Preface

As was stated in [3] we publish mathematical papers which are abstracts of
Mizar articles to be found in the Main Mizar Library (MML). An article includes
certain elements which are transferred to the data base, such as theorems or
definitions. This has been due to the fact that the material published there was
at first intended to help the Mizar users to handle the data base. Thus the works
published there describe the present state of MML and are, in a sense, a report
on the expansion of that library. Next to them there are also new mathematical
papers because the new method of formalization is not trivial even though it
refers to simple mathematical facts.

It must be explained at this point that both the PC-Mizar verifier and MML
are being systematically developed. In the case of PC-Mizar it is mainly the
Mizar language which is enriched, which makes it more convenient to write
articles; the same might be said of proof-checker, which enables one to write
shorter proofs and articles.

The development of MML consists in continuous revisions of articles accepted
for publication, for instance in the removal of self-evident or repeated theorems
(while the numbering of successive theorems in a given article is preserved).
We then have the information in a footnote such as ”The proposition (5) has
been removed” (see [1], page 450). Previously such a comment was, e.g., "The
proposition (9) was either repeated or obvious” (see [2], page 14).

Please note also that in the articles we use atypical symbolism for the Carte-
sian product [: :] , and that is no paranthesis in the case of grouping to the left.
We also use overloading. For instance, see [1], page 469: ”(Def.1) F(f) = F(f)”.
In the latter case, on the right side of the equality symbol we have the old func-
tor, while on the left side we have the new functor, which differs from the old
one only by the type of the result.

Our periodical appears five times a year, which is to say every two months
except for the summer holidays period. The present issue, although dated
September-October, also includes items contributed in November. They have
been included because the editors received them before sending the issue 2(4)
to the press.

Roman Matuszewski
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Summary. The article contains definitions and properties of con-
vergent serieses.

MML Identifier: SERIES_1.

The articles [12], [2], [10], [1], [7], [6], [4], [3], [5], [11], [8], and [9] provide the
notation and terminology for this paper. We follow the rules: n, m will denote
natural numbers, a, p, r will denote real numbers, and s, s1, so will denote
sequences of real numbers. We now state three propositions:
(1) If0 < aand a < 1 and for every n holds s(n) = a™*!, then s is
convergent and lim s = 0.
(2) If a #0, then |a|™ = |a™|.
(3) If|a] < 1 and for every n holds s(n) = a™*!, then s is convergent and
lims = 0.
Let us consider s. The functor (3 5_,s(a))ken yielding a sequence of real
numbers is defined by:
(Def.1) (35— s(@))ken (0) = s(0) and for every n holds (35 _g s(a))ken (n +
1) = (36=05())ren (n) + s(n +1).
The following proposition is true
(4)  For all s, s; holds s1 = (3-h_ s(a))ken if and only if s1(0) = s(0) and
for every n holds s1(n+ 1) = s1(n) + s(n + 1).
Let us consider s. We say that s is summable if and only if:
(Det.2)  (3oh_( s(a))ken is convergent.

Let us consider s. Let us assume that s is summable. The functor ) s yields
a real number and is defined as follows:

(Det.3) > s=lm((>h_os(a))ken)-
!Supported by RPBP.ITI-24.C8
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The following propositions are true:

(6)2 For all s, r such that s is summable holds r = s if and only if

r=1lm((Xa=0 s())ren )-

(7) If s is summable, then s is convergent and lim s = 0.

(8) (g s1(a)nen + (g s2(a))ren = (Shols1 + 52)(@)hecn

(9)  (Ca=os1(@))ren — (Xa=o s2())ren = (Ca=o(s1 — 52)())en -

10)  If s; is summable and sy is summable, then s; + s9 is summable and

Yo(s14+52) =381+ so.

(11)  If s; is summable and s is summable, then s; — s2 is summable and
Z(Sl - 82) = 281 - 282.

(12)  (Za=o(rs)(a))ren = r(Za=o 8())nen -

(13)  If s is summable, then rs is summable and Y (rs) =r->_ s.

(14)  For all s, s; such that for every n holds s1(n) = s(0) holds (>5_o(s T
D)(@))ken = (Za=o S(@))ren T1—s1.

(15)  If s is summable, then for every n holds s | n is summable.

(16)  If there exists n such that s T n is summable, then s is summable.

(17)  If for every n holds s1(n) < s2(n), then for every n holds
(XC6=051(@))ren (n) < (X6=0 52(@))ren (n)-

(18) If s is summable, then for every n holds > s = (3 h_os(®))ken (n) +
2(s T (n+1)).

(19)  If for every n holds 0 < s(n), then (3.5 _, s(c))xen is non-decreasing.

(20)  If for every n holds 0 < s(n), then (>-5_; s(a))xen is upper bounded if
and only if s is summable.

(21) If s is summable and for every n holds 0 < s(n), then 0 < Y s.

(22)  If for every n holds 0 < s2(n) and s; is summable and there exists m
such that for every n such that m < n holds s3(n) < si(n), then s is
summable.

(23)  If for every n holds 0 < sa(n) and sg is not summable and there exists
m such that for every n such that m < n holds s2(n) < s1(n), then s; is
not summable.

(24) If for every n holds 0 < s1(n) and s1(n) < s3(n) and s is summable,
then s; is summable and ) 51 < ) so.

(25) s is summable if and only if for every r such that 0 < r there exists
n such that for every m such that n < m holds [(35_g s(a))ken (M) —
(Xb=0s(@))ren (n)] <.

(26) Tfa#1, then (S_o((a%)ren )(@)nen (n) = 155

(27) Ifa # 1 and for every n holds s(n+1) = a-s(n), then for every n holds

K _ 5(0)-(1—a™th)
(o= s(@))nen (n) = ==—=—

(28)  If |a] < 1, then (a”).en is summable and Y ((a")een) = 12

l—a

2The proposition (5) has been removed.
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(29) If |a| < 1 and for every n holds s(n+ 1) = a - s(n), then s is summable
and Y s = @.

(30) If for every n holds s(n) > 0 and s1(n) = % and sp is convergent
and lim sy < 1, then s is summable.

(31)  If for every n holds s(n) > 0 and there exists m such that for every n
such that n > m holds % > 1, then s is not summable.

(32)  If for every n holds s(n) > 0 and s;(n) = {/s(n) and s; is convergent
and lim sy < 1, then s is summable.

(33)  If for every m holds s(n) > 0 and s1(n) = {/s(n) and there exists m
such that for every n such that m < n holds s;(n) > 1, then s is not
summable.

(34)  If for every n holds s(n) > 0 and s;(n) = {/s(n) and s; is convergent
and lim s; > 1, then s is not summable.

Let us consider n. The n-th power of 2 yields a natural number and is defined
as follows:

(Def.4)  the n-th power of 2= 2".

One can prove the following three propositions:

(35) If s is non-increasing and for every n holds s(n) > 0 and si(n) =
2".s(the n-th power of 2), then s is summable if and only if s; is summable.

(36) If p > 1 and for every n such that n > 1 holds s(n) = %, then s is

summable.
(37) If p <1 and for every n such that n > 1 holds s(n) = n—lp, then s is not
summable.

Let us consider s. We say that s is absolutely summable if and only if:

(Def.5)  |s| is summable.

We now state several propositions:
(39)3 For all n, m such that n < m holds |(35_, s(a))xen (m)—
(Xa=05(a))ken ()] < [(X6=0 Is[(a))wen (M) — (Xa=0 |5/())xen ().
(40)  If s is absolutely summable, then s is summable.

(41)  If for every n holds 0 < s(n) and s is summable, then s is absolutely
summable.

(42)  If for every n holds s(n) # 0 and s;(n) = |8“S(|TZ:)1) and s is convergent
and lim sy < 1, then s is absolutely summable.

(43) If r > 0 and there exists m such that for every n such that n > m holds
|s(n)| > r, then s is not convergent or lim s # 0.

(44)  If for every n holds s(n) # 0 and there exists m such that for every n
such that n > m holds |S“s(|rz:)1) > 1, then s is not summable.

3The proposition (38) has been removed.
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If for every n holds s1(n) = {/|s|(n) and s; is convergent and lim s; < 1,
then s is absolutely summable.

If for every n holds s1(n) = {/|s|(n) and there exists m such that for
every n such that m < n holds s;(n) > 1, then s is not summable.

If for every n holds s1(n) = {/|s|(n) and s; is convergent and lim s; > 1,
then s is not summable.
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The Lattice of Natural Numbers and The
Sublattice of it.
The Set of Prime Numbers

Marek Chmur
Warsaw University
Biatystok

Summary. Basic properties of the least common multiple and the
greatest common divisor. The lattice of natural numbers (Ly) and the
lattice of natural numbers greater than zero (Ly+ ) are constructed. The
notion of the sublattice of the lattice of natural numbers is given. Some
fact about it are proved. The last part of the article deals with some
properties of prime numbers and with the notions of the set of prime
numbers and the n-th prime number. It is proved that the set of prime
numbers is infinite.

MML Identifier: NAT_LAT.

The papers [15], [6], [18], [14], [7], [17], [9], [1], [11], [2], [16], [12], [5], [4], [8],
[13], [10], and [3] provide the terminology and notation for this paper. In the
sequel n, m, [, k, j will be natural numbers. We now state two propositions:

(1)  For all natural numbers m, n holds m | m-n and n | m - n.
(2)  For all k, [ such that [ > 1 holds k-1 > k.

Let us consider n. Then n! is a natural number.

The following propositions are true:

(3)  For all n, k, [ such that > 1 holds if n > k - [, then n > k.
(4) k=0ork>1.

(5)  For every [ such that [ # 0 holds I | I!.

(6) k#k+1

(8)1 For every n such that n # 0 holds "TH > 1.

9) #p<l

!The proposition (7) has been removed.
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For every [ holds I! > .

For all m, n such that m # 1 holds if m | n, then m {n + 1.
j|land j|l+1if and only if j = 1.

For every [ there exists j such that j | I!.

For all k, j such that j # 0 holds j | (j + k)!.

If j <landj#0, then j | Il

For all [, j such that j # 1 and j # 0 holds if j | I! + 1, then 5 > .
For all natural numbers m, n holds lem(m,n) = lem(n, m).

—_
[\)
(V]

— =
- W

= = =
0 3 O

e N N N N e N S N
—_ —_
— Y N N N N

For all natural numbers m, n, k£ holds
lem(m,lem(n, k)) = lem(lem(m,n), k).

[\)
o

For all natural numbers m, n holds m | n if and only if lem(m,n) = n.

[N]
—_

m | lem(m,n) and n | lem(m,n).

[\
[\

lem(m, m) = m.

[\]
w

n | m and k | m if and only if lem(n, k) | m.
lem(m,n) | 0.

[\
ot

1 |lem(m,n).

[\)
(=2}

lem(m, 1) = m.

[\)
J

lem(m,n) | m - n.

AN N N /N /N /N /N /N
[\) [\
oo =~
S e e e e N N N N

For all natural numbers m, n, k holds
ged(m, ged(n, k)) = ged (ged(m, n), k).
ged(m,n) | m and ged(m,n) | n.

W N
o ©

For all natural numbers m, n such that n | m holds ged(n,m) = n.
ged(m,m) = m.

N N S S/
W w
N =

— ~— ~— ~— ~—

w
w

m | n and m | k if and only if m | ged(n, k).
ged(m,n) | 0.
The following propositions are true:

34) 1|ged(m,n).
35) ged(m,1) =1.
ged(m,0) = m.

w
J

For all natural numbers m, n holds lem(ged(m,n),n) = n.

o
Qo

For all natural numbers m, n holds ged(m,lem(m,n)) = m.

N N N N N
w w
=) =2
— O~ — ~— —

For all natural numbers m, n holds
ged(m, lem(m,n)) = lem(ged(n, m), m).

(40)  If m | n, then ged(m, k) | ged(n, k).

(41) If m | n, then ged(k,m) | ged(k,n).

(42)  For every m such that m > 0 holds ged(0,m) > 0.

(43)  For all m, n such that m > 0 and n > 0 holds ged(n,m) > 0.
(44)  For all m, n such that m > 0 and n > 0 holds lem(m,n) > 0.

2The proposition (11) has been removed.



THE LATTICE OF NATURAL NUMBERS AND THE ... 455

(45)  lem(ged(n,m),ged(n, k)) | ged(n,lem(m, k)).
(46)  For all m, n, [ such that m | { holds lem(m, ged(n, 1)) | ged(lem(m, n),1).
(47)  ged(n,m) | lem(n, m).
Let m be an element of N quaa non-empty set. The functor ®m yielding a
natural number is defined by:
(Def.1)  “m =m.
Let m be a natural number. The functor ®m yielding an element of N qua a
non-empty set is defined as follows:
(Def.2)  “m =m.
We now define two new functors. The binary operation hcfy on N is defined
by:
(Def.3)  hefy (m, n) = ged(m,n).
The binary operation lcmy on N is defined by:
(Def4)  lemy (m, n) = lem(m,n).
In the sequel p, ¢ denote elements of the carrier of (N, lcmy,hefy). Let m be

an element of the carrier of (N, lemy,hcfy). The functor ®m yielding a natural
number is defined as follows:

(Def.5)  “m = m.
We now state several propositions:
(48) pUgq=lem(®p,q).
(49)  png=ged(®p,®q).
(50)  lemn(p, ¢) =pUg.
(51)  hefn(p, q) =pNy.
(52)

For all elements a, b of the carrier of (N,lempy ,hcfy) such that a C b
holds ®a | ®b.

The element 0y, of the carrier of (N,lecmy , hefy) is defined as follows:
(Def.6) 0y, =1.
The element 1y, of the carrier of (N,lecmy, hefy) is defined by:
(Det.7) 1., =0.
We now state three propositions:
(55)% @0, )=1.
(56)  For every element a of the carrier of (N, lemy , hefy ) holds Oy, Ma = 0y, .

(57)  There exists an element z of the carrier of (N, lcmy, hefy ) such that for
every element x of the carrier of (N,lemy , hefy) holds zMx = 2.

The lattice Ly is defined by:
(Def.8) Ly = (N,lcmy, hefy).
The following proposition is true
(58) Iy = (N,lemy, hefy).

3The propositions (53) and (54) have been removed.
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In the sequel p, ¢, r will denote elements of the carrier of Ly . One can prove
the following propositions:

(60)* Ly is a lower bound lattice.

(61)  lemy (p, ¢) = lemy (g, p).
(62)  hefy (¢, p) = hefy (p, ).
(63)  lemy (p, lemy (g, 7)) = lemy (lemy (p, q), 7).
(64) (i) lemy (p, lemy (g, 7)) = lemy (lemy (g, p), 7),
(ii)  lemy (p, lemy (g, 7)) = lemy (lemy (p, 7), q),
(i)  lemy (p, lemy (g, 7)) = lemy (Iemy (7, @), p),
(iv)  lemy (p, lemy (g, 7)) = lemy (lemy (1, p), q).
(65)  hcf (p, hefy (g, 7)) = hefy (hefy (p, q), 7).
(66) (i)  hefy (p, hefy (g, 7)) = hefy (hefn (¢, p), 7),
(ii)  hefy (p, hefy (g, 7)) = hefy (hefy (p, 7), q),
(i)  hefy (p, hefy (g, 7)) = hefy (hefy (1, q), p),
(iv)  hefy (p, hefy (g, 7)) = hefy (hefy (7, p), q).
(67)  hefy (g, lemy (g, p)) = q and hefy (lemy (p, q), ¢) = g and hefy (g, lemy (p,
q)) = ¢ and hefy (Iemy (¢, p), 9) = ¢.
(68)  lemy (g, hefn (g, p)) = g and lemy (hefy (p, q), ¢) = g and lemy (g, hefy (p,
q)) = q and lemy (hefy (¢, p), ¢) = q.
The subset NT of N is defined by:
(Def.9)  for every natural number n holds n € NT if and only if 0 < n.
Let D be a non-empty set, and let S be a non-empty subset of D, and let N
be a non-empty subset of S. We see that the element of IV is an element of S.
A positive natural number is an element of NT .
Let k be a natural number satisfying the condition: k& > 0. The functor ®k
yields an element of N* qua a non-empty set and is defined by:
(Def.10)  “k = k.
Let k be an element of NT quaa non-empty set. The functor @k yields a
positive natural number and is defined as follows:
(Def.11)  ©k = k.
In the sequel m, n denote positive natural numbers. We now define two new
functors. The binary operation hefy+ on NT is defined by:
(Def.12)  hcfy+ (m, n) = ged(m,n).
The binary operation lemy+ on NT is defined as follows:
(Def.13)  lemy+ (m, n) = lem(m,n).
In the sequel p, ¢ will denote elements of the carrier of (NT,lemy+ , hefy+ ).

Let m be an element of the carrier of (Nt lemy+ , hefy+ ). The functor @m yields
a positive natural number and is defined as follows:

(Def.14)  “m =m.

“The proposition (59) has been removed.



THE LATTICE OF NATURAL NUMBERS AND THE ...

One can prove the following four propositions:
(69) pUg=lem(®p,“q).
(70)  prg=ged(“p,“q).
(71)  lemy+ (p, q) = pUg.
(72)  hefy+ (p, @) =pMg.
The lattice Ly+ is defined by:
(Def.15) Lyt = (NT,lemys , hefyr ).
Next we state the proposition
(73) [LN+ = <N+ s lcmN+ ,thN+ >
Let L be a lattice. A lattice is said to be a sublattice of L if:

(Def.16)  the carrier of it C the carrier of L and the join operation of it = (the
join operation of L) | | the carrier of it, the carrier of it ] and the meet
operation of it = (the meet operation of L) | [ the carrier of it, the carrier
of it ].

The following two propositions are true:
(75)® For every lattice L holds L is a sublattice of L.
(76)  Ly+ is a sublattice of Ly .

In the sequel n, 1, k, k1, ko, m, [ will denote natural numbers. The set Prime
of natural numbers is defined as follows:

(Def.17)  for every natural number n holds n € Prime if and only if n is prime.

A natural number is said to be a prime number if:
(Def.18) it € Prime.
In the sequel p, ¢ denote prime numbers and f denotes a prime number.

Let us consider p. The functor Prime(p) yields sets of natural numbers and is
defined by:

(Def.19)  for every natural number ¢ holds ¢ € Prime(p) if and only if ¢ < p and
g is prime.
Next we state a number of propositions:
77)  Prime(p) C Prime.
) For every prime number g such that p < ¢ holds Prime(p) C Prime(q).
) Prime(p) C Segp.
80)  Prime(p) is finite.
) For every [ there exists p such that p is prime and p > [.
) For every g such that ¢ is prime there exists p such that p is prime and
p>q.
(83) Prime C N.
(84)  Prime # 0.
(85) {k:k <2Akis prime} = 0.

®The proposition (74) has been removed.
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For every p holds {k : kK < p Ak is prime} C N.
For every m holds {k : k < m A k is prime} C Segm.

oo o
oo

For every m holds {k : k < m A k is prime} is finite.

For every prime number f holds f ¢ {k: k < f Ak is prime}.

For every f holds {k: k < f Ak is prime} U {f} is finite.

For all prime numbers f, g such that f < g holds {k1 : k1 < f A ky is
prime} U {f} C {k2: k2 < g A ko is prime}.
(92)  For every k such that k > m holds k ¢ {k1 : k1 <m A k; is prime}.

Let us consider n. The functor pr(n) yielding a prime number is defined as
follows:

A~ N N N N
© o
S ©

~— — — ' —

Nej
—_

(Def.20)  n = card{k : k < pr(n) Ak is prime}.

One can prove the following two propositions:
(93) Prime(p) = {k: k < p Ak is prime}.
(94)  Prime is not finite.

The following proposition is true

(95)  For every i such that i is prime for all m, n such that ¢ | m - n holds
i|moril|n.
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Commutator and Center of a Group

Wojciech A. Trybulec
Warsaw University

Summary. We introduce the notions of commutators of element,
subgroups of a group, commutator of a group and center of a group. We
prove P.Hall identity. The article is based on [6].

MML Identifier: GROUP_5.

The terminology and notation used in this paper are introduced in the following
articles: [9], [4], [1], [3], 5], [10], [7], [14], [16], [2], [12], [8], [15], [11], and [13].

PRELIMINARIES

The scheme SubsetFDS8 concerns a non-empty set A, a non-empty set B, a
non-empty set C, a ternary functor F yielding an element of B, and a ternary
predicate P, and states that:

{F(e,d,e) : Ple,d,e]}, where ¢ ranges over elements of A, and d ranges over
elements of B, and e ranges over elements of C, is a subset of B
for all values of the parameters.

For simplicity we adopt the following rules: x will be arbitrary, k, n will
denote natural numbers, ¢ will denote an integer, G will denote a group, a, b,
¢, d will denote elements of G, A, B, C, D will denote subsets of G, H, Hj,
H,, H;, Hy will denote subgroups of G, N, N1, No, N3 will denote normal
subgroups of G, F, F, F» will denote finite sequences of elements of the carrier
of G, and I will denote a finite sequence of elements of Z. Next we state several
propositions:

(1) =z e€{1}¢ ifand only if z = 14.

(2) Ifa€ Handbe H, then a® € H.

(3) Ifa€ N, then a® € N.

(4) = € Hy- Hy if and only if there exist a, b such that = a-b and a € Hy
and b € Hs.

(5) 1If Hy- Hy = Hy - Hy, then € Hy U Hy if and only if there exist a, b
such that t = a-b and a € H; and b € Hs.
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If G is an Abelian group, then x € H; LI Hy if and only if there exist a,

b such that x = a-band a € Hy and b € Hs.

x € N1U N, if and only if there exist a, b such that x = a-b and a € Ny

and b € N,.

H-N=N- H.

Let us consider G, F', a. The functor F'* yielding a finite sequence of elements
of the carrier of G is defined by:

(Def.1)

len(F*) =len F' and for every k such that k € Seglen F' holds F'*(k) =

(mpF)*.

One can prove the following propositions:

9)

— = = =
W N = O

— = =
N O Ot

e e e N N N T NN
—_ —_
co =~
S~ N N N S N N N

If len F} = len F» and for every k such that k € Seglen F» holds Fi (k) =

(ﬂ'kFg)a, then F| = F»®.

len(F*) =len F.

For every k such that k € Seglen F' holds F*(k) = (mF')“.
(Fla) ~ Ry = (Fl - Fg)a.

E(the carrier of G) = &

(a)* = (a”).

(a,b)¢ = (a®,b°).

{a,b,c)® = (a?, b9, c?).

[1(F*) = T F)*

If len ' = len I, then (F*)! = (F1)e.

COMMUTATORS

Let us consider G, a, b. The functor [a,b] yields an element of G and is defined

by:
(Def.2)

[a,b] =a=t-b71.a-b

One can prove the following propositions:

(19) (i)

[a,b] =a=t- b1 a-b,
a,bj=a"t- (b7 -a)-b,
bj=a'-(b7'-a-b),
a, b =a!- (b~ (a-b)),
a,bj=a"t-b7'-(a-b).
a,bl=(b-a)~t-(a-b).
a,b] = (™1 b and [a,b] =a"' - a®

a,a” '] =1¢g and [}, d] = 1¢.
a,b]™! = [b, al.
a,b]¢ = [a® b].
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W W w
N O Ut

27)  [a,b] = (a™H)?% - (a-b"1)2 - b2
28)  [a-b,c] = [a,c]’-[b,c].
29)  [a,b-c| =la,c] - |a,b].
30)  [aL,b] = [b,al® .
31)  [a,b7Y =[b,a)’
32) [ 407 = [a,b] @Y and [0 !, b7 = [a, ]
33)  [a,b% ] =[b,a!]
[0 =[b', q]
[
[
[
[
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a,b’] = (b*)7 - b
39) [a,b] =1g ifand only ifa-b=10b-a.
40) G is an Abelian group if and only if for all a, b holds [a,b] = 1¢.
41) Ifa € H and b € H, then [a,b] € H.

Let us consider G, a, b, c. The functor [a, b, | yielding an element of G is
defined by:

(Def.3)  [a, b, c] = [[a,b], ].

One can prove the following propositions:

(42)  [a, b, ] = [[a,b], c].

(43)  la, b, 1g] = 1¢ and [a, 1g, b] = 1¢ and [1g, a, b] = 1g.
(44) [a, a, b] = 1G

(45) [a b, a] = [a®, a].

(46)  [b, a, a] = ([b,a"] - [b,a])".

(47) [a b“] = [b, [b, a]].

(48) [a ¢l =la,c] - a, c, b] - [b,c].

(49)  [a,b-c] =la,c]-[a,b] - [a, b, c].

(50) [a, b_ P [b, ¢, al¢ e, a7t D) = 1g.

Let us consider GG, A, B. The commutators of A & B yielding a subset of G
is defined as follows:

(Def.4)  the commutators of A & B = {[a,b] :a € AANb € B}.

We now state several propositions:

(51)  The commutators of A & B = {[a,b] : a € AANb € B}.

(52)  x € the commutators of A & B if and only if there exist a, b such that
x =la,b] and a € A and b € B.

(563)  The commutators of (ine carrier of ¢ & A = () and the commutators of A

& wthe carrier of G = 0.
(54)  The commutators of {a} & {b} = {[a,b]}.
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(55) If AC B and C C D, then the commutators of A & C' C the commu-
tators of B & D.

(56) G is an Abelian group if and only if for all A, B such that A # () and
B # ) holds the commutators of A & B = {1¢}.

Let us consider G, Hy, Hs. The commutators of Hy & Hs yields a subset of
G and is defined by:

(Def.5)  the commutators of H; & Hs = the commutators of Hy & Ha.

Next we state several propositions:
(57)  The commutators of H; & Hs = the commutators of H; & Ho.

(58)  x € the commutators of H; & Hs if and only if there exist a, b such
that = [a,b] and @ € H; and b € Hj.

(59) 1g € the commutators of Hy & Ho.

(60)  The commutators of {1}¢ & H = {1} and the commutators of H &
{1}e = {lc}.

(61)  The commutators of H & N C N and the commutators of N & H C N.

(62) If Hy is a subgroup of Hy and Hjs is a subgroup of Hy, then the com-
mutators of Hy & H3 C the commutators of Hy & Hy.

(63) G isan Abelian group if and only if for all H;, Hs holds the commutators
of Hl & H2 = {10}.
Let us consider G. The commutators of G yielding a subset of G is defined
by:
(Def.6)  the commutators of G = the commutators of Qg & Q.
Next we state three propositions:
(64) The commutators of G = the commutators of Q¢ & Q.
(65) x € the commutators of G if and only if there exist a, b such that
x = [a,b].
(66) G is an Abelian group if and only if the commutators of G = {1¢}.

Let us consider G, A, B. The functor [A, B] yielding a subgroup of G is
defined as follows:

(Detf.7)  [A, B] = gr(the commutators of A & B).

Next we state four propositions:
(67) [A, B] = gr(the commutators of A & B).
(68) Ifae€ Aandbe B, then [a,b] € [A, B].
(69) x € [A, B] if and only if there exist F, I such that len F = len I and
rng F' C the commutators of A & B and = = [[(F7).
(70) If AC C and B C D, then [A4, B] is a subgroup of [C, D].
Let us consider G, Hy, Hs. The functor [H;, Hy] yielding a subgroup of G is
defined by:
(Def.8)  [Hy, Ha] = [Hy, Ha).

Next we state a number of propositions:
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(T1)  [Hy, Ho] = [Hy, Ho).
(72)  [Hy, Hs] = gr(the commutators of Hy & Ha).

(73) x € [Hy, Ho] if and only if there exist F', I such that len F =len I and
rng F' C the commutators of Hy & Hy and r = [[(F).

(74) If a € Hy and b € Ha, then [a,b] € [Hy, Ho].
(75)  If Hy is a subgroup of Hs and Hj is a subgroup of Hy, then [Hq, H3] is
a subgroup of [Ha, Hy].

(76) [N, H] is a subgroup of N and [H, N] is a subgroup of N.
(77) [N, N3] is a normal subgroup of G.

(78)  [N1, No| = [Na, V1]

(79) [Nl |_|N2,N3] [Nl,Ng] (] [NQ,N;),].

(

80) [Ny, No LI N3] = [Ny, Na] U [Ny, Ns).
Let us consider G. The functor G° yields a normal subgroup of G and is
defined by:
(Def.9) G° = 1[Qq, Q.
Next we state several propositions:
(81) G°=1[Q¢, Q.
(82) G = gr(the commutators of G).

(83) x € G° if and only if there exist F, I such that len F' = len/ and
rng F' C the commutators of G and x = [[(F7).

(84)  [a,b] € G°.

(85) G is an Abelian group if and only if G¢ = {1}4.

(86)  If the left cosets of H is finite and |e : H|y = 2, then G° is a subgroup
of H.

CENTER OF A GROUP

Let us consider G. The functor Z(G) yielding a subgroup of G is defined as
follows:

(Def.10)  the carrier of Z(G) = {a: A\ya-b=">b-a}.

We now state several propositions:

(87)  If the carrier of H = {a: \ya-b="b-a}, then H = Z(G).

(88)  The carrier of Z(G) ={a: \pa-b=">b-a}.

(89) a € Z(G) if and only if for every b holds a-b =10 a.

(90)  Z(G) is a normal subgroup of G.

(91) If H is a subgroup of Z(G), then H is a normal subgroup of G.
(92) 7Z(G) is an Abelian group.

(93) a€ Z(G) if and only if a®* = {a}.

(94) G is an Abelian group if and only if Z(G) = G.



466

WOJCIECH A. TRYBULEC

AUXILIARY THEOREMS

In the sequel E will be a non-empty set and p, ¢ will be finite sequences of
elements of E. The following propositions are true:

(95)
(96)

[1]
2]

3]
[4]
[5]
[7]
8]
[9]

[10]
[11]

[12]
[13]

[14]
[15]

[16]

If k € domp or k € Seglenp, then 7x(p ~ q) = mkp.
If £ € domgq or k € Seglengq, then menprk(p ™ q) = miq.
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Discrete Categories

Andrzej Trybulec
Warsaw University
Biatystok

Summary. We present well known concepts of category theory:
natural transofmations and functor categories, and prove propositions
related to. Because of the formalization it proved to be convenient to in-
troduce some auxiliary notions, for instance: transformations. We mean
by a transformation of a functor F' to a functor G, both covariant func-
tors from A to B, a function mapping the objects of A to the morphisms
of B and assigning to an object a of A an element of Hom(F(a), G(a)).
The material included roughly corresponds to that presented on pages
18,129-130,137-138 of the monography ([10]). We also introduce discrete
categories and prove some propositions to illustrate the concepts intro-
duced.

MML Identifier: NATTRA_1.

The articles [12], [13], [9], [3], [7], [4], [2], [6], [1], [11], [5], and [8] provide the
terminology and notation for this paper.

PRELIMINARIES

For simplicity we follow a convention: Ay, As, By, By are non-empty sets, f is
a function from A; into By, g is a function from Ay into Bs, Y7 is a non-empty
subset of A1, and Y5 is a non-empty subset of As. Let Ay, As be non-empty
sets, and let Y7 be a non-empty subset of A1, and let Y5 be a non-empty subset
of As. Then [ Y7, Y21 is a non-empty subset of | Ay, Az .

Let us consider Ay, By, f, Y1. Then f ] Yj is a function from Y; into Bj.

We now state the proposition

Let A, B be non-empty sets, and let A; be a non-empty subset of A, and let
B; be a non-empty subset of B, and let f be a partial function from [ Ay, A; ]

© 1991 Fondation Philippe le Hodey
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to A1, and let g be a partial function from [ By, By ] to By. Then |:f, gi| is a
partial function from [} Ay, B1], [ A1, B1]] to [ A1, B1 .
One can prove the following proposition
(2) Let f be a partial function from [ Ay, A1 ] to A;. Let g be a partial
function from [ Ay, A3 ] to As. Then for every partial function F' from
Y1, Y1 ]to Y] such that F = f1} Y, Y7 ] for every partial function G from
FYa, Yo ] to Yo such that G = g | [ Y2, Y2 ] holds |:F, G:| = |-f, ¢:| I [ [ Y1,
Y2, [V, Y214
We adopt the following convention: A, B, C' will be categories, F', I, Fb,
F3 will be functors from A to B, and G will be a functor from B to C. In this
article we present several logical schemes. The scheme M_Choice deals with a
set A, a set B, and a unary functor F yielding a set and states that:
there exists a function ¢ from A into B such that for every element a of A
holds t(a) € F(a)
provided the following requirement is met:
e for every element a of A holds B meets F(a).
The scheme LambdaT concerns a set A, a set I3, and a unary functor F and
states that:
there exists a function f from A into B such that for every element z of A
holds f(z) = F(x)
provided the following requirement is met:
o for every element = of A holds F(x) € B.
We now state the proposition
(3)  For every object a of A and for every morphism m from a to a holds
m € hom(a, a).

