
Preface

As was stated in [3] we publish mathematical papers which are abstracts of
Mizar articles to be found in the Main Mizar Library (MML). An article includes
certain elements which are transferred to the data base, such as theorems or
definitions. This has been due to the fact that the material published there was
at first intended to help the Mizar users to handle the data base. Thus the works
published there describe the present state of MML and are, in a sense, a report
on the expansion of that library. Next to them there are also new mathematical
papers because the new method of formalization is not trivial even though it
refers to simple mathematical facts.

It must be explained at this point that both the PC-Mizar verifier and MML
are being systematically developed. In the case of PC-Mizar it is mainly the
Mizar language which is enriched, which makes it more convenient to write
articles; the same might be said of proof-checker, which enables one to write
shorter proofs and articles.

The development of MML consists in continuous revisions of articles accepted
for publication, for instance in the removal of self-evident or repeated theorems
(while the numbering of successive theorems in a given article is preserved).
We then have the information in a footnote such as ”The proposition (5) has
been removed” (see [1], page 450). Previously such a comment was, e.g., ”The
proposition (9) was either repeated or obvious” (see [2], page 14).

Please note also that in the articles we use atypical symbolism for the Carte-
sian product [: :] , and that is no paranthesis in the case of grouping to the left.
We also use overloading. For instance, see [1], page 469: ”(Def.1) F (f) = F (f)”.
In the latter case, on the right side of the equality symbol we have the old func-
tor, while on the left side we have the new functor, which differs from the old
one only by the type of the result.

Our periodical appears five times a year, which is to say every two months
except for the summer holidays period. The present issue, although dated
September-October, also includes items contributed in November. They have
been included because the editors received them before sending the issue 2(4)
to the press.

Roman Matuszewski
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Summary. The article contains definitions and properties of con-
vergent serieses.

MML Identifier: SERIES 1.

The articles [12], [2], [10], [1], [7], [6], [4], [3], [5], [11], [8], and [9] provide the
notation and terminology for this paper. We follow the rules: n, m will denote
natural numbers, a, p, r will denote real numbers, and s, s1, s2 will denote
sequences of real numbers. We now state three propositions:

(1) If 0 < a and a < 1 and for every n holds s(n) = an+1, then s is
convergent and lim s = 0.

(2) If a 6= 0, then |a|n = |an|.
(3) If |a| < 1 and for every n holds s(n) = an+1, then s is convergent and

lim s = 0.

Let us consider s. The functor (
∑κ
α=0 s(α))κ∈ � yielding a sequence of real

numbers is defined by:

(Def.1) (
∑κ
α=0 s(α))κ∈ � (0) = s(0) and for every n holds (

∑κ
α=0 s(α))κ∈ � (n +

1) = (
∑κ
α=0 s(α))κ∈ � (n) + s(n+ 1).

The following proposition is true

(4) For all s, s1 holds s1 = (
∑κ
α=0 s(α))κ∈ � if and only if s1(0) = s(0) and

for every n holds s1(n+ 1) = s1(n) + s(n+ 1).

Let us consider s. We say that s is summable if and only if:

(Def.2) (
∑κ
α=0 s(α))κ∈ � is convergent.

Let us consider s. Let us assume that s is summable. The functor
∑
s yields

a real number and is defined as follows:

(Def.3)
∑
s = lim((

∑κ
α=0 s(α))κ∈ � ).

1Supported by RPBP.III-24.C8
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The following propositions are true:

(6)2 For all s, r such that s is summable holds r =
∑
s if and only if

r = lim((
∑κ
α=0 s(α))κ∈ � ).

(7) If s is summable, then s is convergent and lim s = 0.

(8) (
∑κ
α=0 s1(α))κ∈ � + (

∑κ
α=0 s2(α))κ∈ � = (

∑κ
α=0(s1 + s2)(α))κ∈ � .

(9) (
∑κ
α=0 s1(α))κ∈ � − (

∑κ
α=0 s2(α))κ∈ � = (

∑κ
α=0(s1 − s2)(α))κ∈ � .

(10) If s1 is summable and s2 is summable, then s1 + s2 is summable and∑
(s1 + s2) =

∑
s1 +

∑
s2.

(11) If s1 is summable and s2 is summable, then s1 − s2 is summable and∑
(s1 − s2) =

∑
s1 −

∑
s2.

(12) (
∑κ
α=0(rs)(α))κ∈ � = r(

∑κ
α=0 s(α))κ∈ � .

(13) If s is summable, then rs is summable and
∑

(rs) = r ·∑ s.

(14) For all s, s1 such that for every n holds s1(n) = s(0) holds (
∑κ
α=0(s ↑

1)(α))κ∈ � = (
∑κ
α=0 s(α))κ∈ � ↑ 1− s1.

(15) If s is summable, then for every n holds s ↑ n is summable.

(16) If there exists n such that s ↑ n is summable, then s is summable.

(17) If for every n holds s1(n) ≤ s2(n), then for every n holds
(
∑κ
α=0 s1(α))κ∈ � (n) ≤ (

∑κ
α=0 s2(α))κ∈ � (n).

(18) If s is summable, then for every n holds
∑
s = (

∑κ
α=0 s(α))κ∈ � (n) +∑

(s ↑ (n+ 1)).

(19) If for every n holds 0 ≤ s(n), then (
∑κ
α=0 s(α))κ∈ � is non-decreasing.

(20) If for every n holds 0 ≤ s(n), then (
∑κ
α=0 s(α))κ∈ � is upper bounded if

and only if s is summable.

(21) If s is summable and for every n holds 0 ≤ s(n), then 0 ≤ ∑ s.

(22) If for every n holds 0 ≤ s2(n) and s1 is summable and there exists m
such that for every n such that m ≤ n holds s2(n) ≤ s1(n), then s2 is
summable.

(23) If for every n holds 0 ≤ s2(n) and s2 is not summable and there exists
m such that for every n such that m ≤ n holds s2(n) ≤ s1(n), then s1 is
not summable.

(24) If for every n holds 0 ≤ s1(n) and s1(n) ≤ s2(n) and s2 is summable,
then s1 is summable and

∑
s1 ≤

∑
s2.

(25) s is summable if and only if for every r such that 0 < r there exists
n such that for every m such that n ≤ m holds |(∑κ

α=0 s(α))κ∈ � (m) −
(
∑κ
α=0 s(α))κ∈ � (n)| < r.

