = 0R.

(23) If p(k) 6= 0R, then len p > k.

(24) If for every i such that i < k holds p(i) 6= 0R, then len p ≥ k.

(25) If len p = k + 1, then p(k) 6= 0R.

Let us consider R, p. The functor supportp yields sets of natural numbers
and is defined as follows:

5The proposition (18) was either repeated or obvious.
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(Def.5) supportp = PSeg(len p).

Next we state two propositions:

(26) For every y being sets of natural numbers holds y = supportp if and
only if y = PSeg(len p).

(27) k = len p if and only if PSeg k = supportp.

The scheme AlgSeqLambdaF concerns field structure A, a natural number B,
and a unary functor F yielding a scalar of A and states that:

there exists an algebraic sequence p of A such that len p ≤ B and for every
k such that k < B holds p(k) = F(k)
for all values of the parameters.

One can prove the following proposition

(28) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

The following proposition is true

(29) For every R such that the carrier of R 6= {0R} for every k there exists
an algebraic sequence p of R such that len p = k.

Let us consider R, x. The functor 〈x〉 yielding an algebraic sequence of R is
defined by:

(Def.6) len〈x〉 ≤ 1 and 〈x〉(0) = x.

One can prove the following propositions:

(30) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(31) p = 〈0R〉 if and only if len p = 0.

(32) p = 〈0R〉 if and only if supportp = ∅.

(33) 〈0R〉(i) = 0R.

(34) p = 〈0R〉 if and only if rng p = {0R}.

In the sequel R will be an associative ring and V will be a left module over
R. Let us consider R, V . The functor ΘV yields a vector of V and is defined
by:

(Def.7) ΘV = 0the carrier of V .

One can prove the following proposition

(35) ΘV = 0the carrier of V .

In the sequel x denotes a vector of V . Let us consider R, V . A function from
� into the carrier of the carrier of V is said to be an algebraic sequence of V if:

(Def.8) there exists n such that for every i such that i ≥ n holds it(i) = ΘV .

In the sequel p, q will denote algebraic sequences of V . The following propo-
sition is true

(37)6 dom p = � .

Let us consider R, V , p, k. We say that the length of p is at most k if and
only if:

6The proposition (36) was either repeated or obvious.
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(Def.9) for every i such that i ≥ k holds p(i) = ΘV .

We now state the proposition

(38) the length of p is at most k if and only if for every i such that i ≥ k

holds p(i) = ΘV .

Let us consider R, V , p. The functor len p yields a natural number and is
defined as follows:

(Def.10) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

One can prove the following propositions:

(39) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(40) For every i such that i ≥ len p holds p(i) = ΘV .

(41) If p(k) 6= ΘV , then len p > k.

(42) If for every i such that i < k holds p(i) 6= ΘV , then len p ≥ k.

(43) If len p = k + 1, then p(k) 6= ΘV .

Let us consider R, V , p. The functor supportp yields sets of natural numbers
and is defined by:

(Def.11) supportp = PSeg(len p).

We now state two propositions:

(44) For every y being sets of natural numbers holds y = supportp if and
only if y = PSeg(len p).

(45) k = len p if and only if PSeg k = supportp.

The scheme AlgSeqLambdaLM deals with an associative ring A, a left module
B over A, a natural number C, and a unary functor F yielding a vector of B
and states that:

there exists an algebraic sequence p of B such that len p ≤ C and for every k

such that k < C holds p(k) = F(k)
for all values of the parameters.

The following proposition is true

(46) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

We now state the proposition

(47) For all R, V such that the carrier of the carrier of V 6= {ΘV } for every
k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V , x. The functor 〈x〉 yielding an algebraic sequence of
V is defined as follows:

(Def.12) len〈x〉 ≤ 1 and 〈x〉(0) = x.

One can prove the following propositions:

(48) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(49) p = 〈ΘV 〉 if and only if len p = 0.
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(50) p = 〈ΘV 〉 if and only if supportp = ∅.

(51) 〈ΘV 〉(i) = ΘV .

(52) p = 〈ΘV 〉 if and only if rng p = {ΘV }.

In the sequel V will denote a right module over R. Let us consider R, V .
The functor ΘV yields a vector of V and is defined as follows:

(Def.13) ΘV = 0the carrier of V .

The following proposition is true

(53) ΘV = 0the carrier of V .

Let us consider R, V . The functor ΘV yields a vector of V and is defined as
follows:

(Def.14) ΘV = 0the carrier of V .

The following proposition is true

(54) ΘV = 0the carrier of V .

In the sequel x will denote a vector of V . Let us consider R, V . A function
from � into the carrier of the carrier of V is called an algebraic sequence of V

if:

(Def.15) there exists n such that for every i such that i ≥ n holds it(i) = ΘV .