In the sequel m, o will be arbitrary. One can prove the following propositions:

N
SN—

For all morphisms f, g of ®(0,m) holds f = g.
For every object a of A holds (({id,, id, ), id, ) € the composition of A.
The composition of O(o,m) = {{{m, m), m)}.

ot
o — T

For every object a of A holds O(a,id,) is a subcategory of A.

A~ N N S
=)

For every subcategory C' of A holds the dom-map of C' = (the dom-map
of A)] the morphisms of C' and the cod-map of C' = (the cod-map of A)|
the morphisms of C' and the composition of C' = (the composition of A) [}
the morphisms of C, the morphisms of C'] and the id-map of C = (the
id-map of A)] the objects of C.

(9) Let O be a non-empty subset of the objects of A. Let M be a non-empty
subset of the morphisms of A. Let Dy, Cq be functions from M into O.
Suppose Dy = (the dom-map of A) | M and C; = (the cod-map of A)[ M.
Then for every partial function Cy from [ M, M qua a non-empty set ] to
M such that Cy = (the composition of A) | [ M, M ] for every function
I from O into M such that Iy = (the id-map of A) | O holds (O, M, D1,
C1,Cs, I1) is a subcategory of A.
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(10)  For every subcategory A of C such that the objects of A = the objects
of C' and the morphisms of A = the morphisms of C holds A = C.

APPLICATION OF A FUNCTOR TO A MORPHISM

Let us consider A, B, F', and let a, b be objects of A satisfying the condition:
hom(a,b) # 0. Let f be a morphism from a to b. The functor F(f) yields a
morphism from F'(a) to F'(b) and is defined by:
(Def.1)  F(f) = F(f).
One can prove the following propositions:

(11)  For all objects a, b of A such that hom(a,b) # () for every morphism f
from a to b holds (G - F)(f) = G(F(f)).

(12)  For all functors F, F» from A to B such that for all objects a, b of A such
that hom(a,b) # 0 for every morphism f from a to b holds Fi(f) = Fa(f)
holds F1 = FQ.

(13)  For all objects a, b, ¢ of A such that hom(a,b) # @) and hom(b,c) # 0
for every morphism f from a to b and for every morphism ¢ from b to ¢

holds F(g - f) = F(g) - F(f)-

(14)  For every object c of A and for every object d of B such that F'(id.) = idq
holds F(c) =d.

(15)  For every object a of A holds F(id,) = idp(q)-

(16)  For all objects a, b of A such that hom(a,b) # () for every morphism f
from a to b holds idA(f) = f.

(17)  For all objects a, b, ¢, d of A such that hom(a, b) meets hom(c, d) holds
a=candb=d.

TRANSFORMATIONS

Let us consider A, B, I, F>. We say that F} is transformable to F5 if and only
if:
(Def.2)  for every object a of A holds hom(Fy(a), Fa(a)) # 0.
One can prove the following propositions:
(18)  F is transformable to F.

(19) If F is transformable to F} and F} is transformable to Fs, then F is
transformable to F5.

Let us consider A, B, Fi, Fy. Let us assume that F} is transformable to
F5. A function from the objects of A into the morphisms of B is said to be a
transformation from F} to Fy if:

(Def.3)  for every object a of A holds it(a) is a morphism from Fj(a) to Fa(a).

Let us consider A, B, and let F' be a functor from A to B. The functor id g
yields a transformation from F' to F' and is defined as follows:

(Def.4)  for every object a of A holds idr(a) = idp(qg).



470 ANDRZEJ TRYBULEC

Let us consider A, B, Fi, Fy. Let us assume that F} is transformable to
F5. Let t be a transformation from Fj to Fy, and let a be an object of A. The
functor t(a) yields a morphism from Fj(a) to F(a) and is defined by:

(Def.5)  t(a) = t(a).

Let us consider A, B, F', Fy, Fy. Let us assume that F' is transformable to F}
and F} is transformable to F5. Let t1 be a transformation from F' to Fi, and let
to be a transformation from Fj to Fy. The functor £5°t; yields a transformation
from F' to F, and is defined by:

(Def.6)  for every object a of A holds (t2°t1)(a) = ta(a) - t1(a).

The following propositions are true:

(20)  If Fy is transformable to Fy, then for all transformations ¢4, t from Fj
to Fy such that for every object a of A holds t1(a) = t2(a) holds t; = to.

(21)  For every object a of A holds idr(a) = idp(g).

(22) If F} is transformable to F5, then for every transformation ¢ from Fj to
F5 holds idp, °t =t and t°idp, =¢.

(23) If F is transformable to Fy and F} is transformable to Fy and Fj is
transformable to F3, then for every transformation ¢; from F' to F; and

for every transformation ¢5 from F; to Fy and for every transformation tg
from F5 to F3 holds t3°t9°t] = t3° (tgotl).

NATURAL TRANSFORMATIONS

Let us consider A, B, Fy, F5. We say that F} is naturally transformable to Fb
if and only if:
(Def.7)  Fj is transformable to Fy and there exists a transformation t from F
to Fy such that for all objects a, b of A such that hom(a,b) # () for every
morphism f from a to b holds ¢(b) - F1(f) = Fa(f) - t(a).

Next we state two propositions:
(24)  F is naturally transformable to F.

(25)  If F is naturally transformable to F; and F} is naturally transformable
to F5, then F' is naturally transformable to Fb.

Let us consider A, B, Fi, F5. Let us assume that F} is naturally trans-
formable to F5. A transformation from Fj to F5 is called a natural transforma-
tion from Fj to Fy if:

(Def.8)  for all objects a, b of A such that hom(a,b) # ) for every morphism f
from a to b holds it(b) - F1(f) = Fa(f) - it(a).

Let us consider A, B, F'. Then idp is a natural transformation from F' to F.

Let us consider A, B, F, Fy, F5. satisfying the conditions: F' is naturally

transformable to F; and Fj is naturally transformable to F5. Let ¢1 be a natural

transformation from F' to Fj, and let t2 be a natural transformation from F}

to Fy. The functor t9°t yields a natural transformation from F' to Fy and is
defined by:
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(Def.9) to°t1 = t2°t.

One can prove the following proposition

(26) If Fy is naturally transformable to Fs, then for every natural transfor-
mation ¢t from F; to F3 holds idp, °t =t and t°idp, =t.

In the sequel ¢ denotes a natural transformation from F to Fy and ¢; denotes
a natural transformation from Fj to F5. Next we state two propositions:

(27)  If F is naturally transformable to F} and F} is naturally transformable
to F5, then for every natural transformation ¢; from F' to F; and for every
natural transformation to from Fy to Fo and for every object a of A holds
(t2°t1)(a) = tg(a) . tl(a).

(28)  If F' is naturally transformable to F} and F} is naturally transformable
to Fy and F5 is naturally transformable to F3, then for every natural
transformation t3 from Fy to F3 holds t3°ti°t = t3°(t1°t).

Let us consider A, B, Fy, F. A transformation from Fj to Fy is invertible
if:

(Def.10)  for every object a of A holds it(a) is invertible.

We now define two new predicates. Let us consider A, B, Fy, F5. We say
that Iy, F5 are naturally equivalent if and only if:

(Def.11)  Fj is naturally transformable to F and there exists a natural transfor-
mation ¢ from Fj to Fy such that ¢ is invertible.
We write 'y & F5 if and only if Fy, F, are naturally equivalent.

One can prove the following proposition

(29) F=F.

Let us consider A, B, Fy, Fy. satisfying the condition: F} is transformable
to Fy. Let t; be a transformation from Fy to Fy satisfying the condition: £ is
invertible. The functor ¢; ! yielding a transformation from F to F; is defined
as follows:

(Def.12)  for every object a of A holds t;7(a) = ty(a)~!.
Let us consider A, B, Fy, Fs, t1. satisfying the conditions: F} is naturally

transformable to F, and t¢; is invertible. The functor ¢;~! yielding a natural
transformation from Fs to F} is defined by:

(Def.13)  t17! = (t; quaa transformation from F; to Fy)~ 1.

Next we state three propositions:

(30) For all A, B, Fy, Fy, t; such that Fj is naturally transformable to Fj
and t; is invertible for every object a of A holds t;~1(a) = t1(a)~ .

(31) If F1 gFQ, then F2 gFl.

(32) If Fi 2 F5 and Fy & F3, then F} = F3.

Let us consider A, B, Fi, F5. Let us assume that Fi, F5 are naturally equiv-
alent. A natural transformation from F} to Fy is called a natural equivalence of
Fy and Fy if:

(Def.14) it is invertible.



472 ANDRZEJ TRYBULEC

We now state two propositions:
(33) idp is a natural equivalence of F' and F.
(34) If Fy & F; and Fy & F3, then for every natural equivalence ¢ of F; and

F, and for every natural equivalence t’ of Fy and F3 holds t/°t is a natural
equivalence of F; and Fj3.

FUNCTOR CATEGORY

Let us consider A, B. A non-empty set is called a set of natural transformations
from A to B if:
(Def.15)  for an arbitrary x such that x € it there exist functors Fy, F» from A
to B and there exists a natural transformation ¢ from F} to F5 such that
x = ((F1, F»), t) and F} is naturally transformable to Fb.

Let us consider A, B. The functor NatTrans(A, B) yielding a set of natural
transformations from A to B is defined as follows:
(Def.16)  for an arbitrary x holds x € NatTrans(A, B) if and only if there exist
functors Fp, F5 from A to B and there exists a natural transformation
t from Fy to Fy such that @ = ((Fy, F3), t) and F; is naturally trans-
formable to F5.

Let Ay, By, As, By be non-empty sets, and let f; be a function from A;
into By, and let fo be a function from A, into Bs. Let us note that one can
characterize the predicate f; = fo by the following (equivalent) condition:

(Def.17) A = As and for every element a of A; holds fi(a) = fa(a).

The following two propositions are true:
(35)  Fy is naturally transformable to Fy if and only if ((Fi, Fy), t1) €
NatTrans(A4, B).
(36) ((F, F), idr) € NatTrans(A, B).
Let us consider A, B. The functor B4 yielding a category is defined by the
conditions (Def.18).
(Def.18) (i)  The objects of B4 = Funct(A, B),
(ii)  the morphisms of B4 = NatTrans(4, B),
(iii)  for every morphism f of B4 holds dom f = (f1)1 and cod f = (f1)a2,
(iv)  for all morphisms f, g of B4 such that domg = cod f holds (g, f) €
dom (the composition of B4),
(v)  for all morphisms f, g of B4 such that (g, f) € dom (the composition
of BA) there exist F, Fy, Fy, t, t; such that f = ((F, Fy), t) and g = ((F},
F,), t1) and (the composition of B4)({(g, f)) = ({(F, F)), t;°t),
(vi)  for every object a of B4 and for every F such that F = a holds
idy = ((F, F), idp ).
We now state several propositions:
(37)  The objects of B4 = Funct(A, B).
(38)  The morphisms of B4 = NatTrans(A, B).
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(39)  For every morphism f of B4 such that f = ((F, F}), t) holds dom f =
F and cod f = Fj.

(40)  For all objects a, b of B4 and for every morphism f from a to b such
that hom(a, b) # 0 there exist F', Fy, t such that a = F and b = F} and
f= <(F7 F1>7 t)'

(41)  For every natural transformation ¢’ from F; to F3 and for all morphisms
f, g of BA such that f = ((F, F1), t) and g = ((F», F3), t') holds (g,
f) € dom (the composition of B4) if and only if F} = Fy.

(42)  For all morphisms f, g of B4 such that f = ((F, F}), t) and g = ((F},
F2>7 tl) holds g f = ((Fv F2>7 t1°t>.

(43)  For every object a of B4 and for every F such that F = @ holds id, =
((F, F), idr).

DISCRETE CATEGORIES

A category is discrete if:
(Def.19)  for every morphism f of it there exists an object a of it such that
f=idg.
One can prove the following propositions:

(44)  For every discrete category A and for every object a of A holds
hom(a,a) = {id,}.

(45) A is discrete if and only if for every object a of A holds hom(a,a) is
finite and card hom(a,a) = 1 and for every object b of A such that a # b
holds hom(a, b) = 0.

(46)  ©(o,m) is discrete.

(47)  For every discrete category A and for every subcategory C' of A holds
C is discrete.

(48)  If A is discrete and B is discrete, then [ A, B is discrete.

(49) For every discrete category A and for every category B and for all
functors I, Fy from B to A such that Fj is transformable to Fy holds
Fy = Fs.

(50)  For every discrete category A and for every category B and for every
functor F' from B to A and for every transformation ¢ from F to F' holds
t=1idp.

(51) If A is discrete, then AP is discrete.

Let us consider C. The functor IdCat C' yields a discrete subcategory of C
and is defined as follows:
(Def.20)  the objects of IdCat C' = the objects of C' and the morphisms of
IdCat C' = {id, },
where a ranges over objects of C.
Next we state four propositions:
(52) If C is discrete, then IdCat C = C.
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(53)
(54)
(55)

[1]
2]

8]
[4]
[5]
(6]

[7]
8]

[9]
[10]

[11]
[12]

[13]

ANDRZEJ TRYBULEC

IdCatIdCat C' = IdCat C'.
IdCat ©(0,m) = O(0,m).
IdCat} A, B] = }IdCat A, IdCat B].
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Matrices. Abelian Group of Matrices

Katarzyna Jankowska
Warsaw University
Biatystok

Summary. The basic conceptions of matrix algebra are intro-
duced. The matrix is introduced as the finite sequence of sequences with
the same length, i.e. as a sequence of lines. There are considered matri-
ces over a field, and the fact that these matrices with addition form an
Abelian group is proved.

MML Identifier: MATRIX_1.

The notation and terminology used here have been introduced in the following
papers: [9], [5], [6], [1], [8], [4], [2], [3], and [7]. For simplicity we adopt the
following rules: x will be arbitrary, 4, j, n, m will be natural numbers, D will
be a non-empty set, K will be a field structure, s will be a finite sequence,
a, ai, az, b1, ba, d will be elements of D, p, p1, pe will be finite sequences of
elements of D, and F will be a field. A finite sequence is tabular if:

(Def.1)  there exists a natural number n such that for every x such that = € rngit
there exists s such that s = z and len s = n.
The following propositions are true:
(1)  ({d)) is tabular.
(2) m+— (n+— z) is tabular.
(3)  For every s holds (s) is tabular.
(4)

4 For all finite sequences s1, so such that len s; = n and len sy = n holds

(s1,s2) is tabular.
(5) € is tabular.
(6) (e, e) is tabular.
(7)  {{a1), {ag)) is tabular.
(8)  ((a1,as2), (b1,bs)) is tabular.
A tabular finite sequence is non-trivial if:
(Def.2)  there exists s such that s € rngit and lens > 0.
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Let D be a non-empty set.
Let D be a non-empty set. A matrix over D is a tabular finite sequence of
elements of D*.
We now state the proposition
(9) s is a matrix over D if and only if there exists n such that for every x
such that € rng s there exists p such that x = p and lenp = n.
Let us consider D, m, n. A matrix over D is said to be a matrix over D of
dimension m x n if:
(Def.3)  lenit = m and for every p such that p € rngit holds lenp = n.
Let us consider D, n. A matrix over D of dimension n is a matrix over D of
dimension n X n.
We now define three new modes. Let us consider K. A matrix over K is a
matrix over the carrier of K.
Let us consider n. A matrix over K of dimension n is a matrix over the
carrier of K of dimension n x n.
Let us consider m. A matrix over K of dimension n x m is a matrix over the
carrier of K of dimension n x m.
We now state a number of propositions:
(10)  m+— (n+— a) is a matrix over D of dimension m X n.
(11)  For every finite sequence p of elements of D holds (p) is a matrix over
D of dimension 1 x len p.
(12)  For all p1, p2 such that lenp; = n and lenps = n holds (p1,p2) is a
matrix over D of dimension 2 X n.

(13) e is a matrix over D of dimension 0 x m.

(14)  (e) is a matrix over D of dimension 1 x 0.

(15)  ({a)) is a matrix over D of dimension 1.

(16)  (g,¢e) is a matrix over D of dimension 2 x 0.

(17)  ({a1,a9)) is a matrix over D of dimension 1 X 2.
(18)  ({a1), (a2)) is a matrix over D of dimension 2 x 1.
(19)  ({a1,a2), (by,be)) is a matrix over D of dimension 2.

In the sequel M, My, M5 will be matrices over D. Let M be a tabular
finite sequence. The functor width M yields a natural number and is defined as
follows:

(Def.4) (i) there exists s such that s € rng M and len s = width M if len M > 0,
(ii)  width M = 0, otherwise.
Next we state the proposition

(20) Iflen M > 0, then for every n holds M is a matrix over D of dimension
len M x n if and only if n = width M.
Let M be a tabular finite sequence. The indices of M yielding a set is defined
by:
(Def.5)  the indices of M = [ Seglen M, Seg width M ].
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Let us consider D, and let M be a matrix over D, and let us consider i,
j. Let us assume that (i, j) € the indices of M. The functor M; ; yielding an
element of D is defined as follows:

(Def.6)  there exists p such that p = M (i) and M; ; = p(j).

The following proposition is true

(21)  If len M; = len My and width My = width M and for all ¢, j such that
(i, j) € the indices of My holds My; ; = Ma; ;, then My = My.

In this article we present several logical schemes. The scheme MatrizLambda
deals with a non-empty set A, a natural number B, a natural number C, and a
binary functor F yielding an element of A and states that:

there exists a matrix M over A of dimension B x C such that for all ¢, j such
that (i, j) € the indices of M holds M; ; = F (3, j)
for all values of the parameters.

The scheme MatrizEr concerns a non-empty set A, a natural number B, a
natural number C, and a ternary predicate P, and states that:

there exists a matrix M over A of dimension B x C such that for all i, j such
that (i, j) € the indices of M holds P[i, j, M; ;]
provided the parameters have the following properties:

e for all 4, j such that (i, j) € [ Seg B, SegC ] for all elements z1, z2

of A such that P[i, j,z1]| and P[i, j, z2] holds z1 = x,
e for all 4, j such that (i, j) € [ Seg B, SegC | there exists an element
x of A such that PJi, j, z].

The scheme SeqDLambda concerns a non-empty set A, a natural number B,
and a unary functor F yielding an element of 4 and states that:

there exists a finite sequence p of elements of A such that lenp = B and for
every i such that ¢ € Seg B holds p(i) = F ()
for all values of the parameters.

We now state several propositions:

(22)  For every matrix M over D of dimension n x m such that len M = 0
holds width M = 0.

(23)  For every matrix M over D of dimension 0 x m holds len M = 0 and
width M = 0 and the indices of M = .

(24) If n > 0, then for every matrix M over D of dimension n x m holds
len M = n and width M = m and the indices of M = [ Segn, Segm {.

(25)  For every matrix M over D of dimension n holds len M = n and
width M = n and the indices of M = [ Segn, Segn {.

(26)  For every matrix M over D of dimension n x m holds len M = n and
the indices of M = [ Segn, Seg width M ].

(27)  For all matrices My, My over D of dimension n x m holds the indices
of My = the indices of M.

(28)  For all matrices My, My over D of dimension n x m such that for all ¢, j
such that (i, j) € the indices of M; holds My, j = My, ; holds My = Ms.
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(29)  For every matrix M; over D of dimension n and for all 4, j such that
(i, j) € the indices of Mj holds (j, i) € the indices of Mj.

Let us consider D, and let M be a matrix over D. The functor M T yielding
a matrix over D is defined as follows:

(Def.7)  len(M7T) = width M and for all 4, j holds (i, j) € the indices of M 7T if
and only if (j, ¢) € the indices of M and for all 4, j such that (j, i) € the
indices of M holds M;'; = M;;.

We now define two new functors. Let us consider D, M, i. The functor
Line(M, i) yields a finite sequence of elements of D and is defined by:

(Def.8)  lenLine(M,i) = width M and for every j such that j € Segwidth M
holds Line(M,)(j) = M ;.
The functor Mp; yields a finite sequence of elements of D and is defined as
follows:
(Def.9) len(Mp;) = lenM and for every j such that j € Seglen M holds
Mgpi(j) = Mj.
Let us consider D, and let M be a matrix over D, and let us consider i. Then
Line(M, i) is an element of DY4h M Then Mg is an element of D'*n .

In the sequel A, B are matrices over K of dimension n. We now define five
new functors. Let us consider K, n. The functor K™*" yields a non-empty set
and is defined as follows:

(Def.10)  K™*™ = ( (the carrier of K)™)".

O O nxn
The functor | : . yielding a matrix over K of dimension n is de-
0 ... 0/,
fined as follows:
0 0 nxn
(Def.11) Do, =nr— (n+— 0g).
0 ... 0/,
1 0 nxn
The functor yielding a matrix over K of dimension n is de-
0 Iy
fined as follows:
1 0 nxn
(Def.12)  for every i such that (i, i) € the indices of holds
0 Iy
1 0 nxn
( )ii = 1 and for all 4, j such that (i, j) € the indices
0 1

K
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nxn nxn

1 0 1 0
of and i # 7 holds ( )i = Ok.
Let us consider A. The functor —A yielding a matrix over K of dimension n is

defined as follows:
(Def.13)  for all 4, j such that (i, j) € the indices of A holds (—A);; =

Let us consider B. The functor A 4+ B yielding a matrix over K of dimension n

is defined by:
for all ¢, j such that (i, j) € the indices of A holds (A+B); ; = A; j+B; ;.

—Aij.

(Def.14)
The following two propositions are true:
0 0 nxn
(30) For all i, 5 such that (i, j) € the indices of : holds

0 0/,

0 ... 0\""

(0 - )ij = Ok
0 ... 0 K

For every x holds z is an element of K™*™ if and only if z is a matrix

over K of dimension n.
Let us consider K, n. A matrix over K of dimension n is called a diagonal

(31)

n-dimensional matrix over K if:
(Def.15)  for all ¢, j such that (i, j) € the indices of it and it; ; # Ox holds i = j.
In the sequel A, B, C will denote matrices over F' of dimension n. One can
prove the following four propositions:
(32) A+B=B+A.
(33) A+B+C=A+(B+0).

0 ... 0\""
0 0/,
0 ... 0\""
(35) A4+—-A=| : -.
0 ... 0/,

Let us consider F', n. The functor F5*" yielding an Abelian group is defined
by:

(Def.16)  the carrier of FG*" = F™*" and for all A, B holds (the addition

of F*")(A, B) = A+ B and for every A holds (the reverse-map of

nxn

0O ... 0
F&*™)(A) = —A and the zero of FE*" =
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Paracompact and Metrizable Spaces
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Summary. We give an example of a compact space. Next we
define a locally finite subset family of topological spaces and paracompact
topological spaces. An open sets family of a metric space is defined next
and it has been shown that the metric space with any open sets family is
a topological space. Next we define metrizable space.

MML Identifier: PCOMPS_1.

The papers [15], [5], [6], [11], [10], [12], [13], [18], [8], [17], [9], [7], [16], [3], [2],
[1], [4], and [14] provide the terminology and notation for this paper. In the
sequel P; denotes a metric space, x denotes an element of the carrier of Py, and
r, p denote real numbers. Next we state the proposition

(1) Ifr <pandr >0, then Ball(z,r) C Ball(x, p).
For simplicity we adopt the following convention: T will be a topological

space, x will be a point of T, W, A will be subsets of T', and F; will be a
family of subsets of T". One can prove the following four propositions:

(2) A#0if and only if A # ().
(3) If A=10, then A =10.

(4)  Ais closed.
()

5) If Fy is a cover of T, then for every x there exists W such that z € W

and W € Fj.

Let X be arbitrary. Then {X} is a non-empty set. Then 2% is a non-empty
family of subsets of X.

Let a be arbitrary. The functor {a},, yields a topological space and is
defined by:

(Def.1)  {a}top = ({a},2la}y,
In the sequel a is arbitrary. We now state four propositions:

(6)  A{a}wop = ({a},21).

© 1991 Fondation Philippe le Hodey
481 ISSN 0777-4028



482 LESZEK BORYS

(7)  The topology of {a}top = ola},
(8)  The carrier of {a}top = {a}.
(9)  {a}top is compact.
Let us consider T', z. Then {x} is a subset of T.
We now state the proposition
(10) If T is a Ty space, then {z} is closed.

For simplicity we follow the rules: T will be a topological space, x will be a
point of T, Z, V., W, Y, A, B will be subsets of T, and F, Gy will be families
of subsets of T'. Let us consider T'. A family of subsets of T is locally finite if:

(Det.2)  for every x there exists W such that z € W and W is open and {V :
V eit A\VNW # 0} is finite.
Next we state three propositions:
(11)  For every W holds {V : Ve F AVNW #0} C Fy.
(12) If F; € Gy and Gy is locally finite, then F} is locally finite.
(13) If Fy is finite, then F} is locally finite.

Let us consider T', F. The functor clf F} yielding a family of subsets of T is
defined by:

(Def.3)  Z € clf Fy if and only if there exists W such that Z =W and W € F}.

Next we state several propositions:
(14)  clf F; is closed.

(15) If F; =0, then clf F; = 0.

(16) If Fy = {V}, then clf F} = {V}.
( ) If F1 C G4, then clf F7 C clf G;.
( ) le(FlLJGl) =clf I7 Uclf Gy.

Next we state two propositions:

(19)  If Fy is finite, then U Fy = Uclf F.
(20)  Fy is finer than clf F;.

The scheme Lambdaltop deals with a topological space A, a family B of
subsets of A, a family C of subsets of A, and a unary functor F yielding a
subset of A and states that:

there exists a function f from B into C such that for every subset Z of A
such that Z € B holds f(Z) = F(Z)
provided the following condition is satisfied:

e for every subset Z of A such that Z € B holds F(Z) € C.

Next we state four propositions:

(21)  If Fy is locally finite, then clf F is locally finite.

(22) UFl QUleFl.

(23)  If F} is locally finite, then J Fy = Jclf Fy.

(24) If Fy is locally finite and F} is closed, then |J F} is closed.

A topological space is paracompact if:



PARACOMPACT AND METRIZABLE SPACES

(Def.4)  for every family Fj of subsets of it such that F is a cover of it and F}
is open there exists a family GG; of subsets of it such that G is open and
(1 is a cover of it and (G is finer than F} and G is locally finite.
The following propositions are true:
(25) If T is compact, then T is paracompact.

(26)  Suppose T' is paracompact and A is closed and B is closed and A misses
B and for every = such that z € B there exist V', W such that V is open
and W is open and A C V and x € W and V misses W. Then there exist
Y, Z such that Y is open and Z isopenand A CY and BC Z and Y
misses Z.

(27) If T'is a Ty space and T is paracompact, then T" is a T3 space.
(28) If T'is a Ty space and T is paracompact, then T" is a T4 space.

For simplicity we follow a convention: P; will denote a metric space, x, ¥y, 2
will denote elements of the carrier of P;, r, p, ¢ will denote real numbers, and
V', W will denote subsets of the carrier of P;. Let us consider P;. The open set
family of P; yielding a family of subsets of the carrier of P; is defined as follows:

(Def.5)  for every V holds V' &the open set family of P; if and only if for every
x such that = € V there exists r such that » > 0 and Ball(z,r) C V.
One can prove the following propositions:

(29)  For every x there exists r such that » > 0 and Ball(z,r) C the carrier
of Pl.

(30) If y € Ball(x,r), then there exists p such that p > 0 and Ball(y,p) C
Ball(z, r).

(31) If y € Ball(z,r) N Ball(z,p), then there exists ¢ such that Ball(y, q) C
Ball(z,r) and Ball(y, q) C Ball(z,p).

(32)  For every V holds V' € the open set family of P; if and only if for every
x such that = € V there exists r such that » > 0 and Ball(z,r) C V.

(33)  For all z, r holds Ball(z,r) € the open set family of P;.
(34)  The carrier of P; € the open set family of P;.

(35) For all V, W such that V' € the open set family of P; and W € the
open set family of P; holds V NW &€ the open set family of P;.

(36) For every family A of subsets of the carrier of P; such that A C the
open set family of P; holds |J A € the open set family of P;.

(37)  (The carrier of Pj,the open set family of P;) is a topological space.

Let us consider Pi. The functor Py, yielding a topological space is defined
as follows:

(Def.6)  Piyop = ( the carrier of Pj,the open set family of Py).

We now state the proposition
(38)  Pryop is a T2 space.
Let D be a non-empty set, and let f be a function from [ D, D] into R. We
say that f is a metric of D if and only if:
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(Def.7)

(40)

LESZEK BORYS

for all elements a, b, ¢ of D holds f(a, b) = 0 if and only if a = b but
f(a’? b) = f(ba a) and f(a7 C) < f(a? b) + f(b7 C)'

We now state two propositions:
(39)

For every non-empty set D and for every function f from | D, D] into
R holds f is a metric of D if and only if (D, f) is a metric space.

For every metric space M, holds the distance of M; is a metric of the
carrier of M;.

Let D be a non-empty set, and let f be a function from [ D, D ] into R. Let

us assume that f is a metric of D. The functor MetrSp(D, f) yielding a metric
space is defined by:

(Def.8)  MetrSp(D, f) = (D, f).
A topological space is metrizable if:
(Def.9)  there exists a function f from [ the carrier of it, the carrier of it ] into

1]
2]
8]

[4]
[5]

(6]

[7]
8]

[9]
[10]

[11]

[12]
[13]

[14]
[15]
[16]

[17]
[18]

R such that f is a metric of the carrier of it and the open set family of
MetrSp((the carrier of it), f) = the topology of it.
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Atlas of Midpoint Algebra

Michat Muzalewski
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Biatystok

Summary. This article is a continuation of [4]. We have estab-
lished a one-to-one correspondence between midpoint algebras and groups
with the operator % In general we shall say that a given midpoint alge-
bra M and a group V are w-assotiated iff w is an atlas from M to V. At
the beginning of the paper a few facts which rather belong to [3], [5] are
proved.

MML Identifier: MIDSP_2.

The terminology and notation used here have been introduced in the following
articles: [2], [1], [3], [4], and [5]. In the sequel G is a group structure and x is
an element of G. Let us consider G, x. The functor 2z yielding an element of
G is defined by:

(Def.l) 2z =x+z.
In the sequel M is a midpoint algebra structure. Let us consider M. A point
of M is an element of the points of M.

In the sequel p, ¢, r will be points of M and w will be a function from [ the
points of M, the points of M ] into the carrier of G. Let us consider M, G, w.
We say that M, G are associated w.r.t. w if and only if:

(Def.2)  p@®q=rif and only if w(p, r) = w(r, q).
The following proposition is true
(1) If M, G are associated w.r.t. w, then p® p = p.

We follow the rules: S will be a non-empty set, a, b, ¥, ¢, ¢, d will be
elements of S, and w will be a function from [.S, S{ into the carrier of G. Let
us consider S, G, w. We say that w is an atlas of S, G if and only if:

(Def.3)  for every a, x there exists b such that w(a, b) = x and for all a, b, ¢ such
that w(a, b) = w(a, ¢) holds b = ¢ and for all a, b, ¢ holds w(a, b) + w(b,
c) =w(a, c).
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Let us consider S, G, w, a, . Let us assume that w is an atlas of S, G. The
functor (a,z).w yielding an element of S is defined by:

(Defd)  w(a, (a,z).w) = x.
In the sequel G denotes a group, z, y denote elements of GG, and w denotes

a function from [S, S] into the carrier of G. One can prove the following
propositions:
) 2(0¢) = 0¢.
) Ifx+4+y=x, then y =0g.
) If wis an atlas of S, G, then w(a, a) = 0g.
5) If wis an atlas of S, G and w(a, b) = O¢, then a = b.
) If wis an atlas of S, G, then w(a, b) = —w(b, a).
) If wis an atlas of S, G and w(a, b) = w(c, d), then w(b, a) = w(d, ¢).
) If wis an atlas of S, G, then for every b, x there exists a such that w(a,
b) = .
(9) If wis an atlas of S, G and w(b, a) = w(c, a), then b = c.
(10)  For every function w from [ the points of M, the points of M ] into the

carrier of G such that w is an atlas of the points of M, G and M, G are
associated w.r.t. w holds p ® q = q & p.