(26) If a 6= 1, then (
∑κ
α=0((aκ)κ∈ � )(α))κ∈ � (n) = 1−an+1

1−a .

(27) If a 6= 1 and for every n holds s(n+ 1) = a · s(n), then for every n holds

(
∑κ
α=0 s(α))κ∈ � (n) = s(0)·(1−an+1)

1−a .

(28) If |a| < 1, then (aκ)κ∈ � is summable and
∑

((aκ)κ∈ � ) = 1
1−a .

2The proposition (5) has been removed.



serieses 451

(29) If |a| < 1 and for every n holds s(n+ 1) = a · s(n), then s is summable

and
∑
s = s(0)

1−a .

(30) If for every n holds s(n) > 0 and s1(n) = s(n+1)
s(n) and s1 is convergent

and lim s1 < 1, then s is summable.

(31) If for every n holds s(n) > 0 and there exists m such that for every n

such that n ≥ m holds s(n+1)
s(n) ≥ 1, then s is not summable.

(32) If for every n holds s(n) ≥ 0 and s1(n) = n
√
s(n) and s1 is convergent

and lim s1 < 1, then s is summable.

(33) If for every n holds s(n) ≥ 0 and s1(n) = n
√
s(n) and there exists m

such that for every n such that m ≤ n holds s1(n) ≥ 1, then s is not
summable.

(34) If for every n holds s(n) ≥ 0 and s1(n) = n
√
s(n) and s1 is convergent

and lim s1 > 1, then s is not summable.

Let us consider n. The n-th power of 2 yields a natural number and is defined
as follows:

(Def.4) the n-th power of 2= 2n.

One can prove the following three propositions:

(35) If s is non-increasing and for every n holds s(n) ≥ 0 and s1(n) =
2n·s(the n-th power of 2), then s is summable if and only if s1 is summable.

(36) If p > 1 and for every n such that n ≥ 1 holds s(n) = 1
np , then s is

summable.

(37) If p ≤ 1 and for every n such that n ≥ 1 holds s(n) = 1
np , then s is not

summable.

Let us consider s. We say that s is absolutely summable if and only if:

(Def.5) |s| is summable.

We now state several propositions:

(39)3 For all n, m such that n ≤ m holds |(∑κ
α=0 s(α))κ∈ � (m)−

(
∑κ
α=0 s(α))κ∈ � (n)| ≤ |(∑κ

α=0 |s|(α))κ∈ � (m)− (
∑κ
α=0 |s|(α))κ∈ � (n)|.

(40) If s is absolutely summable, then s is summable.

(41) If for every n holds 0 ≤ s(n) and s is summable, then s is absolutely
summable.

(42) If for every n holds s(n) 6= 0 and s1(n) = |s|(n+1)
|s|(n) and s1 is convergent

and lim s1 < 1, then s is absolutely summable.

(43) If r > 0 and there exists m such that for every n such that n ≥ m holds
|s(n)| ≥ r, then s is not convergent or lim s 6= 0.

(44) If for every n holds s(n) 6= 0 and there exists m such that for every n

such that n ≥ m holds |s|(n+1)
|s|(n) ≥ 1, then s is not summable.

3The proposition (38) has been removed.
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(45) If for every n holds s1(n) = n
√
|s|(n) and s1 is convergent and lim s1 < 1,

then s is absolutely summable.

(46) If for every n holds s1(n) = n
√
|s|(n) and there exists m such that for

every n such that m ≤ n holds s1(n) ≥ 1, then s is not summable.

(47) If for every n holds s1(n) = n
√
|s|(n) and s1 is convergent and lim s1 > 1,

then s is not summable.
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Summary. Basic properties of the least common multiple and the
greatest common divisor. The lattice of natural numbers (L � ) and the
lattice of natural numbers greater than zero (L � + ) are constructed. The
notion of the sublattice of the lattice of natural numbers is given. Some
fact about it are proved. The last part of the article deals with some
properties of prime numbers and with the notions of the set of prime
numbers and the n-th prime number. It is proved that the set of prime
numbers is infinite.

MML Identifier: NAT LAT.

The papers [15], [6], [18], [14], [7], [17], [9], [1], [11], [2], [16], [12], [5], [4], [8],
[13], [10], and [3] provide the terminology and notation for this paper. In the
sequel n, m, l, k, j will be natural numbers. We now state two propositions:

(1) For all natural numbers m, n holds m | m · n and n | m · n.

(2) For all k, l such that l ≥ 1 holds k · l ≥ k.

Let us consider n. Then n! is a natural number.

The following propositions are true:

(3) For all n, k, l such that l ≥ 1 holds if n ≥ k · l, then n ≥ k.

(4) k = 0 or k ≥ 1.

(5) For every l such that l 6= 0 holds l | l!.
(6) k 6= k + 1.

(8)1 For every n such that n 6= 0 holds n+1
n > 1.

(9) k
k+1 < 1.

1The proposition (7) has been removed.
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(10) For every l holds l! ≥ l.
(12)2 For all m, n such that m 6= 1 holds if m | n, then m

�
n+ 1.

(13) j | l and j | l + 1 if and only if j = 1.

(14) For every l there exists j such that j | l!.
(15) For all k, j such that j 6= 0 holds j | (j + k)!.

(16) If j ≤ l and j 6= 0, then j | l!.
(17) For all l, j such that j 6= 1 and j 6= 0 holds if j | l! + 1, then j > l.

(18) For all natural numbers m, n holds lcm(m,n) = lcm(n,m).

(19) For all natural numbers m, n, k holds
lcm(m, lcm(n, k)) = lcm(lcm(m,n), k).

(20) For all natural numbers m, n holds m | n if and only if lcm(m,n) = n.

(21) m | lcm(m,n) and n | lcm(m,n).

(22) lcm(m,m) = m.

(23) n | m and k | m if and only if lcm(n, k) | m.

(24) lcm(m,n) | 0.

(25) 1 | lcm(m,n).

(26) lcm(m, 1) = m.

(27) lcm(m,n) | m · n.

(28) For all natural numbers m, n, k holds
gcd(m, gcd(n, k)) = gcd(gcd(m,n), k).

(29) gcd(m,n) | m and gcd(m,n) | n.

(30) For all natural numbers m, n such that n | m holds gcd(n,m) = n.

(31) gcd(m,m) = m.

(32) m | n and m | k if and only if m | gcd(n, k).