In the sequel p, q will be algebraic sequences of V . We now state the propo-
sition

(56)7 dom p = � .

Let us consider R, V , p, k. We say that the length of p is at most k if and
only if:

(Def.16) for every i such that i ≥ k holds p(i) = ΘV .

Next we state the proposition

(57) the length of p is at most k if and only if for every i such that i ≥ k

holds p(i) = ΘV .

Let us consider R, V , p. The functor len p yields a natural number and is
defined by:

(Def.17) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

Next we state several propositions:

(58) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(59) For every i such that i ≥ len p holds p(i) = ΘV .

(60) If p(k) 6= ΘV , then len p > k.

(61) If for every i such that i < k holds p(i) 6= ΘV , then len p ≥ k.

(62) If len p = k + 1, then p(k) 6= ΘV .

7The proposition (55) was either repeated or obvious.
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Let us consider R, V , p. The functor supportp yielding sets of natural
numbers is defined by:

(Def.18) supportp = PSeg(len p).

The following propositions are true:

(63) For every y being sets of natural numbers holds y = supportp if and
only if y = PSeg(len p).

(64) k = len p if and only if PSeg k = supportp.

The scheme AlgSeqLambdaRM deals with an associative ring A, a right mod-
ule B over A, a natural number C, and a unary functor F yielding a vector of
B and states that:

there exists an algebraic sequence p of B such that len p ≤ C and for every k

such that k < C holds p(k) = F(k)

for all values of the parameters.

The following proposition is true

(65) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

One can prove the following proposition

(66) For all R, V such that the carrier of the carrier of V 6= {ΘV } for every
k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V , x. The functor 〈x〉 yielding an algebraic sequence of
V is defined by:

(Def.19) len〈x〉 ≤ 1 and 〈x〉(0) = x.

We now state several propositions:

(67) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(68) p = 〈ΘV 〉 if and only if len p = 0.

(69) p = 〈ΘV 〉 if and only if supportp = ∅.

(70) 〈ΘV 〉(i) = ΘV .

(71) p = 〈ΘV 〉 if and only if rng p = {ΘV }.

In the sequel V is a bimodule over R. Let us consider R, V . The functor ΘV

yields a vector of V and is defined as follows:

(Def.20) ΘV = 0the carrier of V .

One can prove the following proposition

(72) ΘV = 0the carrier of V .

Let us consider R, V . The functor ΘV yields a vector of V and is defined as
follows:

(Def.21) ΘV = 0the carrier of V .

We now state the proposition

(73) ΘV = 0the carrier of V .
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In the sequel x will denote a vector of V . Let us consider R, V . A function
from � into the carrier of the carrier of V is said to be an algebraic sequence of
V if:

(Def.22) there exists n such that for every i such that i ≥ n holds it(i) = ΘV .

In the sequel p, q will be algebraic sequences of V . We now state the propo-
sition

(75)8 dom p = � .

Let us consider R, V , p, k. We say that the length of p is at most k if and
only if:

(Def.23) for every i such that i ≥ k holds p(i) = ΘV .

Next we state the proposition

(76) the length of p is at most k if and only if for every i such that i ≥ k

holds p(i) = ΘV .

Let us consider R, V , p. The functor len p yielding a natural number is
defined by:

(Def.24) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

One can prove the following propositions:

(77) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(78) For every i such that i ≥ len p holds p(i) = ΘV .

(79) If p(k) 6= ΘV , then len p > k.

(80) If for every i such that i < k holds p(i) 6= ΘV , then len p ≥ k.

(81) If len p = k + 1, then p(k) 6= ΘV .

Let us consider R, V , p. The functor supportp yielding sets of natural
numbers is defined by:

(Def.25) supportp = PSeg(len p).

We now state two propositions:

(82) For every y being sets of natural numbers holds y = supportp if and
only if y = PSeg(len p).

(83) k = len p if and only if PSeg k = supportp.

The scheme AlgSeqLambdaBM concerns an associative ring A, a bimodule B
over A, a natural number C, and a unary functor F yielding a vector of B and
states that:

there exists an algebraic sequence p of B such that len p ≤ C and for every k

such that k < C holds p(k) = F(k)
for all values of the parameters.

We now state the proposition

8The proposition (74) was either repeated or obvious.
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(84) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

The following proposition is true

(85) For all R, V such that the carrier of the carrier of V 6= {ΘV } for every
k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V , x. The functor 〈x〉 yields an algebraic sequence of V

and is defined by:

(Def.26) len〈x〉 ≤ 1 and 〈x〉(0) = x.

Next we state several propositions:

(86) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(87) p = 〈ΘV 〉 if and only if len p = 0.

(88) p = 〈ΘV 〉 if and only if supportp = ∅.

(89) 〈ΘV 〉(i) = ΘV .

(90) p = 〈ΘV 〉 if and only if rng p = {ΘV }.
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