(11)  For every function w from [ the points of M, the points of M | into the
carrier of G such that w is an atlas of the points of M, G and M, G are
associated w.r.t. w there exists r such that r ® p = q.

We adopt the following rules: G will denote an Abelian group and x, y, 2, ¢
will denote elements of G. The following propositions are true:

(12) —(z+y) =—-x+ —y.

(13) z+y+(z+t)=z+2+ (y+1).

(14)  2(z+y) =2z +2y.

(15)  2(—zx) = —2=z.

(16)  For every function w from [ the points of M, the points of M | into the

carrier of G such that w is an atlas of the points of M, G and M, G are
associated w.r.t. w for all points a, b, ¢, d of M holds a®b = cP d if and
only if w(a, d) = w(c, b).
In the sequel w denotes a function from [ S, S] into the carrier of G. Next
we state the proposition
(17) Ifwis an atlas of S, G, then for all a, b, V', ¢, ¢ such that w(a, b) = w(b,
¢) and w(a, b') = w(b, ) holds w(c, ) = 2w(b, b').
We follow the rules: M denotes a midpoint algebra and p, ¢, r, s denote
points of M. Let us consider M. Then vectgroup M is an Abelian group.
The following proposition is true

(18) For an arbitrary a holds a is an element of vectgroup M if and only
if a is a vector of M and Oyectgroup v = In and for all elements a, b of
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vectgroup M and for all vectors x, y of M such that a = z and b = y
holds a + b=z +y.

An Abelian group is called a group with the operator % if:

(Def.5)  for every element a of it there exists an element z of it such that 2z = a
and for every element a of it such that 2a = 0y holds a = 0.

In the sequel G is a group with the operator % and z, y are elements of G.
One can prove the following two propositions:

(19) If x = —x, then x = O¢.
(20) If 22 = 2y, then z = y.
Let us consider G, x. The functor %:17 yielding an element of G is defined as
follows:

(Def.6) 2%z =u.
The following three propositions are true:

(21)  3(0g) = 0g and 3(z +y) = 2o + 1y but if 1z = 3y, then 2 = y and
%2:3 = .

(22)  For every M being a midpoint algebra structure and for every function
w from [ the points of M, the points of M | into the carrier of G such
that w is an atlas of the points of M, G and M, G are associated w.r.t.
w for all points a, b, ¢, d of M holds a®b® (c®d) =aBcd (b d).

(23)  For every M being a midpoint algebra structure and for every function
w from [ the points of M, the points of M ] into the carrier of G such

that w is an atlas of the points of M, G and M, G are associated w.r.t.
w holds M is a midpoint algebra.

Let us consider M. Then vectgroup M is a group with the operator %

Let us consider M, p, q. The functor ¢P yields an element of vectgroup M

and is defined as follows:
—

(Det.7)  ¢” = [p,ql.
Let us consider M. The functor vect M yields a function from [ the points
of M, the points of M ] into the carrier of vectgroup M and is defined by:

—

(Def.8)  (vect M)(p, q) = [p, -

We now state four propositions:
vect M is an atlas of the points of M, vectgroup M.

SN N
[ 7Q] = [T,S] 1fandonly1fp@s:q@7~
SN N

p @ q = r if and only if [p,r] = [r,q].
27) M, vectgroup M are associated w.r.t. vect M.

N NN
S O
= Z

(
(
(
(
In the sequel w will denote a function from [ .S, S'] into the carrier of G. Let

us consider S, G, w. Let us assume that w is an atlas of S, G. The functor ®w
yielding a binary operation on S is defined as follows:

(Def.9)  w(a, (*w)(a, b)) = w((®w)(a, b), b).
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We now state the proposition
(28) If w is an atlas of S, G, then for all a, b, ¢ holds (®w)(a, b) = ¢ if and
only if w(a, ¢) = w(c, b).
In the sequel a, b, ¢ are points of (S, ®w). We now state two propositions:
(29)  (“w)(a, b) =a®b.
(30)  a@®b=cif and only if (“w)(a, b) = c.
Let us consider S, G, w. The functor Atlasw yielding a function from |
the points of (S, ®w), the points of (S, ®w) ] into the carrier of G is defined as
follows:

(Def.10)  Atlasw = w.

Next we state two propositions:
(31) If wis an atlas of S, G, then Atlasw is an atlas of the points of (S,
Q) G.
(32) If wis an atlas of S, G, then (S, “w), G are associated w.r.t. Atlasw.
Let us consider S, G, w. Let us assume that w is an atlas of S, G. The
functor MidSp(w) yielding a midpoint algebra is defined by:
(Def.11)  MidSp(w) = (S, ®w).
We follow the rules: M is a midpoint algebra structure, w is a function from
b the points of M, the points of M ] into the carrier of G, and a, b, by, by, ¢ are
points of M. The following proposition is true
(33) M is a midpoint algebra if and only if there exists G and there exists
w such that w is an atlas of the points of M, G and M, G are associated
w.r.t. w.
Let us consider M. We consider atlas structures over M which are systems
(an algebra, a function),
where the algebra is a group with the operator % and the function is a function
from [ the points of M, the points of M ] into the carrier of the algebra.
Let M be a midpoint algebra. An atlas structure over M is said to be an
atlas of M if:
(Def.12) M, the algebra of it are associated w.r.t. the function of it and the
function of it is an atlas of the points of M, the algebra of it.

Let M be a midpoint algebra, and let W be an atlas of M. A vector of W
is an element of the algebra of W.

Let M be a midpoint algebra, and let W be an atlas of M, and let a, b be
points of M. The functor W (a, b) yields an element of the algebra of W and is
defined as follows:

(Def.13)  W(a, b) = (the function of W)(a, b).
Let M be a midpoint algebra, and let W be an atlas of M, and let a be a

point of M, and let = be a vector of W. The functor (a,z).W yielding a point
of M is defined as follows:

(Def.14)  (a,z).W = (a, z).(the function of W).



ATLAS OF MIDPOINT ALGEBRA 491

Let M be a midpoint algebra, and let W be an atlas of M. The functor Oy

yielding a vector of W is defined as follows:
(Def15) OW = Othc algebra of W -

We now state two propositions:

(34) If w is an atlas of the points of M, G and M, G are associated w.r.t.
w, then a @ ¢ = by @ by if and only if w(a, ¢) = w(a, by) + w(a, by).

(35) If w is an atlas of the points of M, G and M, G are associated w.r.t.
w, then a @ ¢ = b if and only if w(a, ¢) = 2w(a, b).

For simplicity we adopt the following convention: M will be a midpoint
algebra, W will be an atlas of M, a, b, by, bs, ¢, d will be points of M, and x
will be a vector of W. One can prove the following propositions:

(36) a®c=0by &by if and only if W(a, ¢) = W(a, by) + W(a, by).

(37)  a@®c=0bif and only if W(a, ¢) = 2W(a, b).

(38)  For every a, = there exists b such that W(a, b) = = and for all a, b, ¢
such that W(a, b) = W {(a, ¢) holds b = ¢ and for all a, b, ¢ holds W (a,
b) + W (b, ¢) = W(a, c).

(39) (i)  W(a, a) = 0w,

(ii) if W(a, b) = Ow, then a = b,
(i)  Wi(a, b) = =W(b, a),
(iv) it W(a, b) = W(e, d), then W (b, a) = W(d, ¢),
(v) for every b, z there exists a such that W (a, b) = z,
(vi) if W(b, a) = W(e, a), then b = c,
(vil) a@®b=cifand only if W(a, ¢) = W(c, b),
(viii) a@®b=c@®dif and only if W(a, d) = W(c, b),
(ix) W(a, b) =z if and only if (a,z).W =b.

(40)  (a,0w).W =a.
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Summary. A continuation of [5]. The paper contains the defi-
nition and basic properties of a o-additive, nonnegative measure, with

values in R, the enlarged set of real numbers, where R denotes set R =
R U {—o00, 400} - by R.Sikorski [12]. Some simple theorems concerning
basic properties of a o-additive measure, measurable sets, measure zero
sets are proved. The work is the fourth part of the series of articles
concerning the Lebesgue measure theory.

MML Identifier: MEASURE2.

The terminology and notation used here have been introduced in the following
papers: [14], [13], [8], [9], [6], [7], [1], [11], [2], [10], [3], [4], and [5]. The following
proposition is true
(1)  For every set X and for every o-field S of subsets of X and for every
o-measure M on S and for every function F' from N into S holds M - F
is non-negative.
The scheme RecExFun concerns a set A, a o-field B of subsets of A, an
element C of B, and a ternary predicate P, and states that:
there exists a function f from N into B such that f(0) = C and for every
element n of N holds P[n, f(n), f(n+ 1)]
provided the following conditions are satisfied:
e for every natural number n and for every element x of B there exists
an element y of B such that P[n,z,y],
e for every natural number n and for all elements x, y1, y2 of B such
that P[n,x,y1] and Pln, z,ys] holds y1 = ya.
Let X be a set, and let S be a o-field of subsets of X. A denumerable family
of subsets of X is called a family of measureable sets of S if:

(Def.1) it C S.

One can prove the following propositions:
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(2)  For every set X and for every o-field S of subsets of X and for every
denumerable family T of subsets of X holds 7' is a family of measureable
sets of S if and only if T'C §.

(3)  For every set X and for every o-field S of subsets of X and for every
family T of measureable sets of S holds 7T € S and JT € S.

Let X be a set, and let S be a o-field of subsets of X, and let T" be a family
of measureable sets of S. Then (7 is an element of S.

Let X be a set, and let S be a o-field of subsets of X, and let T" be a family
of measureable sets of S. Then (JT is an element of S.

Let X be a set, and let S be a o-field of subsets of X, and let F' be a function
from N into S, and let n be an element of N. Then F'(n) is an element of S.

One can prove the following propositions:

(4)  For every set X and for every o-field S of subsets of X and for every
function N from N into S there exists a function F' from N into S such
that F'(0) = N(0) and for every element n of N holds F(n+ 1) = N(n +
DA\ N(n).

(5)  For every set X and for every o-field S of subsets of X and for every
function N from N into S there exists a function F' from N into S such
that F(0) = N(0) and for every element n of N holds F(n+ 1) = N(n +
1)U F(n).

(6) Let X be aset. Let S be a o-field of subsets of X. Let N be a function
from N into S. Let F be a function from N into S. Suppose F(0) = N(0)
and for every element n of N holds Fi(n+ 1) = N(n+ 1) U F(n). Then
for an arbitrary r and for every natural number n holds r € F'(n) if and
only if there exists a natural number k such that £k <n and r € N (k).

(7)  Let X be a set. Let S be a o-field of subsets of X. Let N be a function
from N into S. Then for every function F from N into S such that
F(0) = N(0) and for every element n of N holds F'(n+1) = N(n+1)UF(n)
for all natural numbers n, m such that n < m holds F(n) C F(m).

(8) Let X be aset. Let S be a o-field of subsets of X. Let N be a function

from N into S. Let G be a function from N into S. Let F' be a function

from N into S. Suppose that

(i)  G(0) = N(0),

(ii)  for every element n of N holds G(n+ 1) = N(n+ 1) UG(n),

(i) F(0) = N(0),

(iv)  for every element n of N holds Fi(n+ 1) = N(n+ 1) \ G(n).
Then for all natural numbers n, m such that n < m holds F(n) C G(m).

(9) For every set X and for every o-field S of subsets of X and for every

function N from N into S and for every function G from N into S there
exists a function F' from N into S such that F(0) = N(0) and for every
element n of N holds F'(n+1) = N(n+1) \ G(n).

(10)  For every set X and for every o-field S of subsets of X and for every
function N from N into S there exists a function F' from N into S such
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that F'(0) = 0 and for every element n of N holds F'(n+1) = N(0)\ N(n).

(11) Let X be a set. Let S be a o-field of subsets of X. Let N be a function
from N into S. Let G be a function from N into S. Let F' be a function
from N into S. Suppose that

(i)  G(0) = N(0),

(ii)  for every element n of N holds G(n+ 1) = N(n+ 1) UG(n),

(i) F(0) = N(0),

(iv) for every element n of N holds F(n+ 1) = N(n+ 1)\ G(n).

Then for all natural numbers n, m such that n < m holds F\(n) N F(m) =
0.

(12)  For every set X and for every o-field S of subsets of X and for every
function N from N into S and for every element n of N holds N(n) €
rng N.

(13)  For every set X and for every o-field S of subsets of X and for every
o-measure M on S and for every family T of measureable sets of S and
for every function F' from N into S such that T'=rng F holds M(UJT) <
(M- F).

(14)  For every set X and for every o-field S of subsets of X and for every
family T' of measureable sets of S there exists a function F' from N into
S such that T'=rng F.

(15) Let X be a set. Let S be a o-field of subsets of X. Let N be a
function from N into S. Let F' be a function from N into S. Then if
F(0) = 0 and for every element n of N holds F(n+1) = N(0)\ N(n) and
N(n+1) € N(n), then for every element n of N holds F(n) C F(n+1).

(16)  For every set X and for every o-field S of subsets of X and for every
o-measure M on S and for every family 7" of measureable sets of S such
that for every set A such that A € T holds A is a set of measure zero
w.r.t. M holds T is a set of measure zero w.r.t. M.

(17)  For every set X and for every o-field S of subsets of X and for every
o-measure M on S and for every family T of measureable sets of S such
that there exists a set A such that A € T' and A is a set of measure zero
w.r.t. M holds N7 is a set of measure zero w.r.t. M.

(18)  For every set X and for every o-field S of subsets of X and for every
o-measure M on S and for every family T" of measureable sets of S such
that for every set A such that A € T holds A is a set of measure zero
w.r.t. M holds N7 is a set of measure zero w.r.t. M.

Let X be aset, and let S be a o-field of subsets of X. A family of measureable
sets of S is called a family of measureable non-decrement sets of S if:
(Def.2)  there exists a function F' from N into S such that it = rng F' and for
every element n of N holds F'(n) C F(n + 1).

We now state the proposition

(19)  For every set X and for every o-field S of subsets of X and for every
family T of measureable sets of S holds T is a family of measureable non-
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decrement sets of S if and only if there exists a function F' from N into S
such that 7' = rng F' and for every element n of N holds F'(n) C F(n+1).

Let X be aset, and let S be a o-field of subsets of X. A family of measureable
sets of S is called a family of measureable non-increment sets of S if:

(Def.3)  there exists a function F' from N into S such that it = rng F' and for
every element n of N holds F(n+ 1) C F(n).

We now state several propositions:

(20)  For every set X and for every o-field S of subsets of X and for every
family T of measureable sets of S holds 7' is a family of measureable non-
increment sets of S if and only if there exists a function F' from N into S
such that 7' = rng F' and for every element n of N holds F'(n+1) C F(n).

(21) Let X be a set. Let S be a o-field of subsets of X. Then for every
function N from N into S and for every function F' from N into S such that
F(0) = 0 and for every element n of N holds F(n+1) = N(0)\ N(n) and
N(n+1) C N(n) holds rng F' is a family of measureable non-decrement
sets of S.

(22)  For every set X and for every non-empty family S of subsets of X and
for every function N from N into S such that for every element n of N
holds N(n) € N(n + 1) for all natural numbers m, n such that n < m
holds N(n) C N(m).

(23)  Let X be aset. Let S be a o-field of subsets of X. Let N be a function
from N into S. Let F be a function from N into S. Suppose F(0) = N(0)
and for every element n of N holds F(n + 1) = N(n+ 1) \ N(n) and
N(n) € N(n+1). Then for all natural numbers n, m such that n < m
holds F(n) N F(m) = 0.

(24) Let X be aset. Let S be a o-field of subsets of X. Let N be a function
from N into S. Then for every function F from N into S such that
F(0) = N(0) and for every element n of N holds F(n+1) = N(n+1)\N(n)
and N(n) C N(n+ 1) holds Urng F = (Jrng N.

(25) Let X be aset. Let S be a o-field of subsets of X. Let N be a function
from N into S. Then for every function F from N into S such that
F(0) = N(0) and for every element n of N holds F'(n+1) = N(n+1)\N(n)
and N(n) C N(n+ 1) holds F' is a sequence of separated subsets of S.

(26) Let X be aset. Let S be a o-field of subsets of X. Let N be a function
from N into S. Let F' be a function from N into S. Suppose F(0) = N(0)
and for every element n of N holds F(n + 1) = N(n+ 1) \ N(n) and
N(n) € N(n+1). Then N(0) = F(0) and for every element n of N holds
N(n+1)=F(n+1)UN(n).

(27)  For every set X and for every o-field S of subsets of X and for every o-
measure M on S and for every function F' from N into S such that for every
element n of N holds F'(n) C F(n+1) holds M (Urng F') = suprng(M - F).
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Stanistawa Kanas Adam Lecko
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Summary. A continuation of [9]. It deals with the method of
creation of the distance in the Cartesian product of metric spaces. The
distance between two points belonging to Cartesian product of metric
spaces has been defined as square root of the sum of squares of distances
of appriopriate coordinates (or projections) of these points. It is shown
that the product of metric spaces with such a distance is a metric space.
Examples of metric spaces defined in this way are given.

MML Identifier: METRIC_4.

The articles [7], [15], [4], [5], [2], [6], [1], [10], [11], [3], [8], [13], [12], [14], and
[9] provide the terminology and notation for this paper. We adopt the following
convention: X, Y are metric spaces, x1, y1, 21 are elements of the carrier of
X, and xo, Y9, 2o are elements of the carrier of Y. Let us consider X, Y. The
functor ptY1 yields a function from [ the carrier of X, the carrier of Y, |

the carrier of X, the carrier of Y ] into R and is defined by:
(Def.1)  for all elements x1, y; of the carrier of X and for all elements zq, yo
of the carrier of Y and for all elements z, y of | the carrier of X, the

carrier of Y ] such that © = (1, x2) and y = (y1, y2) holds p[:X,Y:](x,

y) =/ (p(a1,50)2 + (p(w2,92))2.

Next we state the proposition

(1) Let X be a metric space. Let Y be a metric space. Let F' be a function
from [ [ the carrier of X, the carrier of Y ], [ the carrier of X, the carrier
of Y]] into R. Then F = pi*Y1 if and only if for all elements z1, 31 of
the carrier of X and for all elements zs, y2 of the carrier of Y and for all
elements x, y of [ the carrier of X, the carrier of Y | such that z = (x1,

w2) and y = (y1, y2) holds F(x, y) = \/(p(x1,31))% + (p(w2, 2))2.
Next we state several propositions:

(2)  For all elements a, b of R such that 0 < a and 0 < b holds Va+b=0
if and only if a =0 and b= 0.

© 1991 Fondation Philippe le Hodey
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(3) For all elements z, y of | the carrier of X, the carrier of Y ] such that
x = (x1, 2) and y = (y1, y2) holds pt*¥Yi(z, y) = 0 if and only if z = .

(4)  For all elements z, y of [ the carrier of X, the carrier of Y | such that
x = (1, z2) and y = (y1, y2) holds pFY(z, y) = pHYi(y, z).

(5)  For all elements a, b, ¢, d of R such that 0 < a and 0 < b and 0 < ¢ and
0 < d holds y/(a +¢)2 + (b +d)2 < VaZ + 02 + V& + d2.

(6) For all elements z, y, z of [ the carrier of X, the carrier of Y ] such
that & = (21, 22) and y = (y1, 92) and z = (21, 23) holds pF*Yi(z,
2) < pYi(z, y) + pPY(y, 2).

Let us consider X, Y, and let =, y be elements of | the carrier of X, the

carrier of Y . The functor p2(ac, y) yielding a real number is defined as follows:

(Def2)  p(z,y) = pt* (2, y).

Next we state the proposition
(7)  For all elements x, y of [ the carrier of X, the carrier of Y ] holds
p2(x,y) = PV (2, y).
Let X, Y be metric spaces. The functor [X,Y] yielding a metric space is
defined as follows:
(Def.3)  [X,Y] = ([ the carrier of X, the carrier of Y ], ptX:¥1),

We now state the proposition

(8)  For every metric space X and for every metric space Y holds ([ the
carrier of X, the carrier of Y {, p[:X’Y:]> is a metric space.

In the sequel Z will be a metric space and x3, y3, z3 will be elements of the
carrier of Z. Let us consider X, Y, Z. The functor pt¥¥"41 yielding a function
from [ [ the carrier of X, the carrier of Y, the carrier of Z], | the carrier of X,
the carrier of Y, the carrier of Z ] into R is defined by the condition (Def.4).

(Def.4)  Let 1, y1 be elements of the carrier of X. Let za, y2 be elements
of the carrier of Y. Let z3, y3 be elements of the carrier of Z. Then
for all elements x, y of | the carrier of X, the carrier of Y, the carrier
of Z] such that = = (z1, zo, #3) and y = (y1, y2, y3) holds pi*¥Y+Z(z,

y) =/ (p(a1,90)2 + (p(w2,92))2 + (p(3, y3))2.

One can prove the following propositions:

(9) Let X be a metric space. Let Y be a metric space. Let Z be a metric
space. Let F' be a function from [ [ the carrier of X, the carrier of Y, the
carrier of Z ], [ the carrier of X, the carrier of Y, the carrier of Z ] into
R. Then F = pHX:Y221 if and only if for all elements x1, y; of the carrier of
X and for all elements x9, yo of the carrier of Y and for all elements x3,
y3 of the carrier of Z and for all elements x, y of [ the carrier of X, the
carrier of Y, the carrier of Z ] such that z = (1, x2, z3) and y = (y1, y2,

y3) holds F(z, y) = \/(P(iﬁ’yl))2 + (p(x2,92))% + (p(x3,93))2.
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(10)  For all elements x, y of [ the carrier of X, the carrier of Y, the carrier
of Z] such that = = (z1, z9, #3) and y = (y1, ¥2, y3) holds pi*¥Y+Z(z,
y) =0 if and only if x = y.

(11)  For all elements x, y of | the carrier of X, the carrier of Y, the carrier
of Z] such that & = (x1, 2o, #3) and y = (y1, yo, y3) holds pt¥Y"Zi(z,
y) = pN Ay, o).

(12)  For all elements a, b, ¢ of R holds (a +b+c¢)2 =a?2 +b2+c2+(2-a-
b+2-a-c+2-b-c).

(13) Leta, b, ¢, d, e, f be elements of R. Suppose 0 <aand 0 <band 0 < ¢
and 0 <dand 0 <eand 0 < f. Then2-(a-d)-(c-b)+2-(a-f)-(e-c)+
2:(0-f) (e-d) < (a-d)?+(c-0)*+(a- )2+ (e )2+ (b- )%+ (e-d)*.

(14) Leta, b, ¢, d, e, f be elements of R. Then a?-d?+ (a2 f2+c2-b%) +e2.
2402 f24e2 d2+e2- f240% - d%+a? % = (a2 +b%+e2) (2 +d2+ f2).

(15) Let a, b, ¢, d, e, f be elements of R. Suppose 0 < a and 0 < b and
0<cand 0 < dand 0 < eand 0 < f. Then (a-c+b-d+e~f)2 <
(a2 + b2 +e2)- (2 +d? + f2).

(16) Let z, y, z be elements of | the carrier of X, the carrier of Y, the carrier
of Z]. Then if x = (x1, x9, x3) and y = (y1, Y2, y3) and z = (21, 22, 23),
then ptX Y2 (z, 2) < phXY 2 (g, y) 4 pHEYZi(y, 7).

Let us consider X, Y, Z, and let z, y be elements of [ the carrier of X, the
carrier of Y, the carrier of Z]. The functor p3(z,y) yielding a real number is
defined as follows:

(Det5)  pB(a,y) = PPV Z(a, y).
One can prove the following proposition
(17)  For all elements x, y of | the carrier of X, the carrier of Y, the carrier
of 7] holds p3(z, ) = PV (z, y).
Let X, Y, Z be metric spaces. The functor [ X, Y] yields a metric space and
is defined by:

(Det.6) [X,Y] = (} the carrier of X, the carrier of Y, the carrier of Z],
Y2y,

The following proposition is true

(18)  For every metric space X and for every metric space Y and for every
metric space Z holds (| the carrier of X, the carrier of Y, the carrier of
Z1, p[:X’Y’Z:]> is a metric space.
In the sequel x1, x2, Y1, Y2, 21, 22 denote elements of R. The function p[:'R"R:}
from [[R, R], [R, R]] into R is defined by:
(Def.7)  for all elements z1, yi, x2, y2 of R and for all elements z, y of [R,
R ] such that = = (1, 20) and y = (y1, y2) holds pi*R(z, y) = pgr (1,

Y1) + pr (T2, Y2)-

The following propositions are true:
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(19)  For all elements z1, z2, y1, y2 of R and for all elements z, y of [ R, R
such that z = (x1, z3) and y = (y1, y2) holds pi®®(z, ) = 0 if and only
ifx=y.

(20)  For all elements x, y of [ R, R] such that = (x1, z2) and y = (y1, y2)
holds pf* ™ (z, y) = pi*(y, z).

(21)  For all elements x, y, z of [ R, R such that z = (1, z2) and y = (y1,
yo) and z = (21, 2) holds ptR:R(z, 2) < piRRI(z 3) 4 plRRI(y 2).

The metric space [Ryi, Ry is defined by:
(Def.8)  [Ry, Rud = (FR, R, pf*R),

The function p®” from [ R, R], [R, R]] into R is defined as follows:

(Def.9)  for all elements x1, y1, 2, y2 of R and for all elements z, y of [R, R]
such that z = (x1, z2) and y = (y1, y2) holds

2
PP (@, y) = \Jpr (21, 11)2 + p (22, y2)2.

We now state three propositions:

(22)  For all elements z1, z2, y1, y2 of R and for all elements z, y of [ R, R
such that x = (x1, x2) and y = (y1, y2) holds pR2(x, y) = 0 if and only if
T =y.
(23)  For all elements z, y of [ R, R] such that = (x1, z2) and y = (y1, y2)
holds p**(z, y) = p*(y, ).
(24)  For all elements z, y, z of [ R, R] such that x = (1, x2) and y = (y1,
y2) and z = (21, z2) holds p®°(z, 2) < p*°(z, y) + p*’ (v, 2).
The Euclidean plain being a metric space is defined as follows:
(Def.10)  the Euclidean plain= ([ R, R, p?).
In the sequel z3, y3, 23 denote elements of R. The function pf®-®®R from [ [ R,
R, R, [R, R, R]]into R is defined by the condition (Def.11).
(Def.11)  Let x1, y1, T2, Y2, T3, y3 be elements of R. Then for all elements z, y of
ER, R, R]such that z = (x1, 22, z3) and y = (y1, y2, y3) holds ptR-RRI (g,
Y) = pa (21, Y1) + pr (T2, Y2) + pr (23, Y3)-
We now state three propositions:
(25)  For all elements x1, 2, Y1, Y2, x3, y3 of R and for all elements z, y of
ER, R, R such that 2 = (z1, x2, 23) and y = (y1, o, y3) holds ptR® BRI (1,
y) =0 if and only if x = y.
(26)  For all elements x, y of [ R, R, R] such that © = (x1, 2, 23) and y =
(y1, o, y3) holds ptRM (2, y) = pP BRI (y, ),
(27)  For all elements z, y, z of [R, R, R] such that z = (z1, z2, x3) and
y = (y1, y2, y3) and z = (21, 22, z3) holds pf*RRI(z, 2) < plRRM (g
y) + p Ry, 2).
The metric space [Ryr, Ry, Ry is defined as follows:
(Def12) [:RM7RM7RM:] = <[ R, R, R:]ap[:[R’[R’R”'
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The function p®° from [[R, R, R], [ R, R, R]] into R is defined by the con-

dition (Def.13).
(Def.13)  Let x1, y1, T2, Y2, T3, y3 be elements of R. Then for all elements z, y
of [ R, R, R such that x = (1, z2, x3) and y = (y1, Y2, y3) holds pRB(x,

y) = \/oe (@1, 1)2 + pa (22, y2)2 + pe (a3, 43)2.

One can prove the following three propositions:
(28)  For all elements x1, z2, y1, Y2, 3, y3 of R and for all elements x, y of
ER, R, R] such that 2 = (x1, o2, 23) and y = (y1, y2, y3) holds p*°(z,
y) =0 if and only if x = y.
(29) For all elements z, y of [ R, R, R{ such that x = (z1, x9, x3) and y =

(yb Y2, y3> holds IORB(x7 y) = pRB(yv $)
(30) For all elements z, y, z of [R, R, R] such that z = (x1, x2, 3) and
3 3 3
y = {(y1, y2, y3) and z = (21, 22, z3) holds p*"(z, 2) < p* (2, y) + ™ (v,
z).
The Euclidean space being a metric space is defined as follows:
(Def.14)  the Euclidean space= ([ R, R, R, pR°).
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Summary. The Banach theorem in a compact metric spaces is
proved.

MML Identifier: ALI2.

The terminology and notation used in this paper have been introduced in the
following papers: [9], [15], (3], [4], [8], [11], [13], [9], [11], [5], [7], [18], [6], [17],
[1], [2], [6], [4], and [5]. In the sequel M will be a metric space. Next we state
the proposition
(1) For every set F such that F is finite and F # () and for all sets B, C
such that B € F and C € F holds B C C or C C B there exists a set m
such that m € F' and for every set C' such that C' € F holds m C C.

Let M be a metric space. A function from the carrier of M into the carrier
of M is said to be a contraction of M if:

(Def.1)  there exists a real number L such that 0 < L and L < 1 and for all
points z, y of M holds p(it(z),it(y)) < L - p(z,y).

Next we state the proposition

(2)  For every contraction f of M such that M, is compact there exists a
point ¢ of M such that f(c) = ¢ and for every point = of M such that
f(x) =z holds z = c.
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Summary. Consider a quadratic trinomial of the form P(z) =
ax? 4 bx + ¢, where a # 0. The determinat of the equation P(z) = 0 is
of the form A(a,b,c) = b*> — 4ac. We prove several quadratic inequalities
when A(a,b,¢) <0, A(a,b,¢) =0 and A(a,b,c) > 0.

MML Identifier: QUIN_1.

The articles [3], [1], [2], and [4] provide the terminology and notation for this
paper. In the sequel x is a real number and a, b, ¢ are real numbers. Let
us consider a, b, c. The functor A(a,b,c) yielding a real number is defined as
follows:

(Def.1)  A(a,b,c) =b% —4-a-c.

The following propositions are true:

(1) Ifa##0, thena~:v2+b-m+c:a-(x+%)2—A(Z’S’C).

(2) Ifa>0and A(a,b,¢) <0, then a-22 +b-24¢>0.

(3) Ifa>0and A(a,b,¢) <0, then a-z%4+b-2+c¢> 0.

(4) Ifa<0and A(a,b,¢) <0, then a-224+b-2+¢<0.

(5) Ifa<0and Aa,b,¢) <0, then a-224+b-2+c<0.

(6) Ifa>0anda-z2+b-z+c¢>0,then (2-a-z+b)2%— A(a,b,c) >0.
(7) Ia>0anda-z2+b-z+c>0,then (2-a-z+b)2%— A(a,b,c) > 0.
(8) Ifa<Oanda-z2+b-z+c¢<0,then (2-a-z+b)2—A(a,b,c) > 0.
(9) Ifa<Oanda-z2+b-z+c<0,then (2-a-z+b)%— A(a,b,c) > 0.
(10)  If for every « holds a - 22 4+ b-x +¢ > 0 and a > 0, then A(a,b,c) < 0.
(11)  If for every x holds a- 2% 4+b-x +¢ < 0 and a < 0, then A(a,b,c) < 0.
(12)  If for every « holds a - 22 4+ b-x +¢ > 0 and a > 0, then A(a,b,c) < 0.
(13)  If for every « holds a - 22 4+ b-x +¢ < 0 and a < 0, then A(a,b,c) < 0.
(14) Ifa#0anda-224+b-x+c¢=0,then (2-a-x+0b)%— Ala,b,c) =0.
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(15)  Suppose a # 0 and A(a,b,¢c) > 0 and a- 22 +b-x +c¢ = 0. Then
_ —b—y/A(a,b,c) or I — —b++/A(a,b,c)
T 2a - 2a

T = 2-a
(16)  Suppose a # 0 and A(a,b,¢) > 0. Thena-22+b-z4+c=a-(z —
—b— A(a,b,c)) ) (33' e A(a,b,c))
2-a 2-a :

(17) Ifa <0 and A(a,b,c) > 0, then b+m \QT)

(18) Suppose a < 0 and A(a,b,c) > 0. Thena-m +0b-2+c>0if and only
—b-h/A(abc <rand x < —b— A(abc)

(19) Supposea<0and A(a,b,c) >0 Then a-22 +b- x4 ¢ < 0 if and only

) —bt/A(ab, Alab,
1fx<#orx>#

(20)  Suppose a < 0 and A(a,b,¢) > 0. Then a-x2+b-x+ ¢ > 0 if and only
i —b—H/zi(a,b,c) <zandz < —b— 2%1((1,12,0)'

(21)  Suppose a < 0 and A(a,b,¢) > 0. Then a-z2+b-z+ ¢ < 0 if and only
ifxg_b—i_i Worﬂcz_b_z%i(a’b’c).