(33) gcd(m,n) | 0.

The following propositions are true:

(34) 1 | gcd(m,n).

(35) gcd(m, 1) = 1.

(36) gcd(m, 0) = m.

(37) For all natural numbers m, n holds lcm(gcd(m,n), n) = n.

(38) For all natural numbers m, n holds gcd(m, lcm(m,n)) = m.

(39) For all natural numbers m, n holds
gcd(m, lcm(m,n)) = lcm(gcd(n,m),m).

(40) If m | n, then gcd(m, k) | gcd(n, k).

(41) If m | n, then gcd(k,m) | gcd(k, n).

(42) For every m such that m > 0 holds gcd(0,m) > 0.

(43) For all m, n such that m > 0 and n > 0 holds gcd(n,m) > 0.

(44) For all m, n such that m > 0 and n > 0 holds lcm(m,n) > 0.

2The proposition (11) has been removed.
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(45) lcm(gcd(n,m), gcd(n, k)) | gcd(n, lcm(m, k)).

(46) For all m, n, l such that m | l holds lcm(m, gcd(n, l)) | gcd(lcm(m,n), l).

(47) gcd(n,m) | lcm(n,m).

Let m be an element of � qua a non-empty set. The functor @m yielding a
natural number is defined by:

(Def.1) @m = m.

Let m be a natural number. The functor @m yielding an element of � qua a
non-empty set is defined as follows:

(Def.2) @m = m.

We now define two new functors. The binary operation hcf � on � is defined
by:

(Def.3) hcf � (m, n) = gcd(m,n).

The binary operation lcm � on � is defined by:

(Def.4) lcm � (m, n) = lcm(m,n).

In the sequel p, q denote elements of the carrier of 〈 � , lcm � ,hcf � 〉. Let m be
an element of the carrier of 〈 � , lcm � ,hcf � 〉. The functor @m yielding a natural
number is defined as follows:

(Def.5) @m = m.

We now state several propositions:

(48) p t q = lcm(@p,@q).

(49) p u q = gcd(@p,@q).

(50) lcm � (p, q) = p t q.
(51) hcf � (p, q) = p u q.
(52) For all elements a, b of the carrier of 〈 � , lcm � ,hcf � 〉 such that a v b

holds @a | @b.

The element 0 ��� of the carrier of 〈 � , lcm � ,hcf � 〉 is defined as follows:

(Def.6) 0 ��� = 1.

The element 1 � � of the carrier of 〈 � , lcm � ,hcf � 〉 is defined by:

(Def.7) 1 � � = 0.

We now state three propositions:

(55)3 @(0 � � ) = 1.

(56) For every element a of the carrier of 〈 � , lcm � ,hcf � 〉 holds 0 � � ua = 0 � � .

(57) There exists an element z of the carrier of 〈 � , lcm � ,hcf � 〉 such that for
every element x of the carrier of 〈 � , lcm � ,hcf � 〉 holds z u x = z.

The lattice � � is defined by:

(Def.8) � � = 〈 � , lcm � ,hcf � 〉.
The following proposition is true

(58) � � = 〈 � , lcm � ,hcf � 〉.
3The propositions (53) and (54) have been removed.
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In the sequel p, q, r will denote elements of the carrier of � � . One can prove
the following propositions:

(60)4 � � is a lower bound lattice.

(61) lcm � (p, q) = lcm � (q, p).

(62) hcf � (q, p) = hcf � (p, q).

(63) lcm � (p, lcm � (q, r)) = lcm � (lcm � (p, q), r).

(64) (i) lcm � (p, lcm � (q, r)) = lcm � (lcm � (q, p), r),
(ii) lcm � (p, lcm � (q, r)) = lcm � (lcm � (p, r), q),
(iii) lcm � (p, lcm � (q, r)) = lcm � (lcm � (r, q), p),
(iv) lcm � (p, lcm � (q, r)) = lcm � (lcm � (r, p), q).

(65) hcf � (p, hcf � (q, r)) = hcf � (hcf � (p, q), r).

(66) (i) hcf � (p, hcf � (q, r)) = hcf � (hcf � (q, p), r),
(ii) hcf � (p, hcf � (q, r)) = hcf � (hcf � (p, r), q),
(iii) hcf � (p, hcf � (q, r)) = hcf � (hcf � (r, q), p),
(iv) hcf � (p, hcf � (q, r)) = hcf � (hcf � (r, p), q).

(67) hcf � (q, lcm � (q, p)) = q and hcf � (lcm � (p, q), q) = q and hcf � (q, lcm � (p,
q)) = q and hcf � (lcm � (q, p), q) = q.

(68) lcm � (q, hcf � (q, p)) = q and lcm � (hcf � (p, q), q) = q and lcm � (q, hcf � (p,
q)) = q and lcm � (hcf � (q, p), q) = q.

The subset � + of � is defined by:

(Def.9) for every natural number n holds n ∈ � + if and only if 0 < n.

Let D be a non-empty set, and let S be a non-empty subset of D, and let N
be a non-empty subset of S. We see that the element of N is an element of S.

A positive natural number is an element of � + .

Let k be a natural number satisfying the condition: k > 0. The functor @k
yields an element of � + qua a non-empty set and is defined by:

(Def.10) @k = k.

Let k be an element of � + qua a non-empty set. The functor @k yields a
positive natural number and is defined as follows:

(Def.11) @k = k.

In the sequel m, n denote positive natural numbers. We now define two new
functors. The binary operation hcf � + on � + is defined by:

(Def.12) hcf � + (m, n) = gcd(m,n).

The binary operation lcm � + on � + is defined as follows:

(Def.13) lcm � + (m, n) = lcm(m,n).

In the sequel p, q will denote elements of the carrier of 〈 � + , lcm � + ,hcf � + 〉.
Let m be an element of the carrier of 〈 � + , lcm � + ,hcf � + 〉. The functor @m yields
a positive natural number and is defined as follows:

(Def.14) @m = m.

4The proposition (59) has been removed.
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One can prove the following four propositions:

(69) p t q = lcm(@p,@q).

(70) p u q = gcd(@p,@q).

(71) lcm � + (p, q) = p t q.
(72) hcf � + (p, q) = p u q.