(22) Ifa#0and A(a,b,c)=0anda-z2+b-x+c=0, thenac:—%.

(23) Ifa>0and (2-a-z+0b)%—A(a,b,c) >0, thena-z2+b-z+4c>0.

(24) If a > 0 and A(a,b,¢) = 0, then a- 22 +b- 2z + ¢ > 0 if and only if
T F# —5=

(25) Ifa<Oand (2-a-z+0b)%—A(a,b,c)>0,thena-z2+b-z+4c<0.

(26) If a < 0 and A(a,b,c) = 0, then a-22 4+ b-z + ¢ < 0 if and only if
rhld

(27) Ifa>0and A(a,b,c) > 0, then b+V (a.bc) V2aab’c).

(28)  Suppose a > 0 and A(a,b,c) > 0. Then a-224b-z+c<0if and only
if v Aalabe) 2i(a,b,c) <z and ¢ < ZEV AL Vﬁb(a’b’c).
(29)  Suppose a > 0 and A(a,b,c) > 0. Then a-x%+b-x+ ¢ > 0 if and only
if ¢ < —b—+/A(a,b,c) or &> —b++/A(a,b,c)
2-a 2-a :

(30) Suppose a > 0 and A(a, b, c) > 0. Then a-22 +b-2 + ¢ <0 if and only
—b \/A(abc <1‘and:n< s/A(abc)

(31) Suppose a >0 and A(a,b,c) > 0. Then a-z2+b-x +c¢ > 0 if and only

. —b—/A(ab, —btr/A(ab,
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Introduction to Banach and Hilbert Spaces
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Jan Popiotek
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Summary. Basing on the notion of real linear space (see [15]) we
introduce real unitary space. At first, we define the scalar product of two
vectors and examine some of its properties. On the basis of this notion
we introduce the norm and the distance in real unitary space and study
the properties of these concepts. Next, proceeding from the definition of
the sequence in real unitary space and basic operations on sequences we
prove several theorems which will be used in our further considerations.

MML Identifier: BHSP_1.

The terminology and notation used here are introduced in the following articles:
5], [12], (16], [3], [4], [1], [6], [2], [17], [10], [11], [9], [15], [14], [13], [3], and [7].
We consider unitary space structures which are systems
(vectors, a scalar product),
where the vectors constitute a real linear space and the scalar product is a
function from | the vectors of the vectors, the vectors of the vectors ] into R.
In the sequel X will denote a unitary space structure and a, b will denote
real numbers. Let us consider X. A point of X is an element of the vectors of
the vectors of X.
In the sequel x, y will denote points of X. Let us consider X, x, y. The
functor (z]y) yielding a real number is defined as follows:
(Def.1)  (x]y) = (the scalar product of X)({z, y)).

A unitary space structure is said to be a real unitary space if it satisfies the
condition (Def.2).
(Def.2)  Let z, y, z be points of it. Given a. Then
(i)  (x]z) =0 if and only if = Othe vectors of it
(ii)  0< (z[z),
(iil)  (zly) = (yla),
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(iv) (= +y)lz) = (z[2) + (y]2),

(v)  ((a-2)ly) =a-(z]y).

We follow the rules: X denotes a real unitary space and x, y, z, u, v denote
points of X. We now state a number of propositions:

(1) (SL’|IL‘) =0 if and Only if v = Othe vectors of X -
(2)  0< (zf2).
(3) ( ly) = (ylz).
@) ((z+y)lz) = (z2) + (yl2).
®)  ((a-2)ly) =a- (z[y).
(6) (O he vectors of X‘Otho vectors of X) =0.
(M) (@l(y+2) = (2ly) + (2).
®)  (zl(a-y) =a-(z[y).
) ((a-z)ly) = (zl(a-y))
(10)  ((a-z+b-y)lz) =a-(x]z) +b-(yl2)
(1) (zf(a-y+0b-2)) =a-(zly) +b- (z[2)
(12)  ((=2)ly) = (z[-y)
(13)  ((=2)ly) = —(=z[y)
(14)  (z[—y) = —(zly)
(15)  ((=2)l-y) = (z[y)
(16)  ((z —y)lz) = (zl2) = (yl2).
7))  (zly —2)) = (2ly) — (z]2).
(18)  ((z =y)l(u —v)) = ((zlu) = (z|v) = (y|uw)) + (y|v).
(19) (Othe vectors of X|x) =0.
(20) ($|0th0 vectors of X) =0.
21 (@ +ylz+y) = (zlz) +2- (2ly) + (Yly).
(22) (@ + Yl —y) = (zlz) — (yly).
(23) ((fv— Y@ —y)) = ((zlx) = 2- (z[y)) + (yly)-
(24)  |(=ly)] < V(=zlx) -/ (yly)-

Let us consider X, x, y. We say that z, y are ortogonal if and only if:
(Def.3)  (z]y) = 0.
The following propositions are true:
25
2

If x, y are ortogonal, then y, x are ortogonal.

D

If x, y are ortogonal, then x, —y are ortogonal.

[\)
J

If z, y are ortogonal, then —x, y are ortogonal.
If z, y are ortogonal, then —x, —y are ortogonal.

[\
Ne)

T, Othe vectors of X are ortogonal.
If z, y are ortogonal, then ((z + y)|(z +y)) = (z|z) + (y|y).
If x, y are ortogonal, then ((z —y)|(z — y)) = (z|x) + (y|y).

AN AN N /N /S /S
w [\
(=) o

— — — ' — ~—

w
—

Let us consider X, x. The functor ||z|| yielding a real number is defined by:



INTRODUCTION TO BANACH AND HILBERT ... 513

(Detd) ]| = v/(ala).

The following propositions are true:

(32)  |l=[l = 0 if and only if = Otne vectors of x-
33)  lla-z| = lal - ]|

(34)  0< |z

35) Il < [l - llyll-

36) =z +yll < [lzll + llyll-

B7) =zl =[]

(38) Ml = llyll < llz =yl

39) Mzl = llylll < llz =yl

Let us consider X, z, y. The functor p(x,y) yielding a real number is defined
by:
(Def5)  p(x,y) = [z —yl|.

One can prove the following propositions:

40)  p(z,y) = p(y, ).
p(x,x) =0.
p(z,z) < p(z,y) + p(y, 2)
x # y if and only if p(x,y) # 0.
p(z,y) > 0.
x # y if and only if p(x,y) > 0.
p(z,y) = (@ —y)lz —y)).
p(x +y,u+v) < p(x,u) + p(y, v).
p(l‘_yvu_v <p($au) ( Y, )
(
(

)
p(x — 2,y — 2) = p(z,y).
50)  p(x — 2,y —2) < p(z,3) + p(2,).
Let us consider X. A subset of X is a subset of the vectors of the vectors of
X.

Let us consider X. A function is called a sequence of X if:
(Def.6) domit =N and rngit C the vectors of the vectors of X.

e
-~ W N

o
(@)

AA,\AAA/_\/_\AA/_\
=~ IS
~ ot

NN N N N NN NN N

N
oo

For simplicity we adopt the following rules: si, sa, s3, s4, s denote sequences
of X, k, n, m denote natural numbers, f denotes a function, and d is arbitrary.
We now state four propositions:

(51)  f is a sequence of X if and only if dom f =N and rng f C the vectors
of the vectors of X.

(52)  fis a sequence of X if and only if dom f = N and for every d such that
d € N holds f(d) is a point of X.

(53)  For all s1, s} such that for every n holds s1(n) = s (n) holds s; = s].
(54)  For every n holds s1(n) is a point of X.
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Let us consider X, s1, n. Then s1(n) is a point of X.

The scheme FEz_Seq_in_RUS concerns a real unitary space A and a unary
functor F yielding a point of A and states that:

there exists a sequence s; of A such that for every n holds s1(n) = F(n)
for all values of the parameters.

Let us consider X, so, s3. The functor s, + s3 yielding a sequence of X is
defined by:

(Def.7)  for every n holds (s + s3)(n) = s2(n) + s3(n).
Let us consider X, so, s3. The functor sy — s3 yielding a sequence of X is
defined as follows:
(Def.8)  for every n holds (s2 — s3)(n) = sa(n) — s3(n).
Let us consider X, s1, a. The functor a - s1 yields a sequence of X and is
defined as follows:
(Det.9)  for every n holds (a - s1)(n) =a-si(n).
Let us consider X, s1. The functor —s; yields a sequence of X and is defined
by:
(Def.10)  for every n holds (—s1)(n) = —s1(n).
Let us consider X, s;. We say that s; is constant if and only if:

(Def.11)  there exists z such that for every n holds s;(n) = x.

Let us consider X, sy, . The functor s; + x yielding a sequence of X is
defined as follows:
(Def.12)  for every n holds (s1 + z)(n) = s1(n) + «.
Let us consider X, s1, . The functor s; — x yields a sequence of X and is
defined by:
(Def.13)  for every n holds (s1 — z)(n) = s1(n) — .
We now state a number of propositions:
So + s3 = S3 + S9.
So + (s34 S4) = S2 + 3+ S4.
If s9 is constant and s3 is constant and s; = sy + s3, then s7 is constant.

v v Ot
0 3 & Ot

If s9 is constant and s3 is constant and s; = sy — s3, then s7 is constant.
If s is constant and s1 = a - s9, then s1 is constant.

e I N I e N N
D W
oS ©

N’ e e e e N N N

For every z there exists s1 such that rng sy = {z}.

D
—

There exists s; such that rng s1 = {Othe vectors of X }-

(=]
[\S)

If there exists = such that for every n holds s1(n) = x, then there exists
x such that rngs; = {z}.
(63)  If there exists x such that rngs; = {z}, then for every n holds s;(n) =
31(n + 1).
(64) If for every n holds s1(n) = s1(n + 1), then for all n, k holds s1(n) =
si(n+ k).
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If for all n, k holds s1(n) = s1(n + k), then for all n, m holds s;(n) =
s1(m).

If for all n, m holds s1(n) = s1(m), then there exists x such that for
every n holds s;(n) = x.

s1 is constant if and only if there exists x such that rngs; = {z}.

s1 is constant if and only if for every n holds s1(n) = s1(n + 1).

s1 is constant if and only if for all n, k holds s1(n) = si1(n + k).

s1 is constant if and only if for all n, m holds s1(n) = s1(m).

89 — 83 = S92 + —S3.

81 = 81 + Othe vectors of X-

a-(sy+s3)=a-s2+a-ss.

(a+b)-s1=a-s1+b-s.

a-b-sy=a-(b-s1).

1- S§1 = S1.

(—1) +81 = —S81.

S1— T =81+ —=x.

S — 53 = —(s3 — s2).

81 = 81 — Othe vectors of X-

§1 = ——S81.

sz — (83 + s4) = s2 — 3 — 54

(s2 + 83) — 84 = 89+ (83 — 84).

So — (83 — 84) = (82 — 83) + s4.

a-(s2—83)=a-sy—a-ss.
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Introduction to Banach and Hilbert Spaces
- Part 11

Jan Popiotek
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Biatystok

Summary. A continuation of [8]. It contains the definitions of
the convergent sequence and the limit of the sequence. The convergence
with respect to the norm and the distance is also introduced. Last part
is devoted to the following concepts: ball, closed ball and sphere.

MML Identifier: BHSP_2.

The articles [5], [14], [19], [3], [4], [1], [7], [6], [2], [20], [12], [18], [13], [11], [17],
[16], [15], [10], [9], and [8] provide the notation and terminology for this paper.
For simplicity we follow a convention: X is a real unitary space, x, y, z are
points of X, g, g1, g2 are points of X, a, g, r are real numbers, si, sg, $3, s}
are sequences of X, and k, n, m are natural numbers. Let us consider X, si.
We say that s; is convergent if and only if:

(Def.1)  there exists g such that for every r such that r > 0 there exists m such
that for every n such that n > m holds p(s1(n),g) < r.
The following propositions are true:
(1) If sy is constant, then sp is convergent.

(2) If s; is convergent and there exists k such that for every n such that
k < n holds s} (n) = s1(n), then s is convergent.

w

R e e T
~— ~— — — ~— —

If s9 is convergent and sg is convergent, then sy + s3 is convergent.

N

If so is convergent and s3 is convergent, then so — s3 is convergent.

ot

If s1 is convergent, then a - s1 is convergent.
If s1 is convergent, then —s; is convergent.

N

If 51 is convergent, then s; + x is convergent.

0¢)

If 51 is convergent, then s; — x is convergent.
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(9)  s1 is convergent if and only if there exists g such that for every r such
that 7 > 0 there exists m such that for every n such that n > m holds
[s1(n) —gll <.

Let us consider X, s;. Let us assume that s; is convergent. The functor

lim s1 yields a point of X and is defined as follows:
(Def.2)  for every r such that » > 0 there exists m such that for every n such
that n > m holds p(s1(n),lims;) <.

Next we state a number of propositions:

(10)  If sy is constant and x € rng sy, then lims; = .

(11)  If s1 is constant and there exists n such that s;(n) = z, then lim s; = =.

(12)  If s is convergent and there exists k such that for every n such that
n > k holds s} (n) = s1(n), then lim s; = lim s.

(13)  If s is convergent and s3 is convergent, then lim(ss + s3) = lim sy +

lim s3.

(14)  If s is convergent and s3 is convergent, then lim(sy — s3) = lim sy —
lim s3.

(15)  If s1 is convergent, then lim(a-s1) = a - lim s;.

(16)  If s1 is convergent, then lim(—s;) = —lim s;.

(17)  If sy is convergent, then lim(s; + z) = lim s + «.

(18)  If sy is convergent, then lim(s; —z) = lims; — x.

(19) If sy is convergent, then lims; = g if and only if for every r such

that 7 > 0 there exists m such that for every n such that n > m holds
[s1(n) — gl <.

Let us consider X, s1. The functor ||s1]| yielding a sequence of real numbers
is defined by:

(Det.3)  for every n holds ||s1]|(n) = [|s1(n)]|.

Next we state three propositions:
(20)  If sy is convergent, then ||s1]| is convergent.
(21)  If sy is convergent and lim s; = g, then ||s1]| is convergent and lim||sy| =
lgll-
(22) If sq is convergent and lims; = g, then |s; — g| is convergent and
lim||s; — g|| = 0.
Let us consider X, sy, x. The functor p(s1,z) yielding a sequence of real
numbers is defined by:

(Def.4)  for every n holds (p(s1,z))(n) = p(s1(n),x).

We now state a number of propositions:
(23) If s1 is convergent and lim s = g, then p(s1,g) is convergent.
(24) If s1 is convergent and lims; = g, then p(s1,g) is convergent and
lim p(s1,9) = 0.
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(25)  If s9 is convergent and lim s = ¢ and s3 is convergent and lim s3 = g»,
then ||s2 + s3] is convergent and lim||sy + s3|| = [|g1 + g2]|-

(26) If so is convergent and lim s = ¢ and s3 is convergent and lim s3 = go,
then ||(s2+s3) — (g1 +9g2)|| is convergent and lim||(s2+s3)— (g1 +g2)|| = 0.

(27)  If so is convergent and lim sy = ¢ and s3 is convergent and lim s3 = go,
then ||s2 — s3] is convergent and lim||sy — s3|| = [|g1 — g2]|-

(28)  If so is convergent and lim sy = ¢ and s3 is convergent and lim s3 = g»,
then [[so — s3 — (91 — g2)|| is convergent and lim|se — s3 — (g1 — g2)|| = 0.

(29) If s; is convergent and lims; = g, then ||a - s1]| is convergent and
limla - s1/[ = [la - g|

(30) If sq is convergent and lim s; = g, then ||a-s; —a- g is convergent and
lim|la-s; —a-g| =0.

(31)  If sy is convergent and lim s; = g, then ||—s1]| is convergent and

lim||—=s1 [ = [|=g]-
(32) If sy is convergent and lim s; = g, then ||—s; — —g|| is convergent and
lim||—s; — —g|| = 0.

(33)  If s1 is convergent and lim s; = g, then ||(s1+2) — (g+x)|| is convergent
and lim||(s; +x) — (g + z)|| = 0.
(34) If s1 is convergent and lims; = g, then |s; — || is convergent and
lim|s) — =[] = [lg — x|
(35)  If s; is convergent and lim s; = g, then ||s; —2z — (¢ — )| is convergent
and lim||s; —z — (g — )| = 0.
(36) If so is convergent and lim sy = ¢ and s3 is convergent and lim s3 = g»,
then p(s2 + s3, 91 + g2) is convergent and lim p(s2 + s3,91 + g2) = 0.
(37)  1If so is convergent and lim s = ¢ and s3 is convergent and lim s3 = g»,
then p(se2 — s3,g1 — g2) is convergent and lim p(so — s3,91 — g2) = 0.
(38) If s1 is convergent and lim s; = g, then p(a - s1,a - g) is convergent and
limp(a - s1,a-g) = 0.
(39) If sq is convergent and lims; = g, then p(s; + x,g + =) is convergent
and lim p(s1 +z,9 4+ x) = 0.
Let us consider X, z, r. Let us assume that » > 0. The functor Ball(z,r)
yielding a subset of X is defined by:
(Def.5)  Ball(x,r) = {y : |z — y|| < r}, where y ranges over points of X.
Let us consider X, z, r. Let us assume that r > 0. The functor Ball(z,r)
yielding a subset of X is defined by:
(Def.6) Ball(x,r) = {y : ||z — y|| < r}, where y ranges over points of X.
Let us consider X, z, r. Let us assume that r» > 0. The functor Sphere(z, r)
yields a subset of X and is defined as follows:
(Def.7)  Sphere(z,r) = {y : [[x — y|| = r}, where y ranges over points of X.
The following propositions are true:
(40) If r > 0, then z € Ball(x,r) if and only if ||z — z|| < r.
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If r > 0, then z € Ball(z, ) if and only if p(x, z) < .

If » > 0, then x € Ball(x,r).

If » > 0, then if y € Ball(x,r) and z € Ball(z,r), then p(y,z) < 2-r.
If » > 0, then if y € Ball(z, ), then y — z € Ball(z — z,7).

If » > 0, then if y € Ball(x,r), then y — 2 € Ball(Othe vectors of X,7)-
If » > 0, then if y € Ball(x,r) and r < ¢, then y € Ball(z, q).

If r > 0, then z € Ball(z,r) if and only if ||z — z|| < r.

If r > 0, then z € Ball(z,r) if and only if p(z, 2) < 7.

If r > 0, then x € Ball(x,r).

If r > 0, then if y € Ball(z,7), then y € Ball(z, ).

If r > 0, then z € Sphere(z, ) if and only if ||z — z|| = 7.

If r > 0, then z € Sphere(z, ) if and only if p(z, z) = r.

If r > 0, then if y € Sphere(z,7), then y € Ball(z, 7).

If r > 0, then Ball(x,r) C Ball(z,r).

If r > 0, then Sphere(z,r) C Ball(x,r).

If » > 0, then Ball(z,r) U Sphere(x,r) = Ball(z, ).
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Introduction to Banach and Hilbert Spaces
- Part III

Jan Popiotek
Warsaw University
Biatystok

Summary. A continuation of [11] and of [12]. First we define the
following concepts: the Cauchy sequence, the bounded sequence and the
subsequence. The last part consists definitions of the complete space and
the Hilbert space.

MML Identifier: BHSP_3.

The articles [5], [18], [22], [3], [4], [1], [10], [8], [9], [7], [15], [2], [23], [16], [17],
[14], [21], [20], [19], [13], [11], [12], and [6] provide the notation and terminology
for this paper. For simplicity we follow the rules: X is a real unitary space, x is
a point of X, ¢ is a point of X, a, r are real numbers, M is a real number, sq,
S92, 83, 84 are sequences of X, N7 is an increasing sequence of naturals, and k,
n, m are natural numbers. Let us consider X, s;. We say that s; is a Cauchy
sequence if and only if:

(Def.1)  for every r such that r > 0 there exists k such that for all n, m such

that n > k and m > k holds p(s1(n), s1(m)) < r.

One can prove the following propositions:

(1)  If s1 is constant, then s; is a Cauchy sequence.

(2) s1 is a Cauchy sequence if and only if for every r such that r > 0
there exists k such that for all n, m such that n > k£ and m > k holds
[s1(n) = si(m)|| <.

(3)  If sy is a Cauchy sequence and s3 is a Cauchy sequence, then sg + s3 is
a Cauchy sequence.

(4)  If sy is a Cauchy sequence and s3 is a Cauchy sequence, then sy — s3 is
a Cauchy sequence.

(5) If sy is a Cauchy sequence, then a - s; is a Cauchy sequence.
(6) If s1 is a Cauchy sequence, then —s; is a Cauchy sequence.

© 1991 Fondation Philippe le Hodey
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(7) If s1 is a Cauchy sequence, then s1 + z is a Cauchy sequence.
(8) If s1 is a Cauchy sequence, then s; — z is a Cauchy sequence.
(9) If s1 is convergent, then s; is a Cauchy sequence.
Let us consider X, sy, s3. We say that s is compared to s3 if and only if:
(Def.2)  for every r such that » > 0 there exists m such that for every n such
that n > m holds p(sa(n), s3(n)) < r.
One can prove the following propositions:
(10)  s7 is compared to 7.
(11)  If sy is compared to s3, then sg is compared to so.

(12)  If sy is compared to s3 and s3 is compared to s4, then sy is compared
to s4.

(13)  s9 is compared to s3 if and only if for every r such that » > 0 there
exists m such that for every n such that n > m holds ||s2(n) —s3(n)|| < r.

(14)  If there exists k such that for every n such that n > k holds so(n) =
s3(n), then sy is compared to ss.

(15)  If s9 is a Cauchy sequence and ss is compared to ss3, then ss is a Cauchy
sequence.

(16)  If sy is convergent and s is compared to s3, then s3 is convergent.

(17)  If sy is convergent and lim ss = g and sg is compared to sg, then s3 is
convergent and lim s3 = g.

Let us consider X, s;. We say that s; is bounded if and only if:
(Def.3)  there exists M such that M > 0 and for every n holds |[si(n)| < M.

One can prove the following propositions:

(18) If sy is bounded and s3 is bounded, then sg + s3 is bounded.
(19)  If s1 is bounded, then —s; is bounded.

(20) If sy is bounded and s3 is bounded, then so — s3 is bounded.
(21)  If sy is bounded, then a - s1 is bounded.

(22) If s1 is constant, then s; is bounded.

(23)

For every m there exists M such that M > 0 and for every n such that
n < m holds ||s;(n)|| < M.

(24)  If sy is convergent, then s; is bounded.
(25) If sy is bounded and s is compared to ss, then sg is bounded.
Let us consider X, Ny, s1. Then s1 - N7 is a sequence of X.
Let us consider X, so, s1. We say that so is a subsequence of sp if and only
if:
(Def.4)  there exists Ny such that so = s1 - Ny.
One can prove the following propositions:
(26)  For every n holds (s1 - N1)(n) = s1(Ni(n)).
(27)  s1 is a subsequence of sj.
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(28) If sy is a subsequence of s3 and s3 is a subsequence of s4, then ss is a
subsequence of s4.

If sq1 is constant and s is a subsequence of s1, then sy is constant.

If s is constant and s is a subsequence of s1, then s1 = ss.

If s1 is bounded and ss is a subsequence of s1, then ss is bounded.

If 51 is convergent and so is a subsequence of s, then ss is convergent.
If s9 is a subsequence of s1 and s; is convergent, then lim so = lim s7.

If s; is a Cauchy sequence and ss is a subsequence of s1, then ss is a
Cauchy sequence.

Let us consider X, sq, k. The functor s; T k yields a sequence of X and is
defined by:

(Def.5)  for every n holds (s1 1 k)(n) = s1(n+ k).
The following propositions are true:

35)  s110=s;.

3 s1iTkTm=s1Tm7k.

s1TkTm=s11(k+m).

(Sg—l—Sg)Tk:Sng—f—Sng.

(—81) T k= —S1 Tk

(sg—s83)Thk=s2Tk—5s37k.

(

(

W W w
© 0 3 O

—_
PN N NI a2 NN 2N

a-s1)Tk=a-(s11k).
Sl'Nl)Tkzsl'(NlTk‘).
s1 1 k is a subsequence of s7.

=
wW N

If s1 is convergent, then s; T k is convergent and lim(s; T k) = lim 1.

AN SN N N N AN N N N N N
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If s1 is convergent and there exists k£ such that so = s1 T k, then sg is
convergent and lim sy = lim s7.

(46) If s1 is convergent and there exists k such that s; = so 1 k, then s9 is
convergent.

(47)  If s1 is a Cauchy sequence and there exists k such that s; = s9 Tk, then
s9 is a Cauchy sequence.

(48) 1If s1 is a Cauchy sequence, then s; T k is a Cauchy sequence.
(49) 1If s9 is compared to s3, then so T k is compared to s3 T k.

(50)  If s1 is bounded, then s; T & is bounded.

(51)  If s; is constant, then s; T k is constant.

Let us consider X. We say that X is a complete space if and only if:

(Def.6)  for every s; such that s; is a Cauchy sequence holds s; is convergent.

The following propositions are true:

(52)  If X is a complete space and s9 is a Cauchy sequence and s9 is compared
to ss, then sz is a Cauchy sequence.

(53)  If X is a complete space and s; is a Cauchy sequence, then s is bounded.
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Let us consider X. We say that X is a Hilbert space if and only if:

(Def.7)
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X is a real unitary space and X is a complete space.
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Category Ens

Czestaw Bylinski
Warsaw University
Biatystok

Summary. If V is any non-empty set of sets, we define Ensy to
be the category with the objects of all sets X € V, morphisms of all
mappings from X into Y, with the ususal composition of mappings. By
a mapping we mean a triple (X, Y, f) where f is a function from X into
Y. The notations and concepts included correspond to those presented in
[11,9]. We also introduce representable functors to illustrate properties
of the category Ens.

MML Identifier: ENS_1.

The notation and terminology used here are introduced in the following papers:
[15], [16], [13], 2], [3], [7], [5], (1], [14], [10], [12], [4], [8], and [6].

MAPPINGS

In the sequel V' denotes a non-empty set and A, B denote elements of V. Let
us consider V. The functor FuncsV yielding a non-empty set of functions is
defined by:

(Def.1)  FuncsV = J{B4}.
We now state three propositions:

(1)  For an arbitrary f holds f € FuncsV if and only if there exist A, B
such that if B = (), then A = ) but f is a function from A into B.

(2) B4 C FuncsV.
(3)  For every non-empty subset W of V holds Funcs W C Funcs V.
In the sequel f is an element of FuncsV. Let us consider V. The functor
Maps V' yielding a non-empty set is defined as follows:
(Def.2) MapsV = {((4, B), f): (B=0= A=0)Afisa function from A into B}.
In the sequel m, m1, mo, ms are elements of MapsV. One can prove the
following four propositions:

© 1991 Fondation Philippe le Hodey
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(4)  There exist f, A, B such that m = ({4, B), f) but if B = (), then
A =0 and f is a function from A into B.

(5)  For every function f from A into B such that if B = (), then A = ()
holds ((A, B), f) € Maps V.

(6) MapsV C [}V, V], FuncsV {.

(7)  For every non-empty subset W of V' holds Maps W C Maps V.

We now define three new functors. Let us consider V', m. The functor
graph(m) yields a function and is defined as follows:

(Def.3)  graph(m) = ma.
The functor dom m yields an element of V' and is defined by:
(Def.4)  domm = (mq)1.
The functor cod m yielding an element of V' is defined by:
(Def.5)  codm = (mq)a2.
The following three propositions are true:
(8)  m = {({domm, codm), graph(m)).
(9)  codm # 0 or domm = () but graph(m) is a function from domm into
cod m.

(10) For every function f and for all sets A, B such that ((A, B), f) €
Maps V' holds if B =0, then A = () but f is a function from A into B.

Let us consider V', A. The functor id(A) yields an element of Maps V' and is
defined by:

(Def.6) id(A) = ((A, A),id4).
The following proposition is true
(11)  graph(id(A)) =id4 and domid(A) = A and codid(A) = A.
Let us consider V', mq, mo. Let us assume that codm; = dommsy. The
functor ms - mq yields an element of Maps V' and is defined as follows:
(Def.7)  mgy-my = ({dommy, codms), graph(ms) - graph(m;)).
One can prove the following propositions:
(12)  If dommg = codmq, then graph((ms - my)) = graph(ms) - graph(m;)
and dom(mgy - mp) = domm; and cod(mg - my) = cod ma.
(13) If domms = codm; and dommg = codms, then mg - (mg - my) =
ms-mg-1Mmj.
(14)  m-id(domm) = m and id(cod m) - m = m.
Let us consider V', A, B. The functor Maps(A, B) yields a set and is defined
by:
(Def.8)  Maps(A4, B) = {{{4, B), f) : ({(A, B), f) € MapsV'}, where f ranges
over elements of Funcs V.
The following propositions are true:

(15)  For every function f from A into B such that if B = (), then A = ()
holds ((A, B), f) € Maps(A, B).
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(16) If m € Maps(A, B), then m = ((A, B), graph(m)).

(17)  Maps(A,B) C Maps V.

(18) MapsV = U{Maps(4, B)}.

(19)  m € Maps(A, B) if and only if domm = A and codm = B.
(20)  If m € Maps(A, B), then graph(m) € BA4.

Let us consider V', m. We say that m is a surjection if and only if:
(Det.9)  rnggraph(m) = cod m.

CATEGORY Ens

We now define four new functors. Let us consider V. The functor Domy, yields
a function from Maps V into V' and is defined by:

(Def.10)  for every m holds Domy (m) = domm.
The functor Cody yields a function from Maps V' into V' and is defined as follows:
(Def.11)  for every m holds Cody (m) = cod m.

The functor -y yields a partial function from [ Maps V, Maps V ] to Maps V and
is defined as follows:

(Def.12)  for all mg, m; holds (mg, m1) € dom(-y) if and only if dommgy =
codm; and for all mg, m; such that dommgy = codm; holds -y ({ma,
ml)) = ms9 -Mmj.
The functor Idy yields a function from V' into Maps V' and is defined by:
(Def.13)  for every A holds Idy (A) = id(A).
Let us consider V. The functor Ensy yields a category structure and is
defined by:
(Def.14)  Ensy = (V,Maps V, Domy, Cody, -y, Idy).
We now state the proposition
(21)  (V,Maps V, Domy, Cody, -y, Idy) is a category.
Let us consider V. Then Ensy is a category.
In the sequel a, b are objects of Ensy . Next we state the proposition
(22) Ais an object of Ensy.

Let us consider V, A. The functor ®A yielding an object of Ensy is defined
as follows:

(Def.15) @A =A.
One can prove the following proposition
(23) ais an element of V.
Let us consider V, a. The functor ®a yields an element of V and is defined
by:
(Def.16)  “a = a.
In the sequel f, g denote morphisms of Ensy . The following proposition is
true
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m is a morphism of Ensy .

Let us consider V, m. The functor ®m yields a morphism of Ensy and is
defined as follows:

(Def.17)

@m:m.

One can prove the following proposition

(25)

f is an element of Maps V.

Let us consider V, f. The functor ®f yields an element of MapsV and is
defined as follows:

(Def.18)

“f=r

One can prove the following propositions:

26
2

[\]
o

N N N /S /N /S /S
W N
=]

— — — — ' —

w w
N =

(33)
(34)

(35)

(36)
(37)

(38)
(39)

(40)

dom f = dom(®f) and cod f = cod(® f).
hom(a,b) = Maps(“a, ®b).

If dom g = cod f, then g - f = (%g) - (*f).

id, = id(“a).

If a = (), then a is an initial object.

If ) € V and a is an initial object, then a = (.

For every universal class W and for every object a of Ensyy such that
a is an initial object holds a = ().

If there exists arbitrary = such that a = {2}, then a is a terminal object.

If V # {0} and a is a terminal object, then there exists arbitrary = such
that a = {z}.

For every universal class W and for every object a of Ensy such that
a is a terminal object there exists arbitrary z such that a = {x}.

f is monic if and only if graph((®f)) is one-to-one.

If f is epi and there exists A and there exist arbitrary x1, x2 such that
x1 € A and 9 € A and 1 # x9, then @f is a surjection.

If @f is a surjection, then f is epi.

For every universal class W and for every morphism f of Ensys such
that f is epi holds @f is a surjection.

For every non-empty subset W of V holds Ensyy is full subcategory of
Ensy .

REPRESENTABLE FUNCTORS

We follow a convention: C will be a category, a, b, ¢ will be objects of C, and
I, g, h, f', ¢ will be morphisms of C. Let us consider C'. The functor Hom(C)
yields a non-empty set and is defined as follows:

(Def.19)

Hom(C') = {hom(a,b)}.

We now state two propositions:

(41)

hom(a,b) € Hom(C).
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(42)  If hom(a,cod f) = 0, then hom(a,dom f) = ) but if hom(dom f,a) = 0,
then hom(cod f,a) = 0.

We now define two new functors. Let us consider C, a, f. The functor
hom(a, f) yielding a function from hom(a,dom f) into hom(a,cod f) is defined
by:

(Def.20)  for every g such that g € hom(a,dom f) holds (hom(a, f))(g) = f - g.

The functor hom(f,a) yields a function from hom(cod f,a) into hom(dom f, a)
and is defined by:

(Def.21)  for every g such that g € hom(cod f,a) holds (hom(f,a))(g) =¢g- f.
We now state several propositions:
43)  hom(a,id.) = idyom(a,c)-

(

(44)  hom(idc, @) = idpom(c,a)-

(45) If domg = cod f, then hom(a, g - f) = hom(a, g) - hom(a, f).

(46) If domg = cod f, then hom(g - f,a) = hom(f,a) - hom(g,a).

(47)  ({(hom(a,dom f), hom(a,cod f)), hom(a, f)) is an element of
Maps Hom(C).

(48)  ({(hom(cod f,a), hom(dom f,a)), hom(f,a)) is an element of
Maps Hom(C).

We now define two new functors. Let us consider C, a. The functor hom(a, —)
yields a function from the morphisms of C' into Maps Hom(C') and is defined as
follows:

(Def.22)  for every f holds (hom(a,—))(f) = ({hom(a,dom f), hom(a,cod f)}),
hom(a, f)).

The functor hom(—, a) yields a function from the morphisms of C' into
Maps Hom(C')
and is defined as follows:
(Def.23)  for every f holds (hom(—,a))(f) = ({(hom(cod f,a), hom(dom f,a)),
hom(f,a)).
The following propositions are true:
(49) If Hom(C) C V, then hom(a, —) is a functor from C' to Ensy .
(50)  If Hom(C) C V, then hom(—, a) is a contravariant functor from C' into
Ensy .
(51)  If hom(dom f,cod f') = (), then hom(cod f,dom f’) = .
Let us consider C, f, g. The functor hom(f,g) yielding a function from
hom(cod f,dom g) into hom(dom f, cod g) is defined by:
(Def.24)  for every h such that h € hom(cod f,domg) holds (hom(f,q))(h) =
g-h-f.
We now state several propositions:
(52)  ({(hom(cod f,dom g), hom(dom f,cod g)), hom(f,g)) is an element of
Maps Hom(C).
(563)  hom(id,, f) = hom(a, f) and hom(f,id,) = hom(f, a).
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(54) hom(ida, ldb) = idhom(a,b)'

(55)  hom(f,g) = hom(dom f, g) - hom(f,dom g).

(56) Ifcodg = dom f and dom ¢’ = cod f’, then hom(f-g,¢’-f’) = hom(g, ')
hom(f, f').

Let us consider C. The functor homgc(—, —) yielding a function from the
morphisms of [ C, C'] into Maps Hom(C) is defined as follows:

(Def.25)  for all f, g holds (home(—, —))({f, g)) =
({hom(cod f,dom g), hom(dom f,cod g)), hom(f, g)).
The following two propositions are true:
(57)  hom(a,—) = (curry(home(—, —)))(id,) and
hom(—, a) = (curry’(home(—, —)))(idg).
(58) If Hom(C) C V, then homg(—, —) is a functor from [ C°P, C'] to Ensy.
We now define two new functors. Let us consider V, C, a. Let us assume

that Hom(C) C V. The functor homy (a, —) yields a functor from C' to Ensy
and is defined by:

(Def.26)  homy (a,—) = hom(a, —).
The functor homy (—, a) yields a contravariant functor from C' into Ensy and
is defined as follows:
(Def.27)  homy (—,a) = hom(—,a).
Let us consider V, C. Let us assume that Hom(C') € V. The functor
hom§/(—, —) yielding a functor from [ C°P, C'] to Ensy is defined as follows:
(Def.28)  hom{/(—, —) = hom¢(—, —).
One can prove the following propositions:
(59) If Hom(C) C V, then
(homy (a, —))(f) = ((hom(a,dom f), hom(a,cod f)), hom(a, f)).

(60) If Hom(C) C V, then (Obj(homy (a, )))(b) = hom(a, b).

(61) If Hom(C') C V, then
(homy (—,a))(f) = ((hom(cod f,a), hom(dom f,a)), hom(f,a)).

(62) If Hom(C) C V, then (Obj(homy (—,a)))(b) = hom(b, a).

(63) 1f Hom(C) C V, then (hom{(—, =))({f*?, g)) = ({hom(cod f,domg),
hom(dom f, co dg)) hom(f, g)).

(64)  If Hom(C) C V, then (Obj(hom{ (—, —)))({a®?, b)) = hom(a, b).

(65)  If Hom(C) C V, then (hom$(—, —))(a°, —) = homy (a, —).

(66) If Hom(C) C V, then (homy (—, —))(—,a) = homy(—,a).
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A Borsuk Theorem on Homotopy Types
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Summary. We present a Borsuk’s theorem published first in [3]
(compare also [4, pages 119-120]). It is slightly generalized, the assump-
tion of metrizability is omitted. We introduce concepts needed for the
formulation and the proof of theorems on upper semi-continuous decom-
positions, retracts, strong deformation retract. However, only those facts
that are necessary in the proof have been proved.

MML Identifier: BORSUK_1.

The terminology and notation used here have been introduced in the following
articles: [22], [7], [21], [2], [24], [23], [20], [12], [18], [14], [8], [13], [16], [25], [11],
[10], [6], [5], [17], [1], [19], [9], and [15].

PRELIMINARIES

We follow a convention: X, Y, X1, X5, Y7, Y5 will be sets, A will be a subset
of X, and e, u will be arbitrary. The following propositions are true:
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If X meets Y7 and X C Y5, then X meets Y7 N Y.

Ifee [2X1, Yli] and e € [2X2, Yg:],thenee [ZXlﬂXQ, YlﬂYQZ].
idy °A = A.

idx 14 =A.

For every function F such that X C F ~! X holds F° X C X;.

(X — u)® Xy C {u}.

If[:Xl, XQZ] - [:Yl, YQZ] and [:Xl, XQZ] 75 @, thenXl - Yl andX2 - YQ.
If {e} meets X, then e € X.

The scheme NonUnigExD deals with a set A, a set B, and a binary predicate
P, and states that:

there exists a function f from A into B such that for every e such that e € A
holds Ple, f(e)]
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provided the following requirement is met:
e for every e such that e € A there exists u such that v € B and Ple,
We now state several propositions:
(9) Ifee 28XV then Cm (X xY))(e) =7
(10)  Ife € 285Y then (m(X x Y))(e) = m(X xY)°
(11) Ifee X, Y], then e = (e1, e2).
(12)  For every subset X; of X and for every subset Y7 of Y such that [ Xq,
Yi ] ?é @ holds 7T1(X XY)O[in, Y1 ] = X1 and 7'('2(X XY)O[in, Y1 ] = Yl.

(13)  For every subset X; of X and for every subset Y7 of ¥ such that [ X,
Y1] # 0 holds (°m (X x Y))(f X1, Y1]) = X1 and (°mo(X x Y))(f X1,
i) =".

(14) Let A beasubset of [ X, Y ]. Then for every family H of subsets of [ X,
Y ] such that for every e such that e € H holds e C A and there exists a
subset X of X and there exists a subset Y7 of Y such that e = [ X3, Y7 |
holds fU((° m1 (X x Y)) ° H), N((°m2(X xY))° H){ C A

(15)  Let A be asubset of [ X, Y ]. Then for every family H of subsets of | X,
Y ] such that for every e such that e € H holds e C A and there exists a
subset X of X and there exists a subset Y7 of Y such that e = [ X3, Y1 ]
holds [ ((°m (X x Y))° H), U((° m2(X x Y)) ° H){ C A.

(16)  For every set X and for every non-empty set Y and for every function f
from X into Y and for every family H of subsets of X holds J((° f)°H) =
feUH.

In the sequel X, Y, Z denote non-empty sets. One can prove the following
propositions:

(17)  For every family a of subsets of X holds JUa =U{U A : A € a}, where
A ranges over subsets of X.

(18)  For every family D of subsets of X such that |J D = X for every subset
A of D and for every subset B of X such that B = |J A holds B¢ C [J(A®).

(19)  For every function F' from X into Y and for every function G from
X into Z such that for all elements x, 2’ of X such that F(z) = F(a')
holds G(z) = G(a') there exists a function H from Y into Z such that
H-F=G.

(20) For all X, Y, Z and for every element y of Y and for every function F'
from X into Y and for every function G from Y into Z holds F ~! {y} C
(G- F) Gy}

(21)  For every function F' from X into Y and for every element = of X and
for every element z of Z holds | F, idz |({z, z)) = (F(x), 2).

(22)  For every function F' from X into Y and for every subset A of X holds
idy °A = A.

(23)  For every function F' from X into Y and for every subset A of X and
for every subset B of Z holds [ F,idz]° [ A, B]=[F°A, B].
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(24)  For every function F' from X into Y and for every element y of ¥ and
for every element z of Z holds [ F,idz] ~' {{y, 2)} = [ F ~' {y}, {2} ].
Let B, A be non-empty sets, and let « be an element of B. Then A — x is
a function from A into B.

Let Y be a non-empty set, and let y be an element of Y. Then {y} is a
subset of Y.

PARTITIONS

One can prove the following four propositions:

(25)  For every partition D of X and for every subset A of D holds [JA is a
subset of X.

(26)  For every partition D of X and for all subsets A, B of D holds [J(AN
B)=UJAnNUB.

(27)  For every partition D of X and for every subset A of D and for every
subset B of X such that B = J A holds B¢ = [J(A°).

(28)  For every equivalence relation E of X holds Classes E is non-empty.

Let us consider X, and let D be a non-empty partition of X. The projection
onto D yielding a function from X into D is defined as follows:
(Def.1)  for every element p of X holds p € (the projection onto D)(p).

Next we state several propositions:

(29) For every non-empty partition D of X and for every element p of X
and for every element A of D such that p € A holds A = (the projection
onto D)(p).

(30) For every non-empty partition D of X and for every element p of D
holds p = (the projection onto D) ~* {p}.

(31)  For every non-empty partition D of X and for every subset A of D
holds (the projection onto D) ~* A = |J A.

(32)  For every non-empty partition D of X and for every element W of D
there exists an element W' of X such that (the projection onto D)(W') =
w.

(33)  For every non-empty partition D of X and for every subset W of X
such that for every subset B of X such that B € D and B meets W holds
B C W holds W = (the projection onto D) ~!(the projection onto D)°W.

TOPOLOGICAL PRELIMINARIES

In the sequel X, Y denote topological spaces. We now state two propositions:
(34) Qx # 0x.
(35)  For every subspace Y of X holds the carrier of Y C the carrier of X.

Let X, Y be topological spaces, and let F' be a function from the carrier of
X into the carrier of Y. Let us note that one can characterize the predicate F’
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is continuous by the following (equivalent) condition:
(Def.2)  for every point W of X and for every neighborhood G of F(W) there
exists a neighborhood H of W such that F° H C G.
The following proposition is true
(36)  For every point y of Y holds (the carrier of X) —— y is continuous.
Let us consider X, Y. A map from X into Y is called a continuous map from
X into Y if:

(Def.3) it is continuous.

Let X, Y, Z be topological spaces, and let F' be a continuous map from X
into Y, and let G be a continuous map from Y into Z. Then G- F' is a continuous
map from X into Z.

We now state two propositions:

(37)  For every continuous map A from X into Y and for every subset G of
Y holds A ' Int G C Int(A ~1 G).

(38)  For every point W of Y and for every continuous map A from X into
Y and for every neighborhood G of W holds A ~! G is a neighborhood of
A-HIw

Let X, Y be topological spaces, and let W be a point of Y, and let A be
a continuous map from X into Y, and let G be a neighborhood of W. Then
A =1 G is a neighborhood of A 1 {W}.

One can prove the following propositions:

(39) For every X and for all subsets A, B of the carrier of X and for every
neighborhood U; of B such that A C B holds U is a neighborhood of A.

(40)  For every subset A of X and for every point z of X holds A is a neigh-
borhood of z if and only if A is a neighborhood of {x}.

(41)  For every point x of X holds {z} is compact.

(42)  For every subspace Y of X and for every subset A of X and for every
subset B of Y such that A = B holds A is compact if and only if B is
compact.

CARTESIAN PrRODUCTS OF TOPOLOGICAL SPACES

Let us consider X, Y. The functor [ X, Y | yielding a topological space is defined
by:
(Def.4)  the carrier of [ X, Y ] = | the carrier of X, the carrier of Y | and the
topology of [ X, Y| = {UA: A C {[ X1, Y1]: X; € the topology of
X AY; € the topology of Y}}, where X; ranges over subsets of X, and
Y] ranges over subsets of Y.

Next we state three propositions:
(43)  The carrier of [ X, Y ] = [ the carrier of X, the carrier of Y ].
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(44)  The topology of [ X, Y] ={UA: A C{} X1, Y1]: X, € the topology
of X AY; € the topology of Y'}}, where X; ranges over subsets of X, and
Y7 ranges over subsets of Y.

(45)  For every subset B of [ X, Y ] holds B is open if and only if there exists
a family A of subsets of the carrier of | X, Y ] such that B = |J A and for
every e such that e € A there exists a subset X7 of X and there exists a
subset Y7 of Y such that e = [ X1, Y7 ] and X is open and Y7 is open.

Let X, Y be topological spaces, and let A be a subset of X, and let B be a
subset of Y. Then [ A, B is a subset of | X, Y.

Let X, Y be topological spaces, and let = be a point of X, and let y be a
point of Y. Then (z, y) is a point of [ X, Y {.

Next we state four propositions:

(46)  For every subset V of X and for every subset W of Y such that V is
open and W is open holds [V, W] is open.

(47)  For every subset V of X and for every subset W of Y holds Int[ V,
W=[IntV, Int W].

(48)  For every point x of X and for every point y of Y and for every neigh-
borhood V' of z and for every neighborhood W of y holds [V, W] is a
neighborhood of (z, y).

(49)  For every subset A of X and for every subset B of Y and for every
neighborhood V' of A and for every neighborhood W of B holds [V, W]
is a neighborhood of | A, B].

Let X, Y be topological spaces, and let = be a point of X, and let y be a
point of Y, and let V' be a neighborhood of z, and let W be a neighborhood of
y. Then [V, W { is a neighborhood of (x, y).

Next we state the proposition

(50)  For every point X3 of [ X, Y ] there exists a point W of X and there
exists a point 7" of Y such that X5 = (W, T).

Let X, Y be topological spaces, and let A be a subset of X, and let ¢ be a
point of Y, and let V' be a neighborhood of A, and let W be a neighborhood of
t. Then [V, W] is a neighborhood of | A, {t}{.

Let us consider X, Y, and let A be a subset of [ X, Y]. The functor
BaseAppr(A) yields a family of subsets of | X, Y ] and is defined by:

(Det.5)  BaseAppr(A4) = {[ X1, Y17 : [ X1, Y1] € AA X, is openAY; is open},
where X7 ranges over subsets of X, and Y7 ranges over subsets of Y.

We now state several propositions:

(51)  For every subset A of [ X, Y ] holds BaseAppr(A) is open.

(52)  For all subsets A, B of [ X, Y ] such that A C B holds BaseAppr(A4) C
BaseAppr(B).

(53)  For every subset A of | X, Y ] holds |JBaseAppr(A) C A.

(54)  For every subset A of [ X, Y { such that A is open holds
A = |JBaseAppr(A).
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(55)  For every subset A of [ X, Y ] holds Int A = |JBaseAppr(A).

We now define two new functors. Let us consider X, Y. The functor 71(X,Y")
yielding a function from 2the carrier of [.X, Y jy¢ gthe carrier of X ig qefined by:

(Def.6) m(X,Y) = °mi( (the carrier of X)x the carrier of V).

The functor m3(X,Y) yields a function from 2the carrier of [ XY i gthe carrier of ¥
and is defined as follows:

(Def.7)  ma(X,Y) = °ma( (the carrier of X)x the carrier of V).

We now state a number of propositions:

(56) Let A be asubset of [ X, Y ]. Then for every family H of subsets of [ X,
Y ] such that for every e such that e € H holds e C A and there exists a
subset X of X and there exists a subset Y7 of Y such that e = [ X3, Y1 |
holds FU(m (X, Y) ° H), ((ma(X,Y)° H)] C A,

(57)  For every family H of subsets of [ X, Y ] and for every set C' such that
C € m(X,Y)° H there exists a subset D of [ X, Y ] such that D € H
and C = 71 ( (the carrier of X)x the carrier of Y') ° D.

(58)  For every family H of subsets of [ X, Y ] and for every set C' such that
C € m(X,Y) ° H there exists a subset D of [ X, Y] such that D € H
and C = mo( (the carrier of X)x the carrier of Y') ° D.

(59)  For every subset D of [ X, Y | such that D is open for every subset X
of X and for every subset Y7 of Y holds if X; = m1( (the carrier of X)x
the carrier of Y') ° D, then X is open but if Y7 = 7o ( (the carrier of X)x
the carrier of Y') © D, then Y; is open.

(60)  For every family H of subsets of [ X, Y ] such that H is open holds
m1(X,Y)° H is open and 72(X,Y) ° H is open.

(61)  For every family H of subsets of [ X, Y ] such that 71(X,Y)° H =0 or
m(X,Y)° H = () holds H = 0.

(62)  For every family H of subsets of [ X, Y ] and for every subset X; of X
and for every subset Y7 of Y such that H is a cover of | X1, Y7 | holds if
Y1 # 0, then m1 (X, Y)° H is a cover of X7 but if X7 # (), then mo(X,Y)°H
is a cover of Y.

(63)  For every family H of subsets of X and for every subset Y of X such
that H is a cover of Y there exists a family F' of subsets of X such that
F C H and F is a cover of Y and for every set C' such that C' € F holds
cny #40.

(64)  For every family F of subsets of X and for every family H of subsets
of [ X, Y] such that F is finite and F C m1(X,Y) ° H there exists a
family G of subsets of [ X, Y] such that G C H and G is finite and
F=m(X,Y)°G.

(65)  For every subset X; of X and for every subset Y7 of Y such that [ Xi,
Yi ] 7£ @ holds 7T1(X,Y)({ZX1, Yi ]) = X1 and WQ(X,Y)([ZXl, Yi ]) = Yl.

(66) m(X,Y)(0) =0 and mo(X,Y)(0) = 0.
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(67)  For every point t of Y and for every subset A of the carrier of X such
that A is compact for every neighborhood G of [ A, {t}] there exists a
neighborhood V of A and there exists a neighborhood W of ¢ such that
FV, W]CG.

PARTITIONS OF TOPOLOGICAL SPACES

Let us consider X. The trivial decomposition of X yielding a non-empty parti-
tion of the carrier of X is defined by:

(Def.8)  the trivial decomposition of X = Classes(Athe carrier of X)-

We now state the proposition
(68)  For every subset A of X such that A € the trivial decomposition of X
there exists a point = of X such that A = {x}.

Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The decomposition space of D yielding a topological space is
defined as follows:

(Def.9)  the carrier of the decomposition space of D = D and the topology of
the decomposition space of D = {A : [J A € the topology of X}, where A
ranges over subsets of D.

One can prove the following proposition

(69)  For every non-empty partition D of the carrier of X and for every subset
A of D holds |J A € the topology of X if and only if A € the topology of
the decomposition space of D.
Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The projection onto D yielding a continuous map from X into the
decomposition space of D is defined as follows:

(Def.10)  the projection onto D = the projection onto D.

We now state three propositions:
(70)  For every non-empty partition D of the carrier of X and for every point
W of X holds W € (the projection onto D)(W).

(71)  For every non-empty partition D of the carrier of X and for every point
W of the decomposition space of D there exists a point W’ of X such
that (the projection onto D)(W') = W.
(72)  For every non-empty partition D of the carrier of X holds rng(the pro-
jection onto D) = the carrier of the decomposition space of D.
Let X4 be a topological space, and let X be a subspace of X4, and let D be
a non-empty partition of the carrier of X. The trivial extension of D yields a
non-empty partition of the carrier of X4 and is defined as follows:

(Def.11)  the trivial extension of D = D U {{p} : p ¢ the carrier of X}, where p
ranges over points of Xj.

The following propositions are true:



542 ANDRZEJ TRYBULEC

(73)  For every topological space X4 and for every subspace X of X, and for
every non-empty partition D of the carrier of X holds D C the trivial
extension of D.

(74)  For every topological space X4 and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every subset A of
X, such that A € the trivial extension of D holds A € D or there exists
a point = of X, such that x ¢ Qx and A = {z}.

(75)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point x of
X4 such that = ¢ the carrier of X holds {x} € the trivial extension of D.

(76)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W € the carrier of X holds (the projection onto the trivial
extension of D)(W) = (the projection onto D)(W).

(77)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W ¢ the carrier of X holds (the projection onto the trivial
extension of D)(W) = {W}.

(78)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for all points W,
W' of X4 such that W ¢ the carrier of X and (the projection onto the
trivial extension of D)(W) = (the projection onto the trivial extension of
D)(W') holds W = W'.

(79)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point e
of X4 such that (the projection onto the trivial extension of D)(e) € the
carrier of the decomposition space of D holds e € the carrier of X.

(80)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every e such that
e € the carrier of X holds (the projection onto the trivial extension of
D)(e) € the carrier of the decomposition space of D.

UPPER SEMICONTINUOUS DECOMPOSITIONS

Let X be a topological space. A non-empty partition of the carrier of X is said
to be an upper semi-continuous decomposition of X if:

(Def.12)  for every subset A of X such that A € it for every neighborhood V' of
A there exists a subset W of X such that W is open and A C W and
W C V and for every subset B of X such that B € it and B meets W
holds B C W.

We now state two propositions:

(81)  For every upper semi-continuous decomposition D of X and for every
point ¢ of the decomposition space of D and for every neighborhood G
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of (the projection onto D) ~! {¢} holds (the projection onto D) ° G is a
neighborhood of ¢.

(82)  The trivial decomposition of X is an upper semi-continuous decompo-
sition of X.

Let us consider X. A subspace of X is called a closed subspace of X if:
(Def.13)  for every subset A of X such that A = the carrier of it holds A is closed.
Let X4 be a topological space, and let X be a closed subspace of X, and let

D be an upper semi-continuous decomposition of X. Then the trivial extension
of D is an upper semi-continuous decomposition of Xj,.

Let X be a topological space. An upper semi-continuous decomposition of
X is called an upper semi-continuous decomposition into compacta of X if:

(Def.14)  for every subset A of X such that A € it holds A is compact.
Let X4 be a topological space, and let X be a closed subspace of X4, and let
D be an upper semi-continuous decomposition into compacta of X. Then the

trivial extension of D is an upper semi-continuous decomposition into compacta
of X4.

Let X be a topological space, and let Y be a closed subspace of X, and let
D be an upper semi-continuous decomposition into compacta of Y. Then the
decomposition space of D is a closed subspace of the decomposition space of the
trivial extension of D.

BORSUK’S THEOREMS ON THE DECOMPOSITION OF RETRACTS

The topological space 1 is defined by:
(Def.15)  for every subset P of (the metric space of real numbers)o, such that
P =10,1] holds I = (the metric space of real numbers)op, | P.
Next we state the proposition
(83)  The carrier of [ = [0, 1].
We now define two new functors. The point 0y of [ is defined by:
(Def.16) 0y = 0.
The point 1; of 1 is defined by:
(Def.17) 1, =1.

Let A be a topological space, and let B be a subspace of A, and let F' be a
continuous map from A into B. We say that F' is a retraction if and only if:
(Def.18)  for every point W of A such that W € the carrier of B holds F(W) = W.

We now define two new predicates. Let X be a topological space, and let Y
be a subspace of X. We say that Y is a retract of X if and only if:

(Def.19)  there exists a continuous map F' from X into Y such that F' is a retrac-
tion.

We say that Y is a strong deformation retract of X if and only if:
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there exists a continuous map H from [ X, 1] into X such that for every
point A of X holds H({A4, 0;)) = A and H({(A, 1;)) € the carrier of Y but
if A € the carrier of Y, then for every point 7" of [ holds H({A, T)) = A.

We now state two propositions:

(84)

(85)

[1]
2]
8]
[4]
[5]
(6]
[7]
8]
[9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]
18]
[19]
[20]

[21]
22]

For every topological space X4 and for every closed subspace X of X4
and for every upper semi-continuous decomposition D into compacta of
X such that X is a retract of X4 holds the decomposition space of D is a
retract of the decomposition space of the trivial extension of D.

For every topological space X4 and for every closed subspace X of X4
and for every upper semi-continuous decomposition D into compacta of X
such that X is a strong deformation retract of X4 holds the decomposition
space of D is a strong deformation retract of the decomposition space of
the trivial extension of D.
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Cartesian Product of Functions
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Summary. A supplement of [3] and [2], i.e. some useful and ex-
planatory properties of the product and also the curried and uncurried
functions are shown. Besides, the functions yielding functions are con-
sidered: two different products and other operation of such functions are
introduced. Finally, two facts are presented: quasi-distributivity of the

power of the set to other one w.r.t. the union (me SN IL X 7))
and quasi-distributivity of the poroduct w.r.t. the raising to the power

(I, f(@)* = (L, f(=))™).

MML Identifier: FUNCT_6.

The articles [16], [14], [8], [17], [5], [12], [9], [11], [6], [4], [13], [15], [7], [10], [2],
[1], and [3] provide the notation and terminology for this paper.

PROPERTIES OF CARTESIAN PRODUCT

For simplicity we follow the rules: =z, vy, y1, y2, 2, a will be arbitrary, f, g,
h, I/, fi, fo will denote functions, ¢ will denote a natural number, X, Y, Z,
Vi, Vo will denote sets, P will denote a permutation of X, D, Dy, Dy, Ds
will denote non-empty sets, dy will denote an element of D1, ds will denote an
element of Dy, and d3 will denote an element of D3. We now state a number of
propositions:
(1) =z e[[(X) if and only if there exists y such that y € X and =z = (y).
(2) =z ell(X,Y) if and only if there exist =, y such that x € X and y € Y
and z = (z,y).
(3) a € ll(X,Y,Z) if and only if there exist z, y, z such that z € X and
yeY and z € Z and a = (z,y, 2).

(4) [I(D)= D"
(56)  TI(D1,D3) = {(d1,d2)}.
(6) TI{D,D)= D2
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547 ISSN 0777-4028



548

GRZEGORZ BANCEREK

(1) TI{D1, D2, D3) = {(d1,d2,d3)}.
(8) II(D,D,D)= D3,
(9) TI(i — D) = D

(10)  TIf S (Uf)dem/.

CURRIED AND UNCURRIED FUNCTIONS OF SOME FUNCTIONS

The following propositions are true:
(11)  If z € dom~f, then there exist y, z such that x = (y, 2).
(12) A([X, Y]r—2)=}Y, X]+— 2.

(13)  curry f = curry’~f and uncurry f = ~uncurry’ f.

(14) I [X,Y] #0, then curry(f X, Y] — 2) = X —— (Y — 2) and
curry' (X, Y]+—2) =Y — (X — 2).

(15)  uncurry(X — (Y +— 2)) = [ X, Y] — 2 and uncurry’(X —
Yr—2)=[Y,X]+— 2

(16) If x € dom f and g = f(z), then rngg C rnguncurry f and rngg C
rng uncurry’ f.

(17)  domuncurry(X +— f) = [ X, dom f] and rnguncurry(X —— f) C
rng f and dom uncurry’(X — f) = [dom f, X ] and rng uncurry’(X —
f) Cmgf.

(18) If X = (), then rnguncurry(X — f) = rng f and rnguncurry’ (X ——
f)=mgf.

(19) HEX,Y]#0and f e ZESY then curry f € (ZY)X and curry’ f €
(Z*)".

(20) If f € (Z¥)¥, then uncurry f € ZEX Y1 and uncurry’ f € Z8Y X1,

(21)  If curry f € (Z¥)X or curry’ f € (ZX)Y but dom f C [V, Vo], then
fezZbXvd,

(22)  If uncurry f € ZE5 Y or uncurry’ f € ZEY-X1 but g f € Vi 5V5 and
dom f = X, then f € (ZV)X.

(23) If felX,Y]>Z, then curry f € X>(Y—>Z) and
curry' f e Y (X 52).

(24) If fe X>(Y>Z), then uncurry f € [ X, Y {>Z and uncurry’ f € [Y,
X152,

(25) Ifcurryf € X>(Y=>Z) or curry’ f € Y5(X—-Z) but dom f C [ V4,
Vo, then f €[ X, Y |52,

(26) If uncwrry f € [ X, Y ]>Z or uncurry’ f € [Y, X |>Z but mg f C
V1V, and dom f C X, then f € X>(Y—>2).

FUNCTIONS YIELDING FUNCTIONS

Let X be a set. The functor Sub¢ X is defined as follows:

(Def.1)  x € Sub¢ X if and only if z € X and x is a function.
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Next we state four propositions:
(27)  Subf X C X.
(28) € f ! Subgrng f if and only if # € dom f and f(x) is a function.
(29)  Sub¢( =0 and Subg{f} = {f} and Sub¢{f, g} = {f, g} and
Sube{f,g,h} ={f,9,h}.
(30) IfY C Sub¢ X, then SubsY =Y.
We now define three new functors. Let f be a function. The functor
dom,, f(k) yielding a function is defined by:

(Def.2)  dom(dom, f(k)) = f ~! Subsrng f and for every z such that z € f ~!
Sub¢ rng f holds (dom, f(k))(z) = m(f(x)).

The functor rng,. f(k) yields a function and is defined as follows:
(Def.3)  dom(rng, f(k)) = f ~! Subgrng f and for every x such that z € f ~*
Subg rng f holds (rng,. f(k))(z) = ma(f(x)).
The functor () f is defined as follows:
(Def4) N f=Nrngf.
Next we state a number of propositions:

(31) Ifz €dom f and g = f(x), then x € dom(dom, f(x)) and
(domy f(k))(x) = domg
and = € dom(rng,, f(k)) and (rng,, f(k))(z) = rngg.

(32) dom,O(k) =0 and rng,. O(k) = O.

(33)  domg(f)(k) = (dom f) and rng,(f)(x) = (rng f).

(34)  domy(f,g)(r) = (dom f,domg) and g, (f, g)(x) = (mg f,mgg).

(35)  domg(f,g,h)(k) = (dom f,dom g,dom h) and rng,(f, g, h)(x) = (rng f,
rng g,rng h).

(36) d(;cmH(X — f)(k) = X +— dom f and mg, (X — f)(k) = X —
rng f.

(37) If f # 0O, then x € N f if and only if for every y such that y € dom f
holds = € f(y).

) UoO=0and NO=10.
) UX) =X and N(X) = X.
40) U(X,Y)=XUY and N(X,Y)=XNY.
) UX,Y.Z)=XUYUZand N(X,Y,Z)=XNYNZ.
) U@ —Y)=0and N0 +—Y)=0.
43) X #0,then X +—Y)=Y and (X —Y) =Y.
Let f be a function, and let x, y be arbitrary. The functor f(z)(y) is defined
by:
(Def.5)  f(2)(y) = (uncurry f)({z, y)).
We now state several propositions:
(44) If x € dom f and g = f(x) and y € dom g, then f(z)(y) = g(y).
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(45) If x € dom f, then (f)(1)(z) = f(x) and (f,9)(1)(x) = f(z) and (f,g,
h)(1)(z) = f(z).