The lattice � � + is defined by:

(Def.15) � � + = 〈 � + , lcm � + ,hcf � + 〉.
Next we state the proposition

(73) � � + = 〈 � + , lcm � + ,hcf � + 〉.
Let L be a lattice. A lattice is said to be a sublattice of L if:

(Def.16) the carrier of it ⊆ the carrier of L and the join operation of it = (the
join operation of L) � [: the carrier of it, the carrier of it :] and the meet
operation of it = (the meet operation of L) � [: the carrier of it, the carrier
of it :].

The following two propositions are true:

(75)5 For every lattice L holds L is a sublattice of L.

(76) � � + is a sublattice of � � .

In the sequel n, i, k, k1, k2, m, l will denote natural numbers. The set Prime
of natural numbers is defined as follows:

(Def.17) for every natural number n holds n ∈ Prime if and only if n is prime.

A natural number is said to be a prime number if:

(Def.18) it ∈ Prime.

In the sequel p, q denote prime numbers and f denotes a prime number.
Let us consider p. The functor Prime(p) yields sets of natural numbers and is
defined by:

(Def.19) for every natural number q holds q ∈ Prime(p) if and only if q < p and
q is prime.

Next we state a number of propositions:

(77) Prime(p) ⊆ Prime.

(78) For every prime number q such that p < q holds Prime(p) ⊆ Prime(q).

(79) Prime(p) ⊆ Seg p.

(80) Prime(p) is finite.

(81) For every l there exists p such that p is prime and p > l.

(82) For every q such that q is prime there exists p such that p is prime and
p > q.

(83) Prime ⊆ � .

(84) Prime 6= ∅.
(85) {k : k < 2 ∧ k is prime} = ∅.

5The proposition (74) has been removed.
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(86) For every p holds {k : k < p ∧ k is prime} ⊆ � .

(87) For every m holds {k : k < m ∧ k is prime} ⊆ Segm.

(88) For every m holds {k : k < m ∧ k is prime} is finite.

(89) For every prime number f holds f /∈ {k : k < f ∧ k is prime}.
(90) For every f holds {k : k < f ∧ k is prime} ∪ {f} is finite.

(91) For all prime numbers f , g such that f < g holds {k1 : k1 < f ∧ k1 is
prime} ∪ {f} ⊆ {k2 : k2 < g ∧ k2 is prime}.

(92) For every k such that k > m holds k /∈ {k1 : k1 < m ∧ k1 is prime}.
Let us consider n. The functor pr(n) yielding a prime number is defined as

follows:

(Def.20) n = card{k : k < pr(n) ∧ k is prime}.
One can prove the following two propositions:

(93) Prime(p) = {k : k < p ∧ k is prime}.
(94) Prime is not finite.

The following proposition is true

(95) For every i such that i is prime for all m, n such that i | m · n holds
i | m or i | n.
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The terminology and notation used in this paper are introduced in the following
articles: [9], [4], [1], [3], [5], [10], [7], [14], [16], [2], [12], [8], [15], [11], and [13].

Preliminaries

The scheme SubsetFD3 concerns a non-empty set A, a non-empty set B, a
non-empty set C, a ternary functor F yielding an element of B, and a ternary
predicate P, and states that:
{F(c, d, e) : P[c, d, e]}, where c ranges over elements of A, and d ranges over

elements of B, and e ranges over elements of C, is a subset of B
for all values of the parameters.

For simplicity we adopt the following rules: x will be arbitrary, k, n will
denote natural numbers, i will denote an integer, G will denote a group, a, b,
c, d will denote elements of G, A, B, C, D will denote subsets of G, H, H1,
H2, H3, H4 will denote subgroups of G, N , N1, N2, N3 will denote normal
subgroups of G, F , F1, F2 will denote finite sequences of elements of the carrier
of G, and I will denote a finite sequence of elements of � . Next we state several
propositions:

(1) x ∈ {1}G if and only if x = 1G.

(2) If a ∈ H and b ∈ H, then ab ∈ H.

(3) If a ∈ N , then ab ∈ N .

(4) x ∈ H1 ·H2 if and only if there exist a, b such that x = a · b and a ∈ H1

and b ∈ H2.

(5) If H1 · H2 = H2 · H1, then x ∈ H1 tH2 if and only if there exist a, b
such that x = a · b and a ∈ H1 and b ∈ H2.
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(6) If G is an Abelian group, then x ∈ H1 tH2 if and only if there exist a,
b such that x = a · b and a ∈ H1 and b ∈ H2.

(7) x ∈ N1tN2 if and only if there exist a, b such that x = a · b and a ∈ N1

and b ∈ N2.

(8) H ·N = N ·H.

Let us consider G, F , a. The functor F a yielding a finite sequence of elements
of the carrier of G is defined by:

(Def.1) len(F a) = lenF and for every k such that k ∈ Seg lenF holds F a(k) =
(πkF )a.

One can prove the following propositions:

(9) If lenF1 = lenF2 and for every k such that k ∈ Seg lenF2 holds F1(k) =
(πkF2)a, then F1 = F2

a.

(10) len(F a) = lenF .

(11) For every k such that k ∈ Seg lenF holds F a(k) = (πkF )a.

(12) (F1
a) 	 F2

a = (F1 	 F2)a.

(13) εa(the carrier of G) = ε.

(14) 〈a〉b = 〈ab〉.
(15) 〈a, b〉c = 〈ac, bc〉.
(16) 〈a, b, c〉d = 〈ad, bd, cd〉.
(17)

∏
(F a) = (

∏
F )a.

(18) If lenF = len I, then (F a)I = (F I)a.

Commutators

Let us consider G, a, b. The functor [a, b] yields an element of G and is defined
by:

(Def.2) [a, b] = a−1 · b−1 · a · b.
One can prove the following propositions:

(19) (i) [a, b] = a−1 · b−1 · a · b,
(ii) [a, b] = a−1 · (b−1 · a) · b,
(iii) [a, b] = a−1 · (b−1 · a · b),
(iv) [a, b] = a−1 · (b−1 · (a · b)),
(v) [a, b] = a−1 · b−1 · (a · b).

(20) [a, b] = (b · a)−1 · (a · b).
(21) [a, b] = (b−1)a · b and [a, b] = a−1 · ab.
(22) [1G, a] = 1G and [a, 1G] = 1G.

(23) [a, a] = 1G.

(24) [a, a−1] = 1G and [a−1, a] = 1G.

(25) [a, b]−1 = [b, a].

(26) [a, b]c = [ac, bc].
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(27) [a, b] = (a−1)2 · (a · b−1)2 · b2.