(46) If z € domg, then (f,9)(2)(z) = g(z) and (f,g,h)(2)(z) = g(=).

(47) If x € domh, then (f, g, h)(3)(x) = h(x).

(48) Ifz € X and y € dom f, then (X — f)(z)(y) = f(y).

CARTESIAN PRODUCT OF FUNCTIONS WITH THE SAME DOMAIN

Let f be a function. The functor [[* f yielding a function is defined as follows:
(Def.6) IT* f = curry(uncurry’ f I f(\(domy f(k)), dom f ).
We now state several propositions:

(49)  dom[[" f = N(domy f(x)) and mg[[" f C [(rng, f(x)).

(50) If x € dom[[* f, then (IT* f)(x) is a function.

(51) If z € dom[[*f and ¢ = (I[* f)(z), then domg = f ~! Sub¢rng f
and for every y such that y € domg holds (y, ) € domuncurry f and
9(y) = (uncurry f)((y, x)).

(52) If x € dom[[* f, then for every g such that g € rng f holds x € dom g.

(563) If g € rng f and for every g such that g € rng f holds = € dom g, then

x € dom[[* f.

(54) Ifz €domf and g = f(x) and y € dom[[* f and h = (IT" f)(y), then
9(y) = h(z).

(55) If x € dom f and f(z) is a function and y € dom [[* f, then f(z)(y) =
(T /) (w)(=).

CARTESIAN PRODUCT OF FUNCTIONS

Let f be a function. The functor [][° f yielding a function is defined by the
conditions (Def.7).

(Def.7) (i) domT[[° f =II(dom, f(k)),
(ii)  for every g such that g € [[(dom, f(k)) there exists h such that
(IT1° f)(9) = h and domh = f ~! Subsrng f and for every z such that
x € dom h holds h(z) = (uncurry f)({z, g(x))).

The following propositions are true:

(56)  If g € [[(domy f(x)) and x € domg, then (T]° f)(g9)(z) = f(z)(g(x)).

(57) Ifz e domf and g = f(z) and h € [[(dom, f(x)) and b’ = (TT° f)(h),
then h(z) € domg and h/(z) = g(h(x)) and A’ € [[(rng,. f(x)).

(58)  rngI[° f = [1(rng, f(x)).

(59) IfO ¢ rng f, then []° f is one-to-one if and only if for every g such that
g € rng f holds g is one-to-one.
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PROPERTIES OF CARTESIAN PRODUCTS OF FUNCTIONS

The following propositions are true:

(60) [['O=0and[[°0O0={0}+— 0O.

(61) dom][[*(h) =domh and for every = such that z € dom h holds
(IT"(r)(x) = (h(x)).

(62)  dom [[*(f1, fo) = dom fiNdom f, and for every z such that € dom f1N
dom f5 holds ([T*(f1, f2))(z) = (f1(x), f2(x)).

(63) If X # 0, then dom [[*(X —— f) = dom f and for every x such that
x € dom f holds ([T*(X — f))(z) = X — f(z).

(64) dom[[°(h) = [[(dom h) and rng [[°(h) = [[(rng h) and for every x such
that € dom h holds ([T°(h))({x)) = (h(x)).

(65) (i)  dom][°(f1, f2) = [I(dom f1,dom f5),

(ii)  mglI°(f1, f2) = [1{rng f1,1ng f2),
(i)  for all z, y such that z € dom f; and y € dom f3 holds (I]°(f1, f2))((x,

) = (fi(z), f2(y)).

(66) dom[I°(X +— f) = (dom f)* and mg[[°(X +— f) = (rngf)
for every g such that g € (dom f)* holds ([[°(X — f))(g) =

(67) If x € dom f; and = € dom fo, then for all y1, y2 holds (f1, fo >( ) (y1,
yo) if and only if ([T*(f1, f2))(z) = (y1, y2)-

(68) If x € dom f; and y € dom fo, then for all y1, yo holds [ f1, f2]({x,
) = (1, y2) if and only if ([T°(f1, f2))((z,9)) = (y1,92)-

(69) If dom f = X and domg = X and for every x such that z € X holds
f(@) = g(x), then [T f = IIg.

(70)  If dom f = dom h and dom g = rng h and h is one-to-one and for every
x such that x € dom h holds f(z) =~ g(h(x)), then []f ~[[g.

(71)  Ifdom f = X, then [ f = [I(f - P).

FUNCTION YIELDING POWERS

Let us consider f, X. The functor X7 yielding a function is defined by:

(Def.8)  dom(X/) = dom f and for every  such that € dom f holds X/ (z) =
xflx)

We now state several propositions:

(72)  If 0 ¢ rng £, then () = dom f — 0.
(73) X"=0O.

(74) Y = (v¥X),

(75) 25V = (zX 7V,

(76) ZX Y =X+ ZY.

(

77) XU disjoin f H(Xf)
Let us consider X, f. The functor f¥X yielding a function is defined by:
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dom(fX) = dom f and for every z such that z € dom f holds f*(z) =
fz)X.

Next we state several propositions:

'3
© o0

oo 0o
N

N N N N /N
Q0 0]
w (=)
~— O~ — — —

[1]
2]

[3]
[4]

[5]
(6]

[7]

f? = dom f — {O}.
oX =0.
(V)X =(v¥).

(Y, Z)% = (yX, zX).
(Y — )X =Y — ZX.
(%) = 1)~
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The terminology and notation used here are introduced in the following papers:
[15], [11], [2], [14], [16], [13], [7], [5], [6], [8], [10], [12], [1], [9], [3], [4], and [17].
For simplicity we follow a convention: z, y will be arbitrary, n, m, k will denote
natural numbers, ¢; will denote a tree decorated by [N, Nquaa non-empty
set ], w, s, t will denote finite sequences of elements of N, X will denote a set,
and D will denote a non-empty set. Next we state the proposition

(1) If X is finite, then card X = 2 if and only if there exist x, y such that

X ={z,y} and = # y.

Let Z be a tree. The root of Z yields an element of Z and is defined as

follows:

(Def.1)  the root of Z = e.

Let us consider D, and let T be a tree decorated by D. The root of T yields
an element of D and is defined by:

(Def.2)  the root of T' = T'(the root of domT).

Next we state a number of propositions:

[\)
~—

(n) = (m) if and only if n = m.

w

If n # m, then (n) and (m) " s are not comparable.

For every s such that s # € there exist w, n such that s = (n) ~ w.
If n # m, then (n) £ (m) " s.

If n # m, then (n) £ (m) " s.

(n) £ (m).

If w+# ¢, then s < s~ w.

The elementary tree of 1 = {g, (0)}.

The elementary tree of 2 = {e, (0), (1)}.

For every tree Z and for all n, m such that n < m and (m) € Z holds
(n) € Z.

N

=~~~/
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(12) Ifw~t<w"s,thent <s.

(13)  t1 € N*5[N, Nquaa non-empty set J.

(14)  For all trees Z, Z; and for every element z of Z holds z € Z(z/Z1).
(15)  For all trees Z, Z1, Z and for every element z of Z such that Z(z/Z;) =

Z(Z/ZQ) holds Zl = ZQ.

(16)  For all trees Z, Zy, Zy decorated by D and for every element z of dom Z
such that Z(z/Z,) = Z(z/Zs) holds Z; = Zs.

(17)  For all trees Z1, Z5 and for every finite sequence p of elements of N such

that p € Z; for every element v of Z1(p/Z3) and for every element w of
71 such that v = w and w < p holds succv = succw.

(18)  For all trees Z1, Z5 and for every finite sequence p of elements of N such
that p € Z; for every element v of Z1(p/Z2) and for every element w of Z;
such that v = w and p and w are not comparable holds succv = succw.

(19)  For all trees Z3, Zs and for every finite sequence p of elements of N such
that p € Z; for every element v of Z1(p/Z2) and for every element w of
Z5 such that v = p ™ w holds succv ~ succw.

(20)  For every tree Z; and for every finite sequence p of elements of N such
that p € Z; for every element v of Z; and for every element w of Z1 | p
such that v = p = w holds succv ~ succw.

(21)  For every tree Z and for every element p of Z such that Z is finite holds
succ p is finite.

(22)  For every tree Z such that Z is finite and the branch degree of the root
of Z=0holds card Z =1 and Z = {e}.

(23)  For every tree Z such that Z is finite and the branch degree of the root
of Z =1 holds succ(the root of Z) = {(0)}.

(24)  For every tree Z such that Z is finite and the branch degree of the root
of Z = 2 holds succ(the root of Z) = {(0), (1)}.

In the sequel s, w’ will be elements of N*. One can prove the following
propositions:
(25)  For every tree Z and for every element o of Z such that o # the root of
Zholds Zlo~{0"s : 0" € Z} and theroot of Z ¢ {0~ w' : 0~ w' € Z}.
(26)  For every tree Z and for every element o of Z such that o # the root of
Z and Z is finite holds card(Z | 0) < card Z.

(27)  For every tree Z and for every element z of Z such that succ(the root of
Z) = {z} and Z is finite holds Z = (the elementary tree of 1)((0)/(Z ] 2)).

(28)  For every tree Z decorated by D and for every element z of dom Z such
that succ(the root of dom Z) = {2z} and dom Z is finite holds Z = ( the
elementary tree of 1 — the root of Z)((0)/(Z | 2)).

(29) For every tree Z and for all elements z1, zo of Z such that Z is finite
and x1 = (0) and zo = (1) and succ(the root of Z) = {z1,z2} holds
Z = (the elementary tree of 2)((0)/(Z | z1))((1)/(Z | x2)).
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(30) Let Z be a tree decorated by D. Then for all elements x1, o of dom Z
such that dom Z is finite and x; = (0) and z9 = (1) and succ(the root of
dom Z) = {x1,z2} holds Z = ( the elementary tree of 2 — the root of

Z)(0)/(Z 1 21))((1)/(Z T 22)).

The non-empty set V is defined by:
(Def.3) VvV =1[{3}, N].

A variable is an element of V.

The non-empty set C is defined as follows:
(Defd4) C=1[{0,1,2}, NJ.

A conective is an element of C.

One can prove the following proposition

(31) CcnVv=0.
In the sequel p, ¢ denote variables. Let T be a tree, and let v be an element
of T'. Then the branch degree of v is a natural number.

Let D be a non-empty set. A non-empty set is called a non-empty set of
trees decorated by D if:

(Def.5)  for every x such that = € it holds x is a tree decorated by D.

Let Dy be a non-empty set, and let D be a non-empty set of trees decorated
by Dg. We see that the element of D is a tree decorated by Dy.

The non-empty set WFF of trees decorated by [N, N qua a non-empty set |
is defined by the condition (Def.6).

(Def.6) Let x be a tree decorated by [N, N quaa non-empty set]. Then x €
WFF if and only if the following conditions are satisfied:

(i) domuz is finite,

(ii)  for every element v of domz holds the branch degree of v < 2 but if
the branch degree of v = 0, then z(v) = (0, 0) or there exists k such that
xz(v) = (3, k) but if the branch degree of v = 1, then z(v) = (1, 0) or
x(v) = (1, 1) but if the branch degree of v = 2, then z(v) = (2, 0).

A MP-formula is an element of WFF.

In the sequel A, A1, B, By, C denote MP-formulae. Let us consider A, and

let @ be an element of dom A. Then A | a is a MP-formula.

Let a be an element of C. The functor Arity(a) yielding a natural number is

defined by:
(Def.7)  Arity(a) = ay.
Let D be a non-empty set, and let 7', T7 be trees decorated by D, and let
p be a finite sequence of elements of N. Let us assume that p € dom7T. The
functor T'(p < T1) yields a tree decorated by D and is defined by:
(Def.8)  T(p—T1)=T(p/T1).
The following propositions are true:
(32)  (The elementary tree of 1 —— (1, 0))({0)/A) is a MP-formula.
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(33)  (The elementary tree of 1 — (1, 1))((0)/A) is a MP-formula.
(34)  (The elementary tree of 2 — (2, 0))((0)/A)((1)/B) is a MP-formula.

We now define three new functors. Let us consider A. The functor = A yields
a MP-formula and is defined as follows:

(Def.9) —A = ( the elementary tree of 1 —— (1, 0))((0)/A).
The functor OA yields a MP-formula and is defined as follows:
(Def.10) OA = ( the elementary tree of 1 —— (1, 1))({(0)/A).

Let us consider B. The functor A A B yielding a MP-formula is defined as
follows:

(Def.11) A A B = ( the elementary tree of 2 — (2, 0))((0)/A)((1)/B).
We now define three new functors. Let us consider A. The functor ¢ A yields
a MP-formula and is defined as follows:
(Def.12) QA =-0O-A.
Let us consider B. The functor A V B yields a MP-formula and is defined as
follows:

(Def.13) AV B =-(-AA-B).
The functor A = B yields a MP-formula and is defined by:
(Def.14) A= B=-(AA-B).
The following propositions are true:
(35)  The elementary tree of 0 — (3, n) is a MP-formula.
(36)  The elementary tree of 0 — (0, 0) is a MP-formula.
Let us consider p. The functor ®p yields a MP-formula and is defined by:
(Def.15)  ©p = the elementary tree of 0 — p.

We now state four propositions:
(37)  If ®p =%, then p = ¢.
(38) If -A=-B, then A= B.
(39) If0A=0B, then A= B.
(40) If ANB = A1 A By, then A = A; and B = Bj.
The MP-formula VERUM is defined by:
(Def.16)  VERUM = the elementary tree of 0 — (0, 0).

Next we state several propositions:

(41)  carddom A # 0.

(42) If (c@ard domA = 1, then A = VERUM or there exists p such that
A="p.

(43)  If carddom A > 2, then there exists B such that A = =B or A = OB
or there exist B, C such that A= B AC.

(44) carddom A < card dom —A.

(45) carddom A < card dom OA.

(46) carddom A < carddom(A A B) and card dom B < card dom(A A B).
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We now define four new attributes. A MP-formula is atomic if:

(Def.17)  there exists p such that it = @p.

A MP-formula is negative if:
(Def.18)  there exists A such that it = —A.

A MP-formula is necessitive if:
(Def.19)  there exists A such that it = OA.

A MP-formula is conjunctive if:
(Def.20)  there exist A, B such that it = A A B.

The scheme MP_Ind deals with a unary predicate P, and states that:

for every element A of WFF holds P[A4]
provided the parameter satisfies the following conditions:
P[VERUM],
for every variable p holds P[®p],
for every element A of WFF such that P[A] holds P[-A4],
for every element A of WFF such that P[A] holds P[OA],
for all elements A, B of WFF such that P[A] and P[B] holds
P[A A B].

The following propositions are true:
(47)  For every element A of WFF holds A = VERUM or A is a MP-formula
or A is a MP-formula or A is a MP-formula or A is a MP-formula.

(48) A = VERUM or there exists p such that A = ®p or there exists B such
that A = =B or there exists B such that A = OB or there exist B, C
such that A= BAC.

(49) ©®p# -Aand ®p#0A and ®p # AN B.

(50) —A#0OBand ~A# BAC.

(51) OA#BAC.

(52) VERUM # ®p and VERUM # =4 and VERUM # OA and VERUM #
AN B.

The scheme MP_Func_Ex deals with a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a unary functor G yielding an
element of A, a unary functor H yielding an element of A, and a binary functor
7 yielding an element of A and states that:

there exists a function f from WFF into A such that f(VERUM) = B and
for every variable p holds f(®p) = F(p) and for every element A of WFF and
for every element d of A such that f(A) = d holds f(—=A) = G(d) and for every
element A of WFF and for every element d of A such that f(A) = d holds
f(OA) = H(d) and for all elements A, B of WFF and for all elements d;, da of
A such that dy = f(A) and d2 = f(B) holds f(AA B) =Z(dy,d2)
for all values of the parameters.
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The papers [19], [9], [1], [4], [20], [2], [18], [13], [5], [8], [14], [21], [7], [15], [12],
[11], [17], [6], [10], [16], and [3] provide the terminology and notation for this
paper. For simplicity we follow the rules: M is a metric space, ¢, g are elements
of the carrier of M, F' is a family of subsets of the carrier of M, A, B are
subsets of the carrier of M, f is a function, n, m, p, k are natural numbers,
and 7, s, L are real numbers. Next we state four propositions:
(1) For every L such that 0 < L and L < 1 for all n, m such that n < m
holds L™ < L™.
(2)  For every L such that 0 < L and L < 1 for every k holds L* < 1 and
0< LF
(3) For every L such that 0 < L and L < 1 for every s such that 0 < s
there exists n such that L™ < s.
(4)  For every set X such that X is finite and X # () and for all sets Y, Z
such that Y € X and Z € X holds Y C Z or Z C Y there exists a set V
such that V € X and for every set Z such that Z € X holds V C Z.

Let us consider M, F. Then |J F' is a subset of the carrier of M.

Let D be a non-empty set. Then Qp is a subset of D. Then 0 is a subset
of D.

Let us consider M. We say that M is totally bounded if and only if:

(Def.1)  for every r such that r > 0 there exists F' such that F is finite and the
carrier of M = |J F and for every A such that A € F' there exists g such
that A = Ball(g, ).

Let us consider M. A function is called a sequence of M if:

(Def.2) domit =N and rngit C the carrier of M.

In the sequel S; will denote a sequence of M. The following proposition is
true
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(5) f is a sequence of M if and only if dom f = N and for every n holds
f(n) is an element of the carrier of M.

Let us consider M, S1, n. Then Si(n) is an element of the carrier of M.
Let us consider M, S1. We say that S; is convergent if and only if:

(Def.3)  there exists an element x of the carrier of M such that for every r such
that r > 0 there exists n such that for every m such that n < m holds
p(Si(m),x) <r.

Let us consider M, Sy. Let us assume that Sy is convergent. The functor
lim S; yields an element of the carrier of M and is defined by:

(Def.4)  for every r such that r > 0 there exists n such that for every m such

that m > n holds p(Si(m),lim Sy) < r.
The following proposition is true

(6)  For every S; such that S; is convergent holds lim S = ¢ if and only if
for every r such that 0 < r there exists n such that for every m such that
n < m holds p(S1(m),g) < r.

Let us consider M, S1. We say that S is a Cauchy sequence if and only if:
(Def.5)  for every r such that r > 0 there exists p such that for all n, m such
that p < n and p < m holds p(S1(n),S1(m)) < r.
Let us consider M. We say that M is complete if and only if:
(Def.6)  for every Sy such that S is a Cauchy sequence holds S7 is convergent.

We now state two propositions:

(7)  For every Sy such that Sy is convergent holds S; is a Cauchy sequence.

(8)  For every Sp holds S is a Cauchy sequence if and only if for every r
such that r > 0 there exists p such that for all n, k such that p < n holds
p(Si(n+k),Si(n)) <r.

Let us consider M. A function from the carrier of M into the carrier of M
is called a contraction of M if:
(Def.7)  there exists L such that 0 < L and L < 1 and for all points z, y of M
holds p(it(x),it(y)) < L - p(x,y).

We now state four propositions:

(9) For every contraction f of M such that M is complete there exists ¢
such that f(c¢) = ¢ and for every element y of the carrier of M such that
fly) =y holds y = ¢.

(10)  If Miop is compact, then M is complete.

(11)  For every contraction f of M such that M., is compact there exists an
element ¢ of the carrier of M such that f(c) = ¢ and for every element y
of the carrier of M such that f(y) =y holds y = c.

(12)  If Miop is compact, then M is totally bounded.

We now define two new predicates. Let us consider M. We say that M is

bounded if and only if:
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(Def.8)  there exists r such that 0 < r and for all points z, y of M holds p(x,y) <
r

Let us consider A. We say that A is bounded if and only if:
(Detf.9) (i)  there exists  such that 0 < r and for all points x, y of M such that
x € Aand y € A holds p(z,y) <rif A#0.
One can prove the following propositions:

(13) If A # 0, then A is bounded if and only if there exists r such that 0 < r
and for all points x, y of M such that x € A and y € A holds p(x,y) < r.

(14) q)tho carrier of M 18 bounded.

(15)  If A # 0, then A is bounded if and only if there exist r, ¢ such that 0 < r
and ¢ € A and for every point z of M such that z € A holds p(c, z) <.

(16) If 0 < r, then g € Ball(g,r) and Ball(g,r) # 0.

(17) If r <0, then Ball(g,r) = 0.

(18) If 0 < r, then Ball(g,r) is bounded.

(19) Ball(g,r) is bounded.

(20) If Ais bounded and B is bounded, then AU B is bounded.
(21) If Ais bounded and B C A, then B is bounded.

(22) If A= {g}, then A is bounded.

(23) If A is finite, then A is bounded.

(24)

If F is finite and for every A such that A € F holds A is bounded, then
U F' is bounded.

(25) M is bounded if and only if Q¢pe carrier of A 18 bounded.
(26) If M is totally bounded, then M is bounded.

Let us consider M, A. Let us assume that A # () and A is bounded. The
functor VA yields a real number and is defined as follows:

(Def.10)  for all points x, y of M such that x € A and y € A holds p(z,y) < VA
and for every s such that for all points x, y of M such that x € A and
y € A holds p(z,y) < s holds VA < s.
We now state several propositions:

(27)  Suppose A # () and A is bounded. Then VA = r if and only if for all
points z, y of M such that x € A and y € A holds p(z,y) < r and for
every s such that for all points x, y of M such that x € A and y € A
holds p(x,y) < s holds r < s.

(28) If A= {g}, then VA =0.
(29) If A+#( and A is bounded, then 0 < VA.

(30) If A+# () and A is bounded, then VA = 0 if and only if there exists a
point g of M such that A = {g}.

(31) If 0 <, then VBall(g,r) <2-7.

(32) If A+# 0 and A is bounded and B # () and B C A, then B is bounded
and VB < VA.
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If A+# () and A is bounded and B # () and B is bounded and ANB # (),
then AU B is bounded and V(AU B) < VA + VB.

Let us consider M, S1. Then rng S; is a subset of the carrier of M.
One can prove the following proposition
(34)

If S7 is a Cauchy sequence, then rng S; is bounded.
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The articles [13], [2], [14], [3], [1], [11], [7], 5}, [4], (12], [10], [6], 9], and [g]
provide the notation and terminology for this paper. For simplicity we follow
the rules: z, y will be arbitrary, D will be a non-empty set, U; will be a
universal class, and G, H will be group structures. Let us consider x. Then
{z} is a non-empty set.

The following propositions are true:

(1) For all sets X, Y, A and for all z, y such that (z, y) € Aand A C [ X,
Y ] holds z is an element of X and y is an element of Y.

(2) Forallsets X, Y, A and for an arbitrary z such that z € Aand A C [ X
Y ] there exists an element z of X and there exists an element y of Y such
that z = (z, y).

(3) For all elements uq, ug, us, ug of Uy holds (uq, uz, ug) is an element of
Uy and (uq,u2,us,us) is an element of Uj.

(4)  For all z, y such that € y and y € U; holds z € Uj.

In this article we present several logical schemes. The scheme PartLambda2
deals with a set A, a set B, a set C, a binary functor F, and a binary predicate
P, and states that:

there exists a partial function f from [ A, B to C such that for all =, y holds
(z, y) € dom f if and only if x € A and y € B and P[x,y] and for all z, y such
that (x, y) € dom f holds f({z, y)) = F(z,y)
provided the following requirement is met:

e for all x, y such that x € Aand y € B and P|z, y] holds F(x,y) € C.

The scheme PartLambda2D deals with a non-empty set A, a non-empty set
B, a set C, a binary functor F, and a binary predicate P, and states that:
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there exists a partial function f from [ A, B to C such that for every element
x of A and for every element y of B holds (x, y) € dom f if and only if P|x,
y] and for every element x of A and for every element y of B such that (z,
y) € dom f holds f({z, y)) = F(z,y)
provided the parameters satisfy the following condition:
e for every element x of A and for every element y of B such that
Pz, y] holds F(z,y) € C.
We now define three new functors. op, is a binary operation on {{}.
op; is a unary operation on {(}.
opg is an element of {(}.
We now state three propositions:
(5)  opy(M, B) = 0 and op,(0) = () and op, = 0.
(6) {0} € Uy and ({0}, {0}) € Uy and [ {0}, {0}] € Uy and op, € U; and
op; € Uy.
(7) ({0}, 0p4,0py,0p,) is a group with the operator 3.
1

The trivial group being a group with the operator 5 is defined as follows:

(Def.1)  the trivial group= ({0}, ops, 0p;, 0py)-
We now state the proposition

(8) If G = the trivial group , then for every element z of G holds x = ()
and for all elements z, y of G holds z 4+ y = () and for every element x of
G holds —z = () and 0g = 0.
In the sequel C denotes a category and O denotes a non-empty subset of the
objects of C. Let us consider C, O. The functor Morphs O yields a non-empty
subset of the morphisms of C' and is defined by:

(Def.2)  Morphs O = |[J{hom(a,b) : a € O Ab € O}, where a ranges over objects
of C, and b ranges over objects of C.
We now define four new functors. Let us consider C', O. The functor dom O
yielding a function from Morphs O into O is defined by:
(Def.3)  domO = (the dom-map of C) | MorphsO.
The functor cod O yields a function from Morphs O into O and is defined by:
(Def.4)  cod O = (the cod-map of C') | Morphs O.

The functor comp O yielding a partial function from [ Morphs O, Morphs O qua a
non-empty set ] to Morphs O is defined as follows:

(Detf.5)  comp O = (the composition of C') | | Morphs O, Morphs O J.
The functor Ip yielding a function from O into Morphs O is defined by:
(Def.6) 1o = (the id-map of C) | O.
Next we state the proposition
(9)  (O,Morphs O,dom O, cod O, comp O, 1) is full subcategory of C.

Let us consider C'; O. The functor cat O yielding a subcategory of C is
defined as follows:

(Def.7)  cat O = (O, Morphs O, dom O, cod O, comp O, 1p).
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Next we state the proposition
(10)  The objects of cat O = O.

Let us consider G, H. A map from G into H is a function from the carrier
of G into the carrier of H.

Let G1, G2, G3 be group structures, and let f be a map from G; into Go,
and let g be a map from G5 into G3. Then ¢ - f is a map from Gy into Gj.

Let us consider G. The functor idg yields a map from G into G and is defined
by:
(Def8) dg = id(the carrier of G)-
One can prove the following two propositions:
(11)  For every element x of G holds idg(x) = z.
(12)  For every map f from G into H holds f -idg = f and idy -f = f.
Let us consider G, H. The functor zero(G, H) yielding a map from G into
H is defined by:
(Det.9)  zero(G, H) = (the carrier of G) — 0g.
Let us consider G, H, and let f be a map from G into H. We say that f is
additive if and only if:
(Def.10)  for all elements x, y of G holds f(z +y) = f(x) + f(y).

One can prove the following propositions:

(13)  For all Gy, G2, G3 being group structures and for every map f from G4
into G5 and for every map g from G4 into G3 and for every element = of
Gy holds (g f)(z) = g(f(x)).

(14)  For all Gy, G2, G3 being group structures and for every map f from G4
into G9 and for every map ¢ from G into G5 such that f is additive and
g is additive holds ¢ - f is additive.

(15)  For every element z of G holds (zero(G, H))(xz) = 0p.

(16)  For every group H holds zero(G, H) is additive.

In the sequel G, H are groups. We consider group morphism structures
which are systems

(a dom-map, a cod-map, a Fun),
where the dom-map, the cod-map are a group and the Fun is a map from the
dom-map into the cod-map.

We now define two new functors. Let f be a group morphism structure. The
functor dom f yielding a group is defined as follows:

(Def.11)  dom f = the dom-map of f.
The functor cod f yields a group and is defined by:
(Def.12)  cod f = the cod-map of f.
Let f be a group morphism structure. The functor fun f yields a map from
dom f into cod f and is defined by:
(Def.13)  fun f = the Fun of f.
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Next we state the proposition

(17)  For every f being a group morphism structure and for all groups G,
G2 and for every map fj from G into Gg such that f = (G1, G2, fo) holds
dom f = G and cod f = G5 and fun f = fj.
Let us consider GG, H. The functor ZERO G yielding a group morphism
structure is defined as follows:
(Def.14)  ZEROG = (G, H,zero(G, H)).
A group morphism structure is said to be a morphism of groups if:
(Def.15)  funit is additive.

One can prove the following proposition
(18)  For every morphism F' of groups holds the Fun of F is additive.
Let us consider G, H. Then ZERO G is a morphism of groups.

Let us consider GG, H. A morphism of groups is said to be a morphism from
G to H if:

(Def.16)  domit = G and codit = H.

We now state three propositions:

(19)  For every f being a group morphism structure such that dom f = G
and cod f = H and fun f is additive holds f is a morphism from G to H.

(20)  For every map f from G into H such that f is additive holds (G, H, f)
is a morphism from G to H.

(21) idg is additive.
Let us consider G. The functor Ig yields a morphism from G to G and is
defined by:
(Def.17)  Ig = (G,G,idg).
Let us consider G, H. Then ZERO G is a morphism from G to H.
We now state several propositions:

(22)  For every morphism F from G to H there exists a map f from G into
H such that F = (G, H, f) and f is additive.

(23)  For every morphism F from G to H there exists a map f from G into
H such that F = (G, H, f).

(24)  For every morphism F' of groups there exist G, H such that F is a
morphism from G to H.

(25)  For every morphism F' of groups there exist groups G, H and there
exists a map f from G into H such that F' is a morphism from G to H
and F' = (G, H, f) and f is additive.

(26)  For all morphisms g, f of groups such that domg = cod f there exist
groups GGy, Go, G3 such that ¢ is a morphism from G5 to G3 and f is a
morphism from G7 to Go.

(27)  For every morphism F' of groups holds F' is a morphism from dom F' to
cod F.
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Let GG, F be morphisms of groups. Let us assume that dom G = cod F. The
functor G - F' yielding a morphism of groups is defined by:

(Def.18)  for all groups G1, G2, G and for every map ¢ from G5 into G5 and for
every map f from G; into Gy such that G = (G2,Gs,g) and F = (G,
Gg,f> holds G - F' = <G1,G3,g : f)

Next we state the proposition

(28)  For all groups G1, G2, G3 and for every morphism G from G to Gj3
and for every morphism F' from G to Gs holds G- F' is a morphism from
G1 to Gs.

Let Gy, G2, G3 be groups, and let G be a morphism from G5 to Gg, and let
F be a morphism from G to Gy. Then G - F is a morphism from G7 to Gj.
The following propositions are true:

(29) For all groups G1, G2, G3 and for every morphism G from G to Gj3
and for every morphism F' from G to G2 and for every map ¢ from Go
into G3 and for every map f from G into G9 such that G = (G, Gj3,g)
and F' = (G1,Go, f) holds G- F = (G1,G3,9 - f).

(30)  For all morphisms f, g of groups such that dom g = cod f there exist
groups G1, Ga, G3 and there exists a map fo from G into G2 and there
exists a map go from G into G3 such that f = (G1, G2, fo) and g = (G,
Gs.90) and g - f = (G1,G3, 90 - fo)-

(31)  For all morphisms f, g of groups such that dom g = cod f holds dom(g-
f) =dom f and cod(g - f) = cod g.

(32)  For all groups Gy, Ga, G3, G4 and for every morphism f from G; to
G2 and for every morphism g from G5 to G5 and for every morphism h
from G3 to Gy holds h - (g- f)=h-g- f.

(33) For all morphisms f, g, h of groups such that domh = codg and
domg =cod fholds h-(g-f)=h-g- f.

(34)  dom(lg) = G and cod(Ig) = G and for every morphism f of groups
such that cod f = G holds Ig - f = f and for every morphism g of groups
such that domg = G holds g - Ig = g.

A non-empty set is called a non-empty set of groups if:
(Def.19)  for every element x of it holds x is a group.
In the sequel V will be a non-empty set of groups. Let us consider V. We
see that the element of V is a group.
We now state two propositions:

(35)  For every morphism f of groups and for every element z of {f} holds
x is a morphism of groups.

(36)  For every morphism f from G to H and for every element x of {f}
holds z is a morphism from G to H.

A non-empty set is called a non-empty set of morphisms of groups if:

(Def.20)  for every element x of it holds x is a morphism of groups.