(28) [a · b, c] = [a, c]b · [b, c].
(29) [a, b · c] = [a, c] · [a, b]c.
(30) [a−1, b] = [b, a]a

−1
.

(31) [a, b−1] = [b, a]b
−1

.

(32) [a−1, b−1] = [a, b](a·b)
−1

and [a−1, b−1] = [a, b](b·a)−1
.

(33) [a, ba
−1

] = [b, a−1].

(34) [ab
−1
, b] = [b−1, a].

(35) [an, b] = a−n · (ab)n.

(36) [a, bn] = (ba)−n · bn.

(37) [ai, b] = a−i · (ab)i.
(38) [a, bi] = (ba)−i · bi.
(39) [a, b] = 1G if and only if a · b = b · a.

(40) G is an Abelian group if and only if for all a, b holds [a, b] = 1G.

(41) If a ∈ H and b ∈ H, then [a, b] ∈ H.

Let us consider G, a, b, c. The functor [a, b, c] yielding an element of G is
defined by:

(Def.3) [a, b, c] = [[a, b], c].

One can prove the following propositions:

(42) [a, b, c] = [[a, b], c].

(43) [a, b, 1G] = 1G and [a, 1G, b] = 1G and [1G, a, b] = 1G.

(44) [a, a, b] = 1G.

(45) [a, b, a] = [ab, a].

(46) [b, a, a] = ([b, a−1] · [b, a])a.

(47) [a, b, ba] = [b, [b, a]].

(48) [a · b, c] = [a, c] · [a, c, b] · [b, c].
(49) [a, b · c] = [a, c] · [a, b] · [a, b, c].
(50) [a, b−1, c]b · [b, c−1, a]c · [c, a−1, b]a = 1G.

Let us consider G, A, B. The commutators of A & B yielding a subset of G
is defined as follows:

(Def.4) the commutators of A & B = {[a, b] : a ∈ A ∧ b ∈ B}.
We now state several propositions:

(51) The commutators of A & B = {[a, b] : a ∈ A ∧ b ∈ B}.
(52) x ∈ the commutators of A & B if and only if there exist a, b such that

x = [a, b] and a ∈ A and b ∈ B.

(53) The commutators of ∅the carrier of G & A = ∅ and the commutators of A
& ∅the carrier of G = ∅.

(54) The commutators of {a} & {b} = {[a, b]}.
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(55) If A ⊆ B and C ⊆ D, then the commutators of A & C ⊆ the commu-
tators of B & D.

(56) G is an Abelian group if and only if for all A, B such that A 6= ∅ and
B 6= ∅ holds the commutators of A & B = {1G}.

Let us consider G, H1, H2. The commutators of H1 & H2 yields a subset of
G and is defined by:

(Def.5) the commutators of H1 & H2 = the commutators of H1 & H2.

Next we state several propositions:

(57) The commutators of H1 & H2 = the commutators of H1 & H2.

(58) x ∈ the commutators of H1 & H2 if and only if there exist a, b such
that x = [a, b] and a ∈ H1 and b ∈ H2.

(59) 1G ∈ the commutators of H1 & H2.

(60) The commutators of {1}G & H = {1G} and the commutators of H &
{1}G = {1G}.

(61) The commutators of H & N ⊆ N and the commutators of N & H ⊆ N .

(62) If H1 is a subgroup of H2 and H3 is a subgroup of H4, then the com-
mutators of H1 & H3 ⊆ the commutators of H2 & H4.

(63) G is an Abelian group if and only if for allH1, H2 holds the commutators
of H1 & H2 = {1G}.

Let us consider G. The commutators of G yielding a subset of G is defined
by:

(Def.6) the commutators of G = the commutators of ΩG & ΩG.

Next we state three propositions:

(64) The commutators of G = the commutators of ΩG & ΩG.

(65) x ∈ the commutators of G if and only if there exist a, b such that
x = [a, b].

(66) G is an Abelian group if and only if the commutators of G = {1G}.
Let us consider G, A, B. The functor [A,B] yielding a subgroup of G is

defined as follows:

(Def.7) [A,B] = gr(the commutators of A & B).

Next we state four propositions:

(67) [A,B] = gr(the commutators of A & B).

(68) If a ∈ A and b ∈ B, then [a, b] ∈ [A,B].

(69) x ∈ [A,B] if and only if there exist F , I such that lenF = len I and
rngF ⊆ the commutators of A & B and x =

∏
(F I).

(70) If A ⊆ C and B ⊆ D, then [A,B] is a subgroup of [C,D].

Let us consider G, H1, H2. The functor [H1,H2] yielding a subgroup of G is
defined by:

(Def.8) [H1,H2] = [H1,H2].

Next we state a number of propositions:
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(71) [H1,H2] = [H1,H2].

(72) [H1,H2] = gr(the commutators of H1 & H2).

(73) x ∈ [H1,H2] if and only if there exist F , I such that lenF = len I and
rngF ⊆ the commutators of H1 & H2 and x =

∏
(F I).

(74) If a ∈ H1 and b ∈ H2, then [a, b] ∈ [H1,H2].

(75) If H1 is a subgroup of H2 and H3 is a subgroup of H4, then [H1,H3] is
a subgroup of [H2,H4].

(76) [N,H] is a subgroup of N and [H,N ] is a subgroup of N .

(77) [N1, N2] is a normal subgroup of G.

(78) [N1, N2] = [N2, N1].

(79) [N1 tN2, N3] = [N1, N3] t [N2, N3].

(80) [N1, N2 tN3] = [N1, N2] t [N1, N3].

Let us consider G. The functor Gc yields a normal subgroup of G and is
defined by:

(Def.9) Gc = [ΩG,ΩG].

Next we state several propositions:

(81) Gc = [ΩG,ΩG].

(82) Gc = gr(the commutators of G).

(83) x ∈ Gc if and only if there exist F , I such that lenF = len I and
rngF ⊆ the commutators of G and x =

∏
(F I).

(84) [a, b] ∈ Gc.

(85) G is an Abelian group if and only if Gc = {1}G.

(86) If the left cosets of H is finite and |• : H| � = 2, then Gc is a subgroup
of H.

Center of a Group

Let us consider G. The functor Z(G) yielding a subgroup of G is defined as
follows:

(Def.10) the carrier of Z(G) = {a :
∧
b a · b = b · a}.