568 MICHAL MUZALEWSKI

Let M be a non-empty set of morphisms of groups. We see that the element
of M is a morphism of groups.

We now state the proposition

(37)  For every morphism f of groups holds {f} is a non-empty set of mor-
phisms of groups.

Let us consider G, H. A non-empty set of morphisms of groups is called a
non-empty set of morphisms from G into H if:

(Def.21)  for every element z of it holds = is a morphism from G to H.

The following two propositions are true:

(38) D is a non-empty set of morphisms from G into H if and only if for
every element x of D holds x is a morphism from G to H.

(39) For every morphism f from G to H holds {f} is a non-empty set of
morphisms from G into H.

Let us consider G, H. The functor Morphs(G, H) yields a non-empty set of
morphisms from G into H and is defined by:

(Def.22)  x € Morphs(G, H) if and only if = is a morphism from G to H.
Let us consider G, H, and let M be a non-empty set of morphisms from G
into H. We see that the element of M is a morphism from G to H.
Let us consider z, y. The predicate Py, x, y is defined by:

(Def.23)  there exist arbitrary xy, xo, x3, x4 such that x = (x1,x9,x3,24) and
there exists G such that y = G and x1 = the carrier of G and x9 = the
addition of G and z3 = the reverse-map of G and x4 = the zero of G.

One can prove the following two propositions:
(40)  For arbitrary x, y1, y2 such that Py, 2,91 and Py, 2, y2 holds y; = yo.
(41)  There exists x such that z € Uy and Py, x,the trivial group .

Let us consider U;. The functor GroupObj(U;) yields a non-empty set and
is defined as follows:

(Def.24)  for every y holds y € GroupObj(U;) if and only if there exists = such
that € Uy and Py 2, y.
The following propositions are true:
(42)  The trivial groupe GroupObj(Uy).
(43)  For every element z of GroupObj(U7) holds z is a group.
Let us consider U;. Then GroupObj(U;) is a non-empty set of groups.

Let us consider V. The functor Morphs V' yielding a non-empty set of mor-
phisms of groups is defined by:

(Def.25)  for every z holds x € Morphs V' if and only if there exist elements G,
H of V such that z is a morphism from G to H.

Let us consider V, and let F' be an element of Morphs V. Then dom F' is an
element of V. Then cod F' is an element of V.
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Let us consider V', and let G be an element of V. The functor 14 yields an
element of Morphs V' and is defined by:

(Def.26) 1¢ =1g.

We now define three new functors. Let us consider V. The functor dom V'
yields a function from MorphsV into V' and is defined as follows:

(Def.27)  for every element f of Morphs V' holds (dom V')(f) = dom f.

The functor cod V' yields a function from MorphsV into V and is defined as
follows:

(Def.28)  for every element f of Morphs V' holds (cod V)(f) = cod f.

The functor Iy yielding a function from V into Morphs V' is defined as follows:

(Def.29)  for every element G of V holds Iy (G) = I¢.

One can prove the following two propositions:
(44)  For all elements g, f of Morphs V such that dom g = cod f there exist
elements G, G2, G3 of V such that g is a morphism from G5 to G3 and
f is a morphism from G to Gbs.
(45)  For all elements g, f of Morphs V' such that dom g = cod f holds g- f €
Morphs V.
Let us consider V. The functor compV yields a partial function from
f Morphs V, Morphs V' | to Morphs V' and is defined by:

(Def.30)  for all elements g, f of MorphsV holds (g, f) € domcompV if and

only if dom g = cod f and for all elements g, f of Morphs V' such that (g,
f) € dom comp V" holds (comp V)({g, f)) =g- f.

Let us consider U;. The functor GroupCat(U;) yielding a category structure
is defined by:

(Def.31)  GroupCat(U;) = (GroupObj(U;), Morphs GroupObj(U, ),

dom GroupObj(Uy ), cod GroupObj(Uy ), comp GroupObj(U1), Igroupobj(tn))-
Next we state several propositions:

(46)  For all morphisms f, g of GroupCat(U;) holds (g, f) € dom (the com-
position of GroupCat(U1)) if and only if dom g = cod f.

(47)  For every morphism f of GroupCat(U;) and for every element f’ of
Morphs GroupObj(Uy)
and for every object b of GroupCat(U;) and for every element b of
GroupObj(Uy) holds f is an element of Morphs GroupObj(U;) and f’
is a morphism of GroupCat(U;) and b is an element of GroupObj(U;)
and b’ is an object of GroupCat(Uy).

(48)  For every object b of GroupCat(U) and for every element b’
of GroupObj(U;) such that b = b’ holds
idy = Iy

(49)  For every morphism f of GroupCat(U;) and for every element f’ of
Morphs GroupObj(U;) such that f = f’ holds dom f = dom f’ and
cod f = cod f’.
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(50) Let f, g be morphisms of GroupCat(U;). Let f’, ¢’ be elements of
Morphs GroupObj(U;). Suppose f = f' and g = ¢’. Then
) domg = cod f if and only if dom g’ = cod [,
) domg = cod f if and only if (¢, f') € dom comp GroupObj(U),
iii) if domg=cod f,theng-f=g¢"-f,
iv) dom f = dom g if and only if dom ' = dom ¢/,
) cod f =codg if and only if cod f/ = cod ¢'.
Let us consider U;. Then GroupCat(U;) is a category.
Let us consider U;. The functor AbGroupObj(U;) yielding a non-empty
subset of the objects of GroupCat(U;) is defined as follows:

(Def.32)  AbGroupObj(U;) = {G : Vg G = H}, where G ranges over elements of
the objects of GroupCat(U;), and H ranges over Abelian groups.
One can prove the following proposition
(51)  The trivial groupe AbGroupObj(Uy).
Let us consider U;. The functor AbGroupCat(U;) yielding a subcategory of
GroupCat(U;) is defined as follows:
(Def.33)  AbGroupCat(U;) = cat AbGroupObj(Uy ).

We now state the proposition
(52)  The objects of AbGroupCat(U;) = AbGroupObj(Uy).

Let us consider U;. The functor %GroupObj(Ul) yields a non-empty subset
of the objects of AbGroupCat(U;) and is defined as follows:

(Def.34) 4 GroupObj(Uy) = {G : Vy G = H}, where G ranges over elements
of the objects of AbGroupCat(U;), and H ranges over groups with the
operator %

Let us consider U;. The functor %GroupCat(Ul) yields a subcategory of
AbGroupCat(U;) and is defined by:

(Def.35) 4 GroupCat(U) = cat  GroupObj(Un).
Next we state two propositions:
(53)  The objects of & GroupCat(U;) =  GroupObj(Uy).
(54)  The trivial groupe 3 GroupObj(Uy).
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provide the terminology and notation for this paper. The following proposition
is true

(1)  For all non-empty sets A, B and for every function f from A into B
holds f is one-to-one if and only if for all elements a, b of A such that
f(a) = f(b) holds a = b.
Let G be a group, and let A be a subgroup of G. We see that the subgroup
of A is a subgroup of G.

Let G be a group, and let A be a subgroup of G. We see that the normal
subgroup of A is a subgroup of A.

Let G be a group. Then {1}¢ is a normal subgroup of G. Then Qg is a
normal subgroup of G.

For simplicity we adopt the following rules: n is a natural number, ¢ is an
integer, G, H, I are groups, A, B are subgroups of G, N, M are normal
subgroups of G, a, a1, as, ag, b are elements of G, ¢ is an element of H, f is a
function from the carrier of G into the carrier of H, x is arbitrary, and A, Ao
are subsets of G. One can prove the following propositions:

(2)  For every subgroup X of A and for every element z of A such that x = a
holds - X = a - X quaa subgroup of G and X -z = (X qua a subgroup
of G) - a.

(3)  For all subgroups X, Y of A holds (X qua a subgroup of G) NY quaa
subgroup of G =X NY.

@ 1991 Fondation Philippe le Hodey
573 ISSN 0777-4028



074 WOJCIECH A. TRYBULEC et al.
(4 a-b-at=b"anda-(b-at)=0b""

(5) Ifbe N, then db* € N.

6) a-A-A=a-Aanda-(A-A) =a-Aand A-A-a = A-a and
A-(A-a)=A"a.

(7))  If A ={[a,b]}, then G = gr(A).

(8) G€is a subgroup of B if and only if for all a, b holds [a,b] € B.

(9) If N is a subgroup of B, then N is a normal subgroup of B.

Let us consider GG, B, M. Let us assume that M is a subgroup of B. The
functor (M)p yielding a normal subgroup of B is defined as follows:

(Def.l) (M) = M.
One can prove the following proposition

(10) BN N is a normal subgroup of B and N N B is a normal subgroup of
B.

Let us consider G, B, N. Then BN N is a normal subgroup of B.
Let us consider G, N, B. Then N N B is a normal subgroup of B.
A group is trivial if:

(Def.2)  there exists = such that the carrier of it = {x}.
One can prove the following propositions:

(11)  {1}¢ is trivial.

(12) G is trivial if and only if ord(G) = 1 and G is finite.

(13) If G is trivial, then {1} = G.

Let us consider G, N. The functor Cosets N yielding a non-empty set is
defined by:
(Def.3)  Cosets N = the left cosets of N.
In the sequel Wy, Wy denote elements of Cosets N. One can prove the fol-
lowing propositions:

(14)  Cosets N = the left cosets of N and Cosets N = the right cosets of V.
15)  If € Cosets N, then there exists a such that xt =a- N and x = N - a.
16) a-N € Cosets N and N - a € Cosets N.

17)  If z € Cosets N, then z is a subset of G.
18) If A; € Cosets N and Ay € Cosets N, then A; - Ay € Cosets N.

Let us consider G, N. The functor CosOp N yields a binary operation on
Cosets N and is defined by:

(Def.4)  for all Wy, Ws, Ay, As such that W; = A; and Wy = As holds
(COSOp N)(Wl, Wg) = Al . AQ.
In the sequel O is a binary operation on Cosets V. One can prove the fol-
lowing two propositions:
(19)  If for all Wy, Wo, Ay, As such that W7 = Ay and Wy = As holds O(W7,
W5) = Ay - Ag, then O = CosOp N.

(
(
(
(
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(20)  For all Wy, Wy, Ay, Ay such that W3 = A; and Wy = As holds
(COSOp N)(Wl, Wg) = A1 . Ag.
Let us consider G, N. The functor ¢/ yields a half group structure and is
defined as follows:
(Def.5) ¢ /n = (Cosets N, CosOp N).
One can prove the following propositions:
(21)  ¢/n = (Cosets N, CosOp N).
(22)  The carrier of ¢/5 = Cosets N.
(23)  The operation of /5 = CosOp N.

In the sequel S, Ty, Ty denote elements of /5. Let us consider G, N, S.
The functor @S yields a subset of G and is defined by:

(Def.6) ©S=38.
One can prove the following two propositions:
(24)  (°T) - (°Ty) =T} - Tn.
(25) 9Ty Ty = (°Ty) - (°Ty).
Let us consider G, N. Then ¢ /N is a group.
In the sequel S will denote an element of ¢/x. The following propositions
are true:
(26)  There exists a such that S=a-N and S = N - a.
(27) N -ais an element of @/ and a - N is an element of ¢/ and N is an
element of &/ .

(28) x € @/ if and only if there exists a such that z = a- N and z = N - a.
(29) 1, =N.

(30) IfS=a-N,then S'=a"1-N.

(31)  If the left cosets of N is finite, then ¢/ is finite.

(32)  Ord(%/n)=|e: N]|.

(33)  If the left cosets of N is finite, then ord(%/x) = e : Ny .

(34) If M is a subgroup of B, then B/(M)B is a subgroup of ¢/ ;.

(35) If M is a subgroup of N, then N/(M)N is a normal subgroup of & /.
(36) ©/n is an Abelian group if and only if G€ is a subgroup of N.

Let us consider G, H. A function from the carrier of GG into the carrier of H
is called a homomorphism from G to H if:

(Def.7)  it(a-b) =it(a) - it(b).
One can prove the following proposition
(37)  If for all a, b holds f(a-b) = f(a)- f(b), then f is a homomorphism
from G to H.
In the sequel g, A will be homomorphisms from G to H, g1 will be a homo-

morphism from H to G, and hi will be a homomorphism from H to I. One can
prove the following propositions:
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()
Qo

dom g = the carrier of G and rng g C the carrier of H.
g(a-b) =g(a) - g(b).

= b B W
N = O ©

I
SRS

e e e e e e e e e o om
e~ e~
~ w
N O N Y N
<

id(the carrier of ) 18 @ homomorphism from G to G.

W
o

hy - h is a homomorphism from G to I.
Let us consider G, H, I, h, hy. Then hy - h is a homomorphism from G to I.
Let us consider G, H, g. Then rngg is a subset of H.

Let us consider G, H. The functor G — {1}y yields a homomorphism from
G to H and is defined by:

(Def.8)  for every a holds (G — {1}y)(a) = 1g.
The following proposition is true
(49) h1-(G—{1}y)=G —{1};and (H — {1};)-h=G — {1};.
Let us consider G, N. The canonical homomorphism onto cosets of N yield-
ing a homomorphism from G to ¢/ is defined as follows:
(Def.9)  for every a holds (the canonical homomorphism onto cosets of N)(a) =
a-N.
Let us consider GG, H, g. The functor Ker g yields a normal subgroup of G
and is defined by:
(Def.10)  the carrier of Kerg = {a : g(a) = 15}.
The following three propositions are true:
(50) a € Kerh if and only if h(a) = 1.
(51) Ker(G —{1}y) =G.
(52)  Ker(the canonical homomorphism onto cosets of N) = N.

Let us consider G, H, g. The functor Im g yields a subgroup of H and is
defined as follows:

(Def.11)  the carrier of Im g = ¢° (the carrier of G).
Next we state a number of propositions:

53

5

rng g = the carrier of Im g.

=

x € Im g if and only if there exists a such that z = g(a).
Im g = gr(rgg).
Im(G — {1}n) = {1}n.

Im(the canonical homomorphism onto cosets of N) = &/ .

(@}
ot

(@)
g

e N N N
(@)1 (S0
oo D
— N Y — ~— —

h is a homomorphism from G to Im h.
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59)  If G is finite, then Im g is finite.

60) If G is an Abelian group, then Im g is an Abelian group.
61) Ord(Img) < Ord(G).

62) If G is finite, then ord(Img) < ord(G).

We now define two new predicates. Let us consider G, H, h. We say that h
is a monomorphism if and only if:

(Def.12)  h is one-to-one.
We say that h is an epimorphism if and only if:
(Def.13)  rngh = the carrier of H.

We now state several propositions:
63) If h is a monomorphism and ¢ € Im h, then h(h~!(c)) = c.
6
6
6
6
68
69

Let us consider G, H, h. We say that h is an isomorphism if and only if:

g

3
LrJeseses

If h is a monomorphism, then A~ (h(a)) = a.

t

If h is a monomorphism, then ="' is a homomorphism from Im A to G.

(=)

h is a monomorphism if and only if Kerh = {1}¢.

h is an epimorphism if and only if Imh = H.

If h is an epimorphism, then for every ¢ there exists a such that h(a) = c.
The canonical homomorphism onto cosets of N is an epimorphism.

o~~~ o~ o~ o~ o~

(Def.14)  h is an epimorphism and h is a monomorphism.

One can prove the following propositions:

(70)  h is an isomorphism if and only if rngh = the carrier of H and h is
one-to-one.

(71)  If h is an isomorphism, then dom h = the carrier of G and rngh = the
carrier of H.

(72)  If h is an isomorphism, then h~! is a homomorphism from H to G.
(73)  If h is an isomorphism and g; = h~!, then g; is an isomorphism.

(74) If h is an isomorphism and hj is an isomorphism, then h; - h is an
isomorphism.

(75)  The canonical homomorphism onto cosets of {1}« is an isomorphism.
Let us consider G, H. We say that G and H are isomorphic if and only if:
(Def.15)  there exists h such that h is an isomorphism.

We now state a number of propositions:
(76) G and G are isomorphic.
(77) If G and H are isomorphic, then H and G are isomorphic.

(78) If G and H are isomorphic and H and I are isomorphic, then G and I
are isomorphic.

(79) If h is a monomorphism, then G and Im A are isomorphic.
(80) If G is trivial and H is trivial, then G and H are isomorphic.
(81) {1}g and {1}y are isomorphic.
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G and ¢/ {1} are isomorphic and G/ (1} and G are isomorphic.
G /g is trivial.
If G and H are isomorphic, then Ord(G) = Ord(H).

If G and H are isomorphic but G is finite or H is finite, then G is finite
and H is finite.

If G and H are isomorphic but G is finite or H is finite, then ord(G) =
ord(H).

If G and H are isomorphic but G is trivial or H is trivial, then G is
trivial and H is trivial.

If G and H are isomorphic but G is an Abelian group or H is an Abelian
group, then G is an Abelian group and H is an Abelian group.

G /Kerg and Im g are isomorphic and Im g and G/ Ker g are isomorphic.

There exists a homomorphism A from G/ Kerg to Img such that h is
an isomorphism and g = h- the canonical homomorphism onto cosets of
Kerg.

For every normal subgroup J of ¢/, such that J =~/ (M)y and M is

a subgroup of NV holds (“/n) /7 and ¢/ are isomorphic.

(BuN)/(N)BuN and B/(BQN) are isomorphic.
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Summary. We define the trivial left module, morphism of left
modules and the field Z3. We proof some elementary facts.

MML Identifier: MOD_2.

The terminology and notation used in this paper are introduced in the following
articles: [14], [13], [4], [5], [6], [2], [3], [1], [7], [9], [11], [12], [10], and [8]. For
simplicity we adopt the following convention: x, y, z are arbitrary, D is a non-
empty set, R, Ri, Ro, R3 are associative rings, G is a left module structure
over R, H is a left module structure over R, S is a left module structure over
R, G is a left module structure over Ri, Go is a left module structure over
Ry, G3 is a left module structure over R3, and U; is a universal class. Let us
consider x. Then {z} is a non-empty set.

Let us consider R. lop(R) is a function from [ the carrier of R, the carrier
of the trivial group ] into the carrier of the trivial group.

Let us consider R. The functor r© yields a left module over R and is defined
by:

(Def.1)  r©® = (the trivial group, lop(R)).
Next we state the proposition
(1)  For every vector z of g© holds z = © 6.

Let us consider R, Ry, G1, Go. A map from (7 into G5 is a map from the
carrier of G1 into the carrier of Gs.
Let us consider Ry, Ry, R3, G1, G2, G3, and let f be a map from (G into
(9, and let g be a map from G5 into G3. Then ¢ - f is a map from G4 into Gj.
Let us consider R, G. The functor idg yielding a map from G into G is
defined as follows:
(DefQ) dg = id(the carrier of G)*

© 1991 Fondation Philippe le Hodey
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The following propositions are true:
(2)  For every vector x of G holds idg(x) = =.
(3)  For every map f from G into Go holds f -idg, = f and idg, -f = f.
Let us consider R;, Ra, G1, Ga. The functor zero(G1, G2) yields a map from
G into G5 and is defined as follows:
(Def.3)  zero(Gy,G2) = zero( the carrier of Gy, the carrier of Gs).

Let us consider R, and let G, H be left module structures over R, and let f
be a map from G into H. We say that f is linear if and only if:

(Def.4)  for all vectors z, y of G holds f(z 4+ y) = f(z) + f(y) and for every
scalar a of R and for every vector x of G holds f(a-z)=a- f(z).

The following propositions are true:
(4)  For every map f from G into H such that f is linear holds f is additive.

(5)  For every map f from G; into G2 and for every map g from G into G3
and for every vector x of G1 holds (g - f)(z) = g(f(x)).

(6) For every map f from G into H and for every map g from H into S

such that f is linear and g is linear holds ¢ - f is linear.

For simplicity we adopt the following rules: R, Ri, Ry denote associative
rings, G denotes a left module over R, H denotes a left module over R, Gy
denotes a left module over R;, and Go denotes a left module over Ry. The
following propositions are true:

(7)  For every vector x of G holds (zero(G1,G2))(z) = O¢,.

(8)  zero(G, H) is linear.

In the sequel G; will denote a left module over R, Go will denote a left
module over R, and G3 will denote a left module over R. Let us consider R.
We consider left module morphism structures over R which are systems

(a dom-map, a cod-map, a Fun),
where the dom-map, the cod-map are a left module over R and the Fun is a map
from the dom-map into the cod-map.

In the sequel f will be a left module morphism structure over R. We now
define two new functors. Let us consider R, f. The functor dom f yields a left
module over R and is defined as follows:

(Detf.5)  dom f = the dom-map of f.
The functor cod f yields a left module over R and is defined as follows:
(Def.6)  cod f = the cod-map of f.
Let us consider R, f. The functor fun f yields a map from dom f into cod f
and is defined by:
(Detf.7)  fun f = the Fun of f.

One can prove the following proposition

(9) For every map fo from G; into G such that f = (G1,Gs, fo) holds
dom f = GG1 and cod f = G2 and fun f = fj.



RINGS AND MODULES - PART II 583

Let us consider R, G, H. The functor ZERO G yielding a left module mor-
phism structure over R is defined as follows:

(Def.8) ZEROG = (G, H,zero(G, H)).
Let us consider R. A left module morphism structure over R is said to be a
left module morphism of R if:
(Detf.9)  funit is linear.

One can prove the following proposition
(10)  For every left module morphism F' of R holds the Fun of F is linear.
Let us consider R, G, H. Then ZERO G is a left module morphism of R.

Let us consider R, G, H. A left module morphism of R is said to be a
morphism from G to H if:

(Def.10)  domit = G and codit = H.

One can prove the following three propositions:

(11) If dom f = G and cod f = H and fun f is linear, then f is a morphism
from G to H.

(12)  For every map f from G into H such that f is linear holds (G, H, f) is
a morphism from G to H.

(13)  idg is linear.
Let us consider R, G. The functor I yields a morphism from G to G and is
defined by:
(Def.11) I = (G,G,idg).
Let us consider R, G, H. Then ZERO G is a morphism from G to H.
The following propositions are true:

(14)  For every morphism F' from G to H there exists a map f from G into
H such that F = (G, H, f) and f is linear.

(15)  For every morphism F' from G to H there exists a map f from G into
H such that F' = (G, H, f).

(16)  For every left module morphism F' of R there exist G, H such that F
is a morphism from G to H.

(17)  For every left module morphism F' of R there exist left modules G, H
over R and there exists a map f from G into H such that F' is a morphism
from G to H and F = (G, H, f) and f is linear.

(18)  For all left module morphisms g, f of R such that dom g = cod f there
exist GG1, Go, G3 such that ¢ is a morphism from G2 to Gg and f is a
morphism from G7 to Go.

(19)  For every left module morphism F' of R holds F is a morphism from
dom F' to cod F.

Let us consider R, and let G, F be left module morphisms of R. Let us
assume that dom G = cod F'. The functor G - F' yields a left module morphism
of R and is defined as follows:
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(Def.12)  for all left modules Gy, G2, G3 over R and for every map g from Go
into G3 and for every map f from G into G9 such that G = (G, Gj3,g)
and F' = (G1,Go, f) holds G- F = (G1,Gs,g - f).
Next we state the proposition
(20)  For every morphism G from G2 to G5 and for every morphism F' from
G1 to G9 holds G - F' is a morphism from G4 to Gg.

Let us consider R, G1, G2, G3, and let G be a morphism from G5 to GG3, and
let F' be a morphism from G; to G2. The functor F[G] yielding a morphism
from G to G3 is defined by:

(Def.13) F[G] =G -F.

We now state several propositions:

(21) Let G be a morphism from Gy to G3. Then for every morphism F
from GG1 to Go and for every map g from G4 into GG3 and for every map
f from G into G4 such that G = (G2, Gs,g) and F = (G1,G2, f) holds
F[G] =(G1,G3,9- f) and G- F = (G1,G3,9 - f).

(22) Let f, g be left module morphisms of R. Then if dom g = cod f, then
there exist left modules Gy, G2, G3 over R and there exists a map fy from
G into G5 and there exists a map g from Gy into G5 such that f = (G,
G2, fo) and g = (G2,G3,90) and g - f = (G1,G3, 90 - fo)-

(23)  For all left module morphisms f, g of R such that dom g = cod f holds
dom(g - f) = dom f and cod(g - f) = cod g.

(24)  For all left modules G, G2, G, G4 over R and for every morphism f

from G to G2 and for every morphism ¢ from G5 to GG3 and for every
morphism h from G3 to G4 holds h-(g- f)=h-g- f.

(25)  For all left module morphisms f, g, h of R such that dom h = cod g and
domg =cod f holds h-(g- f)=h-g- f.

(26) dom(Ig) = G and cod(Ig) = G and for every left module morphism
f of R such that cod f = G holds Ig - f = f and for every left module
morphism g of R such that domg = G holds g-Ig =g.

(27)  {x,y,z} is a non-empty set.
Let us consider z, y, z. Then {x,y, z} is a non-empty set.
We now state four propositions:
(28)  For all elements u, v, w of Uy holds {u,v,w} is an element of Uj.
(29)  For every element u of U; holds succu is an element of Uj.
(30) 0 is an element of U; and 1 is an element of U; and 2 is an element of
U;.
(31) 0#1and0#2and1#2.
In the sequel a, b will be elements of {0,1,2}. We now define three new

functors. Let us consider a. The functor —a yields an element of {0, 1,2} and
is defined as follows:
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(Def.14) (i) —a=0ifa=0,
(i) —a=2ifa=1,
(i) —a=1ifa=2.
Let us consider b. The functor a+ b yields an element of {0,1,2} and is defined

(Def.15) (i) a+b=0bifa=0,
) a+b=aifb=0,

) a+b=2ifa=T1andb=1,
(iv) a+b=0ifa=1and b=2,

) a+b=0ifa=2and b=1,

(vij a+b=1lifa=2and b=2.

The functor a - b yielding an element of {0, 1,2} is defined by:
(Def.16) (i) a-b=0if b =0,

(i) a-b=0ifa=0,

(i) a-b=aifb=1,
(iv) a-b=bifa=1,
(v) a-b=1ifa=2andb=2.

We now define five new functors. The binary operation adds on {0,1,2} is

defined by:
(Def.17)  adds(a, b) = a +b.

The binary operation mults on {0, 1,2} is defined by:
(Def.18)  mults(a, b) = a-b.

The unary operation compls on {0,1,2} is defined as follows:
(Def.19)  compls(a) = —a.

The element unitg of {0, 1,2} is defined as follows:
(Def.20)  unitg = 1.

The element zerog of {0, 1,2} is defined as follows:
(Def.21)  zeroz = 0.

The field structure Zs is defined by:
(Def.22) 73 = ({0,1,2}, mults, adds, compls, units, zeros).

Next we state several propositions:

(32) 0z, =0 and 1z, = 1 and 0y, is an element of {0,1,2} and 1z, is an
element of {0,1,2} and the addition of Z3 = adds and the multiplication
of Zs = mults and the reverse-map of Zs = compls.

(33)  For all scalars z, y of Z3 and for all elements X, Y of {0,1,2} such that
X=xzandY =yholdsx+y=X+Yandz-y=X-Y and —z = —X.

(34) Let z, y, z be scalars of Zs. Let X, Y, Z be elements of {0,1,2}.
Suppose X =xand Y =yand Z =z2. Thenz+y+2z=X+Y + Z and
z+@y+z)=X+Y+Z)andz-y-z2=X-Y-Zandz-(y-2) = X- (Y -2).
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(35) Let x, y, 2, a, b be elements of {0,1,2}. Suppose a = 0 and b = 1.

Then

i) z+y=y+u,

(i) z+y+tz=z+(y+2),
(ii) z+a=uw,

(iv) x4+ —z=aq,

(V) L-Yy=Yy-,

() zoyoz=o-(-2),
(vil) z-b=ux,
(viii)  if z # a, then there exists an element y of {0, 1,2} such that z-y = b,
(ix) a#b,

(x) z-(y+z2)=x-y+az-z

(36) Let F be a field structure. Suppose that
(i) for all scalars x, y, z of F holds z+y =y+z and z+y+z =2+ (y+2)
andx+0p =zandz+—z=0pandz-y=y-zandz-y-z=z-(y-2)
and x - 1p = x but if z # O, then there exists a scalar y of F' such that
z-y=lpandOp #lpandz-(y+2)=z-y+z- 2.
Then F is a field.
(37)  Zs is a Fano field.

Let us note that it makes sense to consider the following constant. Then Zg
is a Fano field.

In the sequel D’ is a non-empty set. One can prove the following propositions:

(38)  For every function f from D into D’ such that D € Uy and D’ € U
holds f € U;.

(39) For every G being a field structure such that the carrier of G € U;
holds the addition of G is an element of U; and the reverse-map of G is an
element of Uy and the zero of G is an element of U; and the multiplication
of GG is an element of U; and the unity of G is an element of U;.

(40)  The carrier of Zg € U; and the addition of Z3 is an element of U; and
the reverse-map of 73 is an element of U; and the zero of Z3 is an element
of Uy and the multiplication of Zs is an element of Uy and the unity of Zg
is an element of Uj.
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Summary. We define free modules and prove that every left mod-
ule over Skew-Field is free.

MML Identifier: MOD_3.

The papers [20], [5], [3], [2], [4], [19], [16], [14], [15], [1], [18], [6], [7], [8], [12],
[11], [9], [10], [13], and [17] provide the terminology and notation for this paper.
One can prove the following propositions:

(1)  For every ring R and for every scalar a of R such that —a = Og holds

a=20 R-

(2)  For every integral domain R holds Or # —1g.

For simplicity we follow the rules: z is arbitrary, R is an associative ring, V'
is a left module over R, L, L1, Ly are linear combinations of V', a is a scalar of
R, v, w are vectors of V, F'is a finite sequence of elements of the carrier of the
carrier of V', and C'is a finite subset of V. We now state several propositions:

(3) If —v=w, then v = —w.

(4)  X(OLcy) = Oy.

(5) L1+ Lo= Lo+ L.

(6) If support L C C, then there exists F' such that F' is one-to-one and
mgF =Cand > L =3 (LF).

() Y(a-L)y=a-> L.

(8) X(-L)=-XL.

(9) (L1 —L2) =3 L1 -3 Lo.

(10) L+ OLCV = L and OLCV +L=1L.

In the sequel W denotes a submodule of V', A, B denote subsets of V', and [
denotes a linear combination of A. Let us consider R, V', A. The functor Lin(A)
yielding a submodule of V is defined as follows:

© 1991 Fondation Philippe le Hodey
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(Def.1)  the carrier of the carrier of Lin(A) = {>[}.

The following propositions are true:
11) =z € Lin(A) if and only if there exists [ such that z = Y.
2) Ifz € A, then z € Lin(A).
3 Lin(@thc carrier of the carrier of V) =0y.
If Lin(A) = Oy, then A =0 or A= {Oy}.
If Or # 1 and A = the carrier of the carrier of W, then Lin(A) = W.
If Og # 1g and A = the carrier of the carrier of V, then Lin(A) =V
If A C B, then Lin(A) is a submodule of Lin(B).
If Lin(A) =V and A C B, then Lin(B) =V.
9) Lin(AUB) = Lin(A) + Lin(B).
0) Lin(AN B) is a submodule of Lin(A) N Lin(B).
Let us consider R, V. A subset of V is base if:

= = e
[S2 NN

= = =
0

)
)
)
)
)
)
)
)
)
)

e i T T N e NI e N NI N
—_
=2

[\~

(Def.2) it is linearly independent and Lin(it) = V.

Let us consider R. A left module over R is free if:

(Def.3)  there exists a subset B of it such that B is base.

We now state the proposition
(21) Oy is free.
Let us consider R. A left module over R is called a free left R-module if:

(Def.4) it is free.

For simplicity we adopt the following convention: R will denote a skew field,
a, b will denote scalars of R, V will denote a left module over R, v, vy, v9
will denote vectors of V', and A, B will denote subsets of V. The following
propositions are true:

(22)  Op# —1g.

(23)  {v} is linearly independent if and only if v # ©y .

(24) vy # vy and {vy, vy} is linearly independent if and only if v9 # Oy and
for every a holds v # a - va.

(25) vy # vy and {v1,v2} is linearly independent if and only if for all a, b
such that a-v; +b- vy = Oy holds a = 0g and b = Op.

(26) If A is linearly independent, then there exists B such that A C B and
B is base.