We now state several propositions:

(87) If the carrier of H = {a :
∧
b a · b = b · a}, then H = Z(G).

(88) The carrier of Z(G) = {a :
∧
b a · b = b · a}.

(89) a ∈ Z(G) if and only if for every b holds a · b = b · a.

(90) Z(G) is a normal subgroup of G.

(91) If H is a subgroup of Z(G), then H is a normal subgroup of G.

(92) Z(G) is an Abelian group.

(93) a ∈ Z(G) if and only if a• = {a}.
(94) G is an Abelian group if and only if Z(G) = G.
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Auxiliary theorems

In the sequel E will be a non-empty set and p, q will be finite sequences of
elements of E. The following propositions are true:

(95) If k ∈ dom p or k ∈ Seg len p, then πk(p 	 q) = πkp.

(96) If k ∈ dom q or k ∈ Seg len q, then πlen p+k(p 	 q) = πkq.
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[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[5] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[6] M. I. Kargapo low and J. I. Mierzlakow. Podstawy teorii grup. PWN, Warszawa, 1989.
[7] Rafa l Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative

primes. Formalized Mathematics, 1(5):829–832, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[10] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[11] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathe-

matics, 1(5):955–962, 1990.
[12] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[13] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized

Mathematics, 2(1):41–47, 1991.
[14] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[15] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics,

1(5):855–864, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received May 15, 1991



FORMALIZED MATHEMATICS

Vol.2, No.4, September–October 1991
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Summary. We present well known concepts of category theory:
natural transofmations and functor categories, and prove propositions
related to. Because of the formalization it proved to be convenient to in-
troduce some auxiliary notions, for instance: transformations. We mean
by a transformation of a functor F to a functor G, both covariant func-
tors from A to B, a function mapping the objects of A to the morphisms
of B and assigning to an object a of A an element of Hom(F (a),G(a)).
The material included roughly corresponds to that presented on pages
18,129–130,137–138 of the monography ([10]). We also introduce discrete
categories and prove some propositions to illustrate the concepts intro-
duced.

MML Identifier: NATTRA 1.

The articles [12], [13], [9], [3], [7], [4], [2], [6], [1], [11], [5], and [8] provide the
terminology and notation for this paper.

Preliminaries

For simplicity we follow a convention: A1, A2, B1, B2 are non-empty sets, f is
a function from A1 into B1, g is a function from A2 into B2, Y1 is a non-empty
subset of A1, and Y2 is a non-empty subset of A2. Let A1, A2 be non-empty
sets, and let Y1 be a non-empty subset of A1, and let Y2 be a non-empty subset
of A2. Then [:Y1, Y2 :] is a non-empty subset of [:A1, A2 :].

Let us consider A1, B1, f , Y1. Then f � Y1 is a function from Y1 into B1.

We now state the proposition

(1) [: f, g :] � [: Y1, Y2 :] = [: f � Y1, g � Y2 :].

Let A, B be non-empty sets, and let A1 be a non-empty subset of A, and let
B1 be a non-empty subset of B, and let f be a partial function from [:A1, A1 :]
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to A1, and let g be a partial function from [:B1, B1 :] to B1. Then |:f, g:| is a
partial function from [: [:A1, B1 :], [:A1, B1 :] :] to [:A1, B1 :].

One can prove the following proposition

(2) Let f be a partial function from [:A1, A1 :] to A1. Let g be a partial
function from [:A2, A2 :] to A2. Then for every partial function F from
[:Y1, Y1 :] to Y1 such that F = f � [:Y1, Y1 :] for every partial function G from
[:Y2, Y2 :] to Y2 such that G = g � [: Y2, Y2 :] holds |:F, G:| = |:f, g:| � [: [: Y1,
Y2 :], [:Y1, Y2 :] :].

We adopt the following convention: A, B, C will be categories, F , F1, F2,
F3 will be functors from A to B, and G will be a functor from B to C. In this
article we present several logical schemes. The scheme M Choice deals with a
set A, a set B, and a unary functor F yielding a set and states that:

there exists a function t from A into B such that for every element a of A
holds t(a) ∈ F(a)

provided the following requirement is met:

• for every element a of A holds B meets F(a).

The scheme LambdaT concerns a set A, a set B, and a unary functor F and
states that:

there exists a function f from A into B such that for every element x of A
holds f(x) = F(x)

provided the following requirement is met:

• for every element x of A holds F(x) ∈ B.

We now state the proposition

(3) For every object a of A and for every morphism m from a to a holds
m ∈ hom(a, a).

In the sequel m, o will be arbitrary. One can prove the following propositions:

(4) For all morphisms f , g of ˙
 (o,m) holds f = g.

(5) For every object a of A holds 〈〈〈〈 ida, ida 〉〉, ida 〉〉 ∈ the composition of A.

(6) The composition of ˙
 (o,m) = {〈〈〈〈m, m〉〉, m〉〉}.
(7) For every object a of A holds ˙
 (a, ida) is a subcategory of A.

(8) For every subcategory C of A holds the dom-map of C = (the dom-map
of A) � the morphisms of C and the cod-map of C = (the cod-map of A) �
the morphisms of C and the composition of C = (the composition of A) � [:
the morphisms of C, the morphisms of C :] and the id-map of C = (the
id-map of A) � the objects of C.

(9) Let O be a non-empty subset of the objects of A. Let M be a non-empty
subset of the morphisms of A. Let D1, C1 be functions from M into O.
Suppose D1 = (the dom-map of A) � M and C1 = (the cod-map of A) � M .
Then for every partial function C2 from [:M, M qua a non-empty set :] to
M such that C2 = (the composition of A) � [:M, M :] for every function
I1 from O into M such that I1 = (the id-map of A) � O holds 〈O,M,D1,
C1, C2, I1〉 is a subcategory of A.
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(10) For every subcategory A of C such that the objects of A = the objects
of C and the morphisms of A = the morphisms of C holds A = C.

Application of a functor to a morphism

Let us consider A, B, F , and let a, b be objects of A satisfying the condition:
hom(a, b) 6= ∅. Let f be a morphism from a to b. The functor F (f) yields a
morphism from F (a) to F (b) and is defined by:

(Def.1) F (f) = F (f).

One can prove the following propositions:

(11) For all objects a, b of A such that hom(a, b) 6= ∅ for every morphism f
from a to b holds (G · F )(f) = G(F (f)).

(12) For all functors F1, F2 from A to B such that for all objects a, b of A such
that hom(a, b) 6= ∅ for every morphism f from a to b holds F1(f) = F2(f)
holds F1 = F2.

(13) For all objects a, b, c of A such that hom(a, b) 6= ∅ and hom(b, c) 6= ∅
for every morphism f from a to b and for every morphism g from b to c
holds F (g · f) = F (g) · F (f).

(14) For every object c of A and for every object d of B such that F (idc) = idd
holds F (c) = d.

(15) For every object a of A holds F (ida) = idF (a).

(16) For all objects a, b of A such that hom(a, b) 6= ∅ for every morphism f
from a to b holds idA(f) = f .

(17) For all objects a, b, c, d of A such that hom(a, b) meets hom(c, d) holds
a = c and b = d.

Transformations

Let us consider A, B, F1, F2. We say that F1 is transformable to F2 if and only
if:

(Def.2) for every object a of A holds hom(F1(a), F2(a)) 6= ∅.
One can prove the following propositions:

(18) F is transformable to F .

(19) If F is transformable to F1 and F1 is transformable to F2, then F is
transformable to F2.

Let us consider A, B, F1, F2. Let us assume that F1 is transformable to
F2. A function from the objects of A into the morphisms of B is said to be a
transformation from F1 to F2 if:

(Def.3) for every object a of A holds it(a) is a morphism from F1(a) to F2(a).

Let us consider A, B, and let F be a functor from A to B. The functor idF
yields a transformation from F to F and is defined as follows:

(Def.4) for every object a of A holds idF (a) = idF (a).
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Let us consider A, B, F1, F2. Let us assume that F1 is transformable to
F2. Let t be a transformation from F1 to F2, and let a be an object of A. The
functor t(a) yields a morphism from F1(a) to F2(a) and is defined by:

(Def.5) t(a) = t(a).

Let us consider A, B, F , F1, F2. Let us assume that F is transformable to F1

and F1 is transformable to F2. Let t1 be a transformation from F to F1, and let
t2 be a transformation from F1 to F2. The functor t2◦t1 yields a transformation
from F to F2 and is defined by:

(Def.6) for every object a of A holds (t2◦t1)(a) = t2(a) · t1(a).

The following propositions are true:

(20) If F1 is transformable to F2, then for all transformations t1, t2 from F1

to F2 such that for every object a of A holds t1(a) = t2(a) holds t1 = t2.

(21) For every object a of A holds idF (a) = idF (a).

(22) If F1 is transformable to F2, then for every transformation t from F1 to
F2 holds idF2

◦t = t and t◦ idF1 = t.

(23) If F is transformable to F1 and F1 is transformable to F2 and F2 is
transformable to F3, then for every transformation t1 from F to F1 and
for every transformation t2 from F1 to F2 and for every transformation t3
from F2 to F3 holds t3◦t2◦t1 = t3◦(t2◦t1).

Natural transformations

Let us consider A, B, F1, F2. We say that F1 is naturally transformable to F2

if and only if:

(Def.7) F1 is transformable to F2 and there exists a transformation t from F1

to F2 such that for all objects a, b of A such that hom(a, b) 6= ∅ for every
morphism f from a to b holds t(b) · F1(f) = F2(f) · t(a).

Next we state two propositions:

(24) F is naturally transformable to F .

(25) If F is naturally transformable to F1 and F1 is naturally transformable
to F2, then F is naturally transformable to F2.

Let us consider A, B, F1, F2. Let us assume that F1 is naturally trans-
formable to F2. A transformation from F1 to F2 is called a natural transforma-
tion from F1 to F2 if:

(Def.8) for all objects a, b of A such that hom(a, b) 6= ∅ for every morphism f
from a to b holds it(b) · F1(f) = F2(f) · it(a).

Let us consider A, B, F . Then idF is a natural transformation from F to F .

Let us consider A, B, F , F1, F2. satisfying the conditions: F is naturally
transformable to F1 and F1 is naturally transformable to F2. Let t1 be a natural
transformation from F to F1, and let t2 be a natural transformation from F1

to F2. The functor t2◦t1 yields a natural transformation from F to F2 and is
defined by:
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(Def.9) t2◦t1 = t2◦t1.

One can prove the following proposition

(26) If F1 is naturally transformable to F2, then for every natural transfor-
mation t from F1 to F2 holds idF2

◦t = t and t◦ idF1 = t.

In the sequel t denotes a natural transformation from F to F1 and t1 denotes
a natural transformation from F1 to F2. Next we state two propositions:

(27) If F is naturally transformable to F1 and F1 is naturally transformable
to F2, then for every natural transformation t1 from F to F1 and for every
natural transformation t2 from F1 to F2 and for every object a of A holds
(t2◦t1)(a) = t2(a) · t1(a).

(28) If F is naturally transformable to F1 and F1 is naturally transformable
to F2 and F2 is naturally transformable to F3, then for every natural
transformation t3 from F2 to F3 holds t3◦t1◦t = t3◦(t1◦t).

Let us consider A, B, F1, F2. A transformation from F1 to F2 is invertible
if:

(Def.10) for every object a of A holds it(a) is invertible.

We now define two new predicates. Let us consider A, B, F1, F2. We say
that F1, F2 are naturally equivalent if and only if:

(Def.11) F1 is naturally transformable to F2 and there exists a natural transfor-
mation t from F1 to F2 such that t is invertible.

We write F1
∼= F2 if and only if F1, F2 are naturally equivalent.

One can prove the following proposition

(29) F ∼= F .

Let us consider A, B, F1, F2. satisfying the condition: F1 is transformable
to F2. Let t1 be a transformation from F1 to F2 satisfying the condition: t1 is
invertible. The functor t1

−1 yielding a transformation from F2 to F1 is defined
as follows:

(Def.12) for every object a of A holds t1
−1(a) = t1(a)−1.

Let us consider A, B, F1, F2, t1. satisfying the conditions: F1 is naturally
transformable to F2 and t1 is invertible. The functor t1

−1 yielding a natural
transformation from F2 to F1 is defined by:

(Def.13) t1
−1 = (t1 qua a transformation from F1 to F2)−1.

Next we state three propositions:

(30) For all A, B, F1, F2, t1 such that F1 is naturally transformable to F2

and t1 is invertible for every object a of A holds t1
−1(a) = t1(a)−1.

(31) If F1
∼= F2, then F2

∼= F1.

(32) If F1
∼= F2 and F2

∼= F3, then F1
∼= F3.

Let us consider A, B, F1, F2. Let us assume that F1, F2 are naturally equiv-
alent. A natural transformation from F1 to F2 is called a natural equivalence of
F1 and F2 if:

(Def.14) it is invertible.
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We now state two propositions:

(33) idF is a natural equivalence of F and F .

(34) If F1
∼= F2 and F2

∼= F3, then for every natural equivalence t of F1 and
F2 and for every natural equivalence t′ of F2 and F3 holds t′◦t is a natural
equivalence of F1 and F3.

Functor category

Let us consider A, B. A non-empty set is called a set of natural transformations
from A to B if:

(Def.15) for an arbitrary x such that x ∈ it there exist functors F1, F2 from A
to B and there exists a natural transformation t from F1 to F2 such that
x = 〈〈〈〈F1, F2〉〉, t〉〉 and F1 is naturally transformable to F2.

Let us consider A, B. The functor NatTrans(A,B) yielding a set of natural
transformations from A to B is defined as follows:

(Def.16) for an arbitrary x holds x ∈ NatTrans(A,B) if and only if there exist
functors F1, F2 from A to B and there exists a natural transformation
t from F1 to F2 such that x = 〈〈〈〈F1, F2〉〉, t〉〉 and F1 is naturally trans-
formable to F2.

Let A1, B1, A2, B2 be non-empty sets, and let f1 be a function from A1

into B1, and let f2 be a function from A2 into B2. Let us note that one can
characterize the predicate f1 = f2 by the following (equivalent) condition:

(Def.17) A1 = A2 and for every element a of A1 holds f1(a) = f2(a).

The following two propositions are true:

(35) F1 is naturally transformable to F2 if and only if 〈〈〈〈F1, F2〉〉, t1〉〉 ∈
NatTrans(A,B).

(36) 〈〈〈〈F, F 〉〉, idF 〉〉 ∈ NatTrans(A,B).

Let us consider A, B. The functor BA yielding a category is defined by the
conditions (Def.18).

(Def.18) (i) The objects of BA = Funct(A,B),
(ii) the morphisms of BA = NatTrans(A,B),
(iii) for every morphism f of BA holds dom f = (f1)1 and cod f = (f1)2,
(iv) for all morphisms f , g of BA such that dom g = cod f holds 〈〈g, f〉〉 ∈

dom (the composition of BA),
(v) for all morphisms f , g of BA such that 〈〈g, f〉〉 ∈ dom (the composition

of BA) there exist F , F1, F2, t, t1 such that f = 〈〈〈〈F, F1〉〉, t〉〉 and g = 〈〈〈〈F1,
F2〉〉, t1〉〉 and (the composition of BA)(〈〈g, f〉〉) = 〈〈〈〈F, F2〉〉, t1◦t〉〉,

(vi) for every object a of BA and for every F such that F = a holds
ida = 〈〈〈〈F, F 〉〉, idF 〉〉.

We now state several propositions:

(37) The objects of BA = Funct(A,B).

(38) The morphisms of BA = NatTrans(A,B).
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(39) For every morphism f of BA such that f = 〈〈〈〈F, F1〉〉, t〉〉 holds dom f =
F and cod f = F1.

(40) For all objects a, b of BA and for every morphism f from a to b such
that hom(a, b) 6= ∅ there exist F , F1, t such that a = F and b = F1 and
f = 〈〈〈〈F, F1〉〉, t〉〉.

(41) For every natural transformation t′ from F2 to F3 and for all morphisms
f , g of BA such that f = 〈〈〈〈F, F1〉〉, t〉〉 and g = 〈〈〈〈F2, F3〉〉, t′〉〉 holds 〈〈g,
f〉〉 ∈ dom (the composition of BA) if and only if F1 = F2.

(42) For all morphisms f , g of BA such that f = 〈〈〈〈F, F1〉〉, t〉〉 and g = 〈〈〈〈F1,
F2〉〉, t1〉〉 holds g · f = 〈〈〈〈F, F2〉〉, t1◦t〉〉.

(43) For every object a of BA and for every F such that F = a holds ida =
〈〈〈〈F, F 〉〉, idF 〉〉.

Discrete categories

A category is discrete if:

(Def.19) for every morphism f of it there exists an object a of it such that
f = ida.

One can prove the following propositions:

(44) For every discrete category A and for every object a of A holds
hom(a, a) = {ida}.

(45) A is discrete if and only if for every object a of A holds hom(a, a) is
finite and card hom(a, a) = 1 and for every object b of A such that a 6= b
holds hom(a, b) = ∅.

(46) ˙
 (o,m) is discrete.

(47) For every discrete category A and for every subcategory C of A holds
C is discrete.

(48) If A is discrete and B is discrete, then [:A, B :] is discrete.

(49) For every discrete category A and for every category B and for all
functors F1, F2 from B to A such that F1 is transformable to F2 holds
F1 = F2.

(50) For every discrete category A and for every category B and for every
functor F from B to A and for every transformation t from F to F holds
t = idF .

(51) If A is discrete, then AB is discrete.

Let us consider C. The functor IdCatC yields a discrete subcategory of C
and is defined as follows:

(Def.20) the objects of IdCatC = the objects of C and the morphisms of
IdCatC = {ida},
where a ranges over objects of C.

Next we state four propositions:

(52) If C is discrete, then IdCatC = C.
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(53) IdCat IdCatC = IdCatC.

(54) IdCat ˙
 (o,m) = ˙
 (o,m).

(55) IdCat[:A, B :] = [: IdCatA, IdCatB :].

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
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Summary. The basic conceptions of matrix algebra are intro-
duced. The matrix is introduced as the finite sequence of sequences with
the same length, i.e. as a sequence of lines. There are considered matri-
ces over a field, and the fact that these matrices with addition form an
Abelian group is proved.

MML Identifier: MATRIX 1.

The notation and terminology used here have been introduced in the following
papers: [9], [5], [6], [1], [8], [4], [2], [3], and [7]. For simplicity we adopt the
following rules: x will be arbitrary, i, j, n, m will be natural numbers, D will
be a non-empty set, K will be a field structure, s will be a finite sequence,
a, a1, a2, b1, b2, d will be elements of D, p, p1, p2 will be finite sequences of
elements of D, and F will be a field. A finite sequence is tabular if:

(Def.1) there exists a natural number n such that for every x such that x ∈