(27)  If Lin(A) = V, then there exists B such that B C A and B is base.

(28) V is free.

Let us consider R, V. A subset of V is called a basis of V if:

(Def.5) it is base.

In the sequel I is a basis of V. The following two propositions are true:
(29) If A is linearly independent, then there exists I such that A C I.
(30) If Lin(A) =V, then there exists I such that I C A.
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Summary. We present (in Euclidean and Minkowskian geome-
try) definitions and some properties of the oriented orthogonality rela-
tion. Next we consider consistence of Euclidean space and consistence of
Minkowskian space.

MML Identifier: ANALORT.

The terminology and notation used in this paper have been introduced in the
following articles: [1], [6], [7], [5], [3], [2], and [4]. We adopt the following rules:
V will denote a real linear space, u, ui, uo, v, v1, v2, w, wy, x, y will denote
vectors of V', and n will denote a real number. Let us consider V', z, y. Let us
assume that x, y span the space. Let us consider u. The functor p%y(u) yielding
a vector of V is defined as follows:

(Def.1)  pily(u) = my (u) -z + (=72, (u)) - y.
The following propositions are true:

(1) If 2, y span the space, then p)', (u -+ v) phL, (w) + P, (v).

(2) If x, y span the space, then pyy(n u p%y(u).

(3) If z, y span the space, then p%y(Ov)

(4) If x, y span the space, then pg/ly( u) = —pg/fy(u).

(5) If z, y span the space, then p, y(u v) = p%y( ) — pg/[y(v).

(6) If x, y span the space and pg/fy( ) = pg/ly( ) then u = v.

(7)  If 2, y span the space, then p)! (o', (u)) =

(8) If x, y span the space, then there exists v such that u = p%y(v).

Let us consider V', z, y. Let us assume that x, y span the space. Let us
consider u. The functor pg,y(u) yielding a vector of V is defined by:

(Def.2)  pf,(u) = 73, (u) - @ + (=7, (w)) - y.

© 1991 Fondation Philippe le Hodey
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Next we state several propositions:

(9) If x, y span the space, then pgy( v) = —pgy(v).
(10)  If z, y span the space, then p}, (u 4 v) = pi, (u) + pk , (v)
(11)  If x, y span the space, then pgy( —v) = pk,(u) — pgy(v).
(12) If x, y span the space, then p., y(n u) = pg,y(u).
(13) If x, y span the space and pg,y(u) = px,y(v), then u = v.
(14)  If z, y span the space, then pg’y(pg’y(u)) = —u.
(15)  If =, y span the space, then there exists v such that pgy(v) = u.

We now define two new predicates. Let us consider V', x, y, u, v, u1, v1. Let
us assume that z, y span the space. We say that the segments u, v and w1, vy
are E-coherently orthogonal in the basis z, y if and only if:

(Def.3) o5, (w), Py (0) 1 ua, o1
We say that the segments u, v and wj, v; are M-coherently orthogonal in the
basis x, y if and only if:

(Def.4) p%y(u),p%y(v) T g, 0.
One can prove the following propositions:
(16) EIf x, Yy ;pan the space, then if uw,v | w1,v;, then pg’y(u),pg’y(v) )
px,y(ul)ugm,y(vl)'
(17)  If z, y span the space, then if u,v ] wy,vq, then p%y(u),p%y(v) ]

phY, (u1), piL, (vr).

(18) If z, y span the space, then if the segments u, u; and v, vy are E-
coherently orthogonal in the basis x, y, then the segments v, v; and uq,
u are E-coherently orthogonal in the basis x, y.

(19) If z, y span the space, then if the segments u, u; and v, v; are M-
coherently orthogonal in the basis x, y, then the segments v, v and u, uy
are M-coherently orthogonal in the basis x, y.

(20) If z, y span the space, then the segments u, u and v, w are E-coherently
orthogonal in the basis z, y.

(21) If z, y span the space, then the segments u, u and v, w are M-coherently
orthogonal in the basis z, y.

(22) If z, y span the space, then the segments u, v and w, w are E-coherently
orthogonal in the basis z, y.

(23)  If z, y span the space, then the segments u, v and w, w are M-coherently
orthogonal in the basis z, y.

(24)  If 2, y span the space, then u, v, p&, (u) and p% (v) are orthogonal

w.r.t. x, vy.

B

(25) If z, y span the space, then the segments u, v and pgy(u), Py

E-coherently orthogonal in the basis z, y.

(v) are

M

2y (V) are

(26) If z, y span the space, then the segments u, v and pg/fy(u), P
M-coherently orthogonal in the basis x, y.



(27)

(29)

(38)
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If z, y span the space, then u,v || uy,v; if and only if there exist uo,
v such that uy # vo and the segments us, v9 and u, v are E-coherently
orthogonal in the basis =, y and the segments us, vo and wuq, v1 are E-
coherently orthogonal in the basis x, y.

If z, y span the space, then u,v || uy,v; if and only if there exist uo,
v such that us # vo and the segments us, vo and u, v are M-coherently
orthogonal in the basis z, y and the segments us, vo and wuq, v1 are M-
coherently orthogonal in the basis x, y.

If x, y span the space, then u, v, u; and v; are orthogonal w.r.t. x, y
if and only if the segments u, v and u1, v; are E-coherently orthogonal in
the basis x, y or the segments u, v and vy, u; are E-coherently orthogonal
in the basis z, y.

If x, y span the space and the segments u, v and w1, v; are E-coherently
orthogonal in the basis x, y and the segments u, v and vy, u; are E-
coherently orthogonal in the basis x, y, then u = v or u; = v;.

If z, y span the space and the segments u, v and w1, v; are M-coherently
orthogonal in the basis x, ¥ and the segments u, v and vy, u; are M-
coherently orthogonal in the basis z, y, then v = v or u1 = v1.

If z, y span the space and the segments u, v and w1, v; are E-coherently
orthogonal in the basis x, y and the segments u, v and uy, w are E-
coherently orthogonal in the basis x, y, then the segments u, v and vy, w
are E-coherently orthogonal in the basis x, y or the segments u, v and w,
v1 are E-coherently orthogonal in the basis z, y.

If , y span the space and the segments u, v and w1, vy are M-coherently
orthogonal in the basis x, y and the segments u, v and w1, w are M-
coherently orthogonal in the basis x, y, then the segments u, v and v, w
are M-coherently orthogonal in the basis x, y or the segments u, v and w,
v1 are M-coherently orthogonal in the basis x, ¥.

If z, y span the space and the segments u, v and uq, v1 are E-coherently
orthogonal in the basis x, y, then the segments v, u and vy, u; are E-
coherently orthogonal in the basis z, y.

If z, y span the space and the segments u, v and w1, v; are M-coherently
orthogonal in the basis z, y, then the segments v, v and v1, u; are M-
coherently orthogonal in the basis z, y.

If x, y span the space and the segments u, v and w1, v; are E-coherently
orthogonal in the basis z, y and the segments u, v and vi, w are E-
coherently orthogonal in the basis x, y, then the segments u, v and w1, w
are E-coherently orthogonal in the basis z, y.

If , y span the space and the segments u, v and w1, vy are M-coherently
orthogonal in the basis x, y and the segments u, v and vy, w are M-
coherently orthogonal in the basis z, y, then the segments u, v and w1, w
are M-coherently orthogonal in the basis x, y.

If x, y span the space, then for every u, v, w there exists u; such that

995
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w # uy and the segments w, u; and u, v are E-coherently orthogonal in
the basis z, y.

If x, y span the space, then for every u, v, w there exists u; such that
w # w1 and the segments w, u; and u, v are M-coherently orthogonal in
the basis z, y.

If x, y span the space, then for every u, v, w there exists u; such that
w # uy and the segments u, v and w, uy are E-coherently orthogonal in
the basis z, y.

If x, y span the space, then for every u, v, w there exists u; such that
w # w1 and the segments u, v and w, u; are M-coherently orthogonal in
the basis z, y.

If z, y span the space and the segments u, 1y and v, v; are E-coherently
orthogonal in the basis x, y and the segments w, w; and v, v; are E-
coherently orthogonal in the basis x, y and the segments w, w1 and o,
ve are E-coherently orthogonal in the basis z, y, then w = w; or v = v;
or the segments u, u; and uo, vy are E-coherently orthogonal in the basis
T, Y.

If , y span the space and the segments u, u; and v, vy are M-coherently
orthogonal in the basis x, y and the segments w, w; and v, v; are M-
coherently orthogonal in the basis z, y and the segments w, wi and uo,
vg are M-coherently orthogonal in the basis z, y, then w = w; or v = v;
or the segments u, u; and us, v9 are M-coherently orthogonal in the basis
T, y.

If z, y span the space and the segments u, 1y and v, v; are E-coherently
orthogonal in the basis x, y, then the segments v, v1 and u, u; are E-
coherently orthogonal in the basis x, y or the segments v, v1 and uq, u
are E-coherently orthogonal in the basis z, y.

If , y span the space and the segments u, u; and v, vy are M-coherently
orthogonal in the basis z, y, then the segments v, v and u, u; are M-
coherently orthogonal in the basis x, y or the segments v, v; and uj, u
are M-coherently orthogonal in the basis x, ¥.

If z, y span the space and the segments u, uy and v, v; are E-coherently
orthogonal in the basis z, y and the segments v, v1 and w, w; are E-
coherently orthogonal in the basis x, y and the segments us, vo and w,
wy are E-coherently orthogonal in the basis z, y, then the segments u,
u1 and ug, vo are E-coherently orthogonal in the basis x, y or v = vy or
w = wq.

Next we state several propositions:

(47)

If , y span the space and the segments u, u; and v, v are M-coherently
orthogonal in the basis x, ¥ and the segments v, v; and w, wy, are M-
coherently orthogonal in the basis x, y and the segments uo, vo and w,
wy are M-coherently orthogonal in the basis x, y, then the segments u,
u1 and uo, v9 are M-coherently orthogonal in the basis z, y or v = v or



(49)

(50)

(51)

(52)

(53)
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w = w1.

If z, y span the space and the segments u, uy and v, v; are E-coherently
orthogonal in the basis x, y and the segments v, v; and w, w; are E-
coherently orthogonal in the basis z, y and the segments u, u; and uo,
v9 are E-coherently orthogonal in the basis x, y, then the segments uo,
v9 and w, wy are E-coherently orthogonal in the basis x, y or v = v; or
U = Uui.

If , y span the space and the segments u, u; and v, vy are M-coherently
orthogonal in the basis x, y and the segments v, v; and w, w; are M-
coherently orthogonal in the basis z, y and the segments u, u; and uo,
vg are M-coherently orthogonal in the basis x, y, then the segments uo,
vg and w, wy are M-coherently orthogonal in the basis x, y or v = v or
U = ui.

Suppose x, y span the space. Given v, w, uy, v, wi. Suppose the
segments v, v; and w, u; are not E-coherently orthogonal in the basis ,
y and the segments v, v; and u1, w are not E-coherently orthogonal in the
basis x, y and the segments u;, w; and u1, w are E-coherently orthogonal
in the basis z, y. Then there exists uy such that the segments v, v; and
v, ug are E-coherently orthogonal in the basis z, y or the segments v, vq
and ug, v are E-coherently orthogonal in the basis x, y but the segments
u1, w1 and u1, ug are E-coherently orthogonal in the basis x, y or the
segments u1, wy and uo, uy are E-coherently orthogonal in the basis z, y.

If , y span the space, then there exist u, v, w such that the segments
u, v and u, w are E-coherently orthogonal in the basis x, y and for all v,
wy such that the segments v, wi and u, v are E-coherently orthogonal
in the basis x, y holds the segments v, w1 and u, w are not E-coherently
orthogonal in the basis z, y and the segments v, wy; and w, u are not
E-coherently orthogonal in the basis x, y or v1 = w;.

Suppose x, y span the space. Given v, w, ui, vy, wy. Suppose h the
segments v, v; and w, u; are not M-coherently orthogonal in the basis x, y
and h the segments v, v1 and u;, w are not M-coherently orthogonal in the
basis x, y and the segments u1, w; and u;, w are M-coherently orthogonal
in the basis z, y. Then there exists ug such that the segments v, v; and
v, ug are M-coherently orthogonal in the basis x, y or the segments v, v
and ug, v are M-coherently orthogonal in the basis x, y but the segments
u1, wy and wuj, ug are M-coherently orthogonal in the basis x, y or the
segments w1, wi and ue, u; are M-coherently orthogonal in the basis ,
.

If x, y span the space, then there exist u, v, w such that the segments
u, v and u, w are M-coherently orthogonal in the basis x, y and for all v,
wy such that the segments v1, wy and u, v are M-coherently orthogonal in
the basis x, y holds h the segments v, wy and u, w are not M-coherently
orthogonal in the basis x, y and h the segments v, wy and w, u are not
M-coherently orthogonal in the basis z, y or v1 = w;.
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In the sequel ug, v will be arbitrary. Let us consider V, z, y. Let us assume
that =, y span the space. The Euclidean oriented orthogonality defined over
V,x,y yielding a binary relation on [ the vectors of V, the vectors of V'] is
defined as follows:

(Det.5)  (us, v3) €the Euclidean oriented orthogonality defined over V,z,y if and
only if there exist uj, ug, v1, ve such that us = (u1, ug) and vy = (vy,
vg) and the segments uy, ug and vy, ve are E-coherently orthogonal in the
basis z, y.

Let us consider V', x, y. Let us assume that z, y span the space. The
Minkowskian oriented orthogonality defined over V ,z,y yields a binary relation
on [ the vectors of V, the vectors of V'] and is defined by:

(Def.6)  (us, vs) €the Minkowskian oriented orthogonality defined over V,z,y if
and only if there exist uy, ug, v1, vy such that us = (uy, ug) and v3 = (vy,
vg) and the segments wuj, ug and vy, ve are M-coherently orthogonal in
the basis z, y.

Let us consider V, z, y. Let us assume that x, y span the space. The functor
CESpace(V, z,y) yields an affine structure and is defined by:

(Det.7)  CESpace(V,z,y) = ( the vectors of V,the Euclidean oriented orthogo-
nality defined over V z,y).

Let us consider V', z, y. Let us assume that x, y span the space. The functor
CMSpace(V, z,y) yielding an affine structure is defined by:

(Def.8)  CMSpace(V,z,y) = ( the vectors of V,the Minkowskian oriented or-
thogonality defined over V z.y).

Let A; be an affine structure, and let p, g, r, s be elements of the points of
Aq. The predicate p,qT”r, s is defined as follows:
(Def.9)  ({p, q), (r, s)) € the congruence of A;.

One can prove the following propositions:

(54) If z, y span the space, then for every ug holds ug is an element of the
points of CESpace(V, z,y) if and only if us is a vector of V.

(55) If z, y span the space, then for every ug holds ug is an element of the
points of CMSpace(V, z,y) if and only if ug is a vector of V.

In the sequel p, g, r, s are elements of the points of CESpace(V, z,y). Next
we state the proposition

(56)  If x, y span the space and u = p and v = ¢ and u; = r and v; = s, then
p,qT7r, s if and only if the segments u, v and wuy, v; are E-coherently
orthogonal in the basis z, y.

In the sequel p, ¢, r, s will be elements of the points of CMSpace(V,x,y).
We now state the proposition

(57) If z, y span the space and v = p and v = ¢ and w3 = r and v; = s, then
p,qT~r,s if and only if the segments u, v and uq, v; are M-coherently
orthogonal in the basis z, y.
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Summary. The general definition of Euclidean Space.
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The papers [14], [6], [9], [8], [12], [1], [5], [10]. 3], [13], [4], (15], [16], [7], [11];
and [2] provide the notation and terminology for this paper. In the sequel k, n
denote natural numbers and r denotes a real number. Let us consider n. The
functor R" yields a non-empty set of finite sequences of R and is defined as
follows:

(Def.1) R" =R".

In the sequel x will denote a finite sequence of elements of R. The function
|O|g from R into R is defined as follows:

(Def.2)  for every r holds |O|g(r) = |r|.

Let us consider z. The functor |z| yields a finite sequence of elements of R
and is defined as follows:

(Def.3)  |z| =|0|g - 2.

Let us consider n. The functor (0, ...,0) yields a finite sequence of elements

——
n

of R and is defined by:

(Def4) (0,...,0) =n+— 0quaa real number .
——
Let us consider n. Then (0,...,0) is an element of R".
——

n
In the sequel z, x1, x2, y denote elements of R™. One can prove the following
proposition
(1) =z is an element of R™.

© 1991 Fondation Philippe le Hodey
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Let us consider n, . Then —z is an element of R™.

Let us consider n, z, y. Then = + y is an element of R™. Then x — y is an
element of R™.

Let us consider n, r, x. Then r - x is an element of R™.

Let us consider n, . Then |z| is an element of R™.

Let us consider n, . Then 2z is an element of R™.

Let z be a finite sequence of elements of R. The functor |z| yielding a real
number is defined by:

(Def.5)

] = /2%l

Next we state a number of propositions:

2
3

e e e e
(2 ENYEN
—_ — L D

N

—~
_ o~
S ©
~— — —

—
—_
—_

~—

= = = = e
S T = W DN

AN N N N N N N /S /N /S
oY ===
— o © 0

P N s N S D e N i U e

[\)
\G)

lenxz = n.

dom x = Segn.

If k € Segn, then z(k) € R.

If for every k such that k € Segn holds x1(k) = z2(k), then z1 = xa.
If k € Segn and r = z(k), then |z|(k) = |r|.

|{0,...,0)| = n —— 0quaa real number .
——
n
|—z| = |z,
real = r| - |z|.
0,0} =0,
——
n
If |x| =0, then x = (0,...,0).
——
n
|z| > 0.
=] = [x].
r-xf = ||zl

|21 4 @2| < ||+ |2a.

|21 — @a| < |21 | + |32

1] — |zo| < |z1 + 22|

|z1] — |22| < |21 — 2]

|21 — 29| = 0 if and only if 21 = xo.
If 1 # x5, then |z — 29| > 0.

|z1 — x2| = T2 — 21

|z1 — 22| < |1 — 2| + |2 — 22|

Let us consider n. The functor p™ yields a function from [R"™, R™] into R
and is defined by:

(Def.6)

for all elements x, y of R™ holds p"(z, y) = |z — y|.

Next we state two propositions:

(23)

2z —y) =2y —x).
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(24)  p™is a metric of R".
Let us consider n. The functor £" yields a metric space and is defined by:
(Def.7)  E™ = (R™,p").
Let us consider n. The functor £ yielding a topological space is defined by:
(Def.8)  &F = &gy
We adopt the following rules: p, pi1, p2, p3 will denote points of £ and =z,
1, T2, Y, Y1, y2 will denote real numbers. One can prove the following four
propositions:
(25)  The carrier of £&F = R™.
(26) pis a function from Segn into R.
(27)  pis a finite sequence of elements of R.
(28)  For every finite sequence f such that f = p holds len f = n.
Let us consider n. The functor Ogn yielding a point of &7 is defined by:
(Def.9)  0gn = (0,...,0).
n

Let us consider n, p1, p2. The functor p; + p2 yields a point of £F and is
defined as follows:

(Def.10)  for all elements p), ph of R™ such that p}j = p; and p), = py holds
p1+ P2 =P + ph.
One can prove the following propositions:
(29) p1+p2=p2+p1
(30)  p1+p2+p3s=p1+(p2+ps)
(31)  Ogn+p=pand p+0g =p.
Let us consider z, n, p. The functor x - p yields a point of £} and is defined
as follows:
(Def.11)  for every element p’ of R™ such that p’ =p holds x -p =z -p'.

Next we state several propositions:
32)  x-0gn = Ogp.

33) l:-p=pand0-p=0gn.

34) z-y-p=x-(y-p).

35) If z-p=0gn, then x = 0 or p = Ogxn.

36) x-(p1+p2)=x-p1+zT-po

37 (z+y)-p=x-pt+y-p

38) Ifz-p; =x-po, then z =0 or p; = pa.

Let us consider n, p. The functor —p yields a point of £F and is defined as
follows:

o~~~ o~ o~ o~ o~

/

(Def.12)  for every element p’ of R™ such that p’ = p holds —p = —p/'.

We now state several propositions:
(39) ——p=p.
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W
(an)

p+—p=0g and —p+p = Ogz.

Ifpr+p= Og%, then p; = —po and po = —p;.
—(p1 +p2) = —p1 + —p2.

—p=(-1)-p.

—x-p=(—z)-pand —z-p=1x-—p.

N N N N
Iy
N =

S e N N N

43
44

Let us consider n, p1, p2. The functor p; — po yields a point of £F and is
defined by:

(Def.13)  for all elements p), ph of R™ such that p}j = p; and p), = py holds
p1— P2 =P| — Ph-
One can prove the following propositions:

(45)  p1—p2=p1+ —p2

(46) p—p=_0¢z.

(47)  If p1 — p2 = Ogp, then p; = pa.

(48)  —(p1 —p2) = p2 —p1 and —(p1 — p2) = —p1 + p2.
(49)  p1+(p2 —p3) = (p1 +p2) — 3.

(50)  p1— (p2 +p3) = p1 — p2 — p3.

(61)  p1— (p2 — p3) = (p1 — p2) + p3.

(52) p=(p+p1)—prandp=(p—p1)+p1.

(53)  x-(p1—p2) =2 p1—T-p2.

(54) (x—y)-p=x-p—y-p

In the sequel p, p1, p2 will be points of E%. Next we state the proposition
(55)  There exist x, y such that p = (x,y).

We now define two new functors. Let us consider p. The functor pq yields a
real number and is defined by:

(Def.14)  for every finite sequence f such that p = f holds p1 = f(1).
The functor po yielding a real number is defined by:
(Def.15)  for every finite sequence f such that p = f holds p2 = f(2).
Let us consider z, y. The functor [z,y] yields a point of £2 and is defined as
follows:
(Def.16)  [z,y] = (z,y).

The following propositions are true:

(56)  [z,y]1 = v and [z,y]2 = y.

(57)  p = [p1,p2]-

(58)  0Og2 = [0,0).

(59)  p1+p2 = [p11 +p21,P12 + P22)
(60)  [w1,y1] + [z2,92] = [71 + 22,91 + Y2].
(61) x-p=[r-p1,7p2.

(62) x-[x1,y1] =[x 21,2 Y1)

(63)  —p=[-p1,—p2]
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(64)  —[z1,y1] = [~21, —y1].
(65) b1 —p2 = [p11 —P21,P12 —p22]-
(66)  [z1,y1] — [w2,92] = [x1 — 22, 1 — 12].
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Summary. Some notions connected with metric spaces and the
relationship between metric spaces and topological spaces. Compactness
of topological spaces is transferred for the case of metric spaces [13]. Some
basic theorems about translations of topological notions for metric spaces

are proved. One-dimensional topological space RY is introduced, too.

MML Identifier: TOPMETR.

The papers [21], [11], [1], [22], [20], [4], [5], [6], [12], [10], [3], [14], [16], [23], [9],
(7], [2], [15], [18], [17], [19], and [8] provide the notation and terminology for this
paper. For simplicity we follow a convention: a, b, r will denote real numbers,
n will denote a natural number, T" will denote a topological space, and F will
denote a family of subsets of 7. One can prove the following proposition
(1) Fis acover of T if and only if the carrier of T C |J F.
In the sequel A will be a subspace of T'. Next we state three propositions:
(2)  For every point p of A holds p is a point of T'.
(3) If T is a Ty space, then A is a Ty space.
(4)  For all subspaces A, B of T such that the carrier of A C the carrier of
B holds A is a subspace of B.
In the sequel P, () denote subsets of T and p denotes a point of T'. We now
state several propositions:
(5) If P # (g, then T | P is a subspace of T'| P UQ quaa subset of T but
if Q # 07, then T | Q is a subspace of T' | P U @Q qua a subset of T
(6) If P# 0 and p € P, then for every neighborhood @ of p and for every
point p’ of T'| P and for every subset Q' of T'| P such that Q' = QNP
and p’ = p holds @’ is a neighborhood of p'.

!The article was written during my work at Shinshu University, 1991.
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(7)  For all topological spaces A, B, C and for every map f from A into C
such that f is continuous and C' is a subspace of B for every map h from
A into B such that A = f holds h is continuous.

(8)  For all topological spaces A, B and for every map f from A into B
and for every subspace C' of B such that f is continuous and rng f C the
carrier of C for every map h from A into C such that h = f holds h is
continuous.

(9)  For all topological spaces A, B and for every map f from A into B and
for every subset C' of B such that f is continuous and rng f C C and
C # () for every map h from A into B | C such that h = f holds h is
continuous.

(10)  For all topological spaces T', S and for every map f from 7" into S such

that f is continuous for every subset P of T and for every map h from
T | P into S such that P # ()7 and h = f [ P holds h is continuous.

In the sequel M will denote a metric space and p will denote a point of M.
One can prove the following proposition

(11) If r > 0, then p € Ball(p, ).

We now define two new modes. Let us consider M. A subset of M is sets of
points of M.
A family of subsets of M is a family of subsets of the carrier of M.

Let us consider M. A metric space is said to be a subspace of M if:
(Def.1)  the carrier of it C the carrier of M and for all points x, y of it holds
(the distance of it)(z, y) = (the distance of M)(z, y).
In the sequel A will be a subspace of M. One can prove the following propo-
sitions:
(12)  For every point p of A holds p is a point of M.

(13)  For every point x of M and for every point z’ of A such that x = 2’
holds Ball(2/, ) = Ball(x, )N the carrier of A.

Let M be a metric space, and let A be a non-empty subset of M. The functor
M 1 A yielding a subspace of M is defined as follows:

(Def.2)  the carrier of M | A = A.
Let us consider a, b. Let us assume that a < b. The functor [a, b]y yields a
subspace of the metric space of real numbers and is defined by:
(Def.3)  for every non-empty subset P of the metric space of real numbers such
that P = [a, b] holds [a, b]p = (the metric space of real numbers) | P.
We now state the proposition
(14)  If a < b, then the carrier of [a, blp = [a, b].
In the sequel F', G will be families of subsets of M. We now define two new

predicates. Let us consider M, F'. We say that F' is a family of balls if and only
if:
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(Def.4)  for an arbitrary P such that P € F there exist p, r such that P =
Ball(p, 7).

We say that F'is a cover of M if and only if:
(Def.5)  the carrier of M C U F.

The following propositions are true:

(15)  For all points p, ¢ of the metric space of real numbers and for all real
numbers z, y such that z = p and y = ¢ holds p(p,q) = |x — y|.

(16)  The carrier of M = the carrier of M., and the topology of M., = the
open set family of M.

(17)  For every family F' of subsets of M holds F' is a family of subsets of
Mtop'

(18)  For every family F' of subsets of My, holds F is a family of subsets of
M.

(19)  Aiop is a subspace of Mip.

(20)  For every subset P of £} and for every non-empty subset @ of £" such
that P = Q holds (&) I P = (€™ | Q)top-

(21)  For every subset P of M;p, such that P = Ball(p,r) holds P is open.

(22)  For every subset P of M;p, holds P is open if and only if for every point
p of M such that p € P there exists r such that r > 0 and Ball(p,r) C P.

Let us consider M. We say that M is compact if and only if:
(Def.6)  M;op is compact.

We now state the proposition

(23) M is compact if and only if for every F such that F' is a family of balls
and F'is a cover of M there exists G such that G C I and G is a cover
of M and G is finite.

The topological space Rl is defined as follows:
(Def.7) R = (the metric space of real numbers);op.
One can prove the following proposition
(24)  The carrier of Rl = R.

Let us consider a, b. Let us assume that a < b. The functor [a, b1 yields a
subspace of Rl and is defined by:

(Def.8)  [a, bl = ([a, b]m)top-

We now state three propositions:

(25) If a <b, then the carrier of [a, b]T = [a, b].

(26) If a < b, then for every subset P of R! such that P = [a,b] holds

[a, bjr = R | P.

(27) [0, 1]y =1.

Let us note that it makes sense to consider the following constant. Then [ is
a subspace of RL.

The following proposition is true
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For every map f from R into R! such that there exist real numbers
a, b such that for every real number z holds f(x) = a-x + b holds f is
continuous.
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Heine—Borel’s Covering Theorem
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Summary. Heine-Borel’s covering theorem, also known as Borel—
Lebesgue theorem [3], is proved. Some useful theorems on real inequali-
ties, intervals, sequences and notion of power sequence which are neces-
sary for the theorem are also proved.

MML Identifier: HEINE.

The terminology and notation used in this paper have been introduced in the
following articles: [23], [11], [1], [5], [6], [12], [9], [4], [24], [18], [19], [8], [7], [2],
[20], [16], [13], [15], [14], [21], [22], [17], and [10]. We follow a convention: a, b,
x, y, z denote real numbers and k, n denote natural numbers. We now state
several propositions:

(1)  For every subspace A of the metric space of real numbers and for all
points p, ¢ of A and for all x, y such that x+ = p and y = ¢ holds

p(p,q) = |z —yl.
(2) Ifx<yandy<z then [x,y|U ][y, 2] = [z, z].
(3) Ifzx>0and a+ax <b, thena <b.
(4) Ifx>0anda—x>b, then a>b.
(5) If 2 >0, then 2¥ > 0.
In the sequel s; will be a sequence of real numbers. Next we state the
proposition
(6) If s1 is increasing and rng s; C N, then n < s1(n).

Let us consider s, k. The functor £°! yielding a sequence of real numbers is
defined by:

(Def.1)  for every n holds k*!(n) = k51("),

We now state several propositions:

!The article was written during my work at Shinshu University, 1991.
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2" >n+ 1.
2" > n.
If 51 is divergent to +o0, then 2% is divergent to +oo0.

For every topological space 1" such that the carrier of T is finite holds
T is compact.

If a < b, then [a, b1 is compact.
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Some Facts about Union of Two Functions
and Continuity of Union of Functions

Yatsuka Nakamura Agata Darmochwat!
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Summary. Proofs of two theorems connected with the union of
any two functions and the proofs of two theorems on the continuity of
the union of two continuous functions between topological spaces. The
theorem stating that the union of two subsets of R?, which are homeo-
morphic to unit interval and have only one terminal joined point, is also
homeomorphic to unit interval is proved, too.

MML Identifier: TOPMETR2.

The notation and terminology used in this paper have been introduced in the
following papers: [14], [9], [15], [13], [2], [3], [4], [11], [7], [5], [12], [10], [1], [6],
and [8]. In the sequel z, y, z are real numbers. Next we state the proposition

(1) Ifzx<yandy<z then [z,y] N[y, z] = {y}.

In the sequel f, g will be functions and z1, zo will be arbitrary. Next we

state two propositions:

(2) If f is one-to-one and g is one-to-one and for all z1, x9 such that =1 €
dom g and x5 € dom f \ dom g holds g(x1) # f(z2), then f+- g is one-to-
one.

(3) If f°(dom f Ndomg) C rngg, then rng f Urng g = rng(f +- g).

We follow the rules: T', T1, T, S will be topological spaces and p, p1, pe will

be points of T'. Next we state two propositions:

(4) Let Ty, Ty be subspaces of T'. Let f be a map from 77 into S. Let g be
a map from T3 into S. Suppose Q7 UQp, = Qr and Qp, NQp, = {p} and
T7 is compact and T3 is compact and T is a Ty space and f is continuous
and g is continuous and f(p) = g(p). Then there exists a map h from T
into S such that h = f +- g and h is continuous.

!The article was written during my work at Shinshu University, 1991.
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(5) Let f beamap from Tj into S. Let g be a map from T5 into S. Suppose
that

T7 is a subspace of T,

T5 is a subspace of T,

Qn UQrp, = Qr,

Qr, N Qr, = {p1,p2},

T} is compact,

T is compact,

N D =t
= << B BEra
— O N N e e e N

(vil) T is a Ty space,
(viii)  f is continuous,
(ix) g is continuous,
(x)  f(p1) = g(p1),
(xi)  f(p2) = g(p2).

Then there exists a map h from T into S such that h = f +- g and h is
continuous.

In the sequel P, ) denote subsets of S%. One can prove the following propo-
sition

(6) Let f beamap from [ into (£3) | P. Let g be a map from [ into (£2) Q.

Suppose PN Q = {p} and f is a homeomorphism and f(1) = p and ¢

is a homeomorphism and g(0) = p. Then there exists a map h from I[

into (£2) | PUQ qua a subset of £% such that h is a homeomorphism and
h(0) = £(0) and h(1) = g(1).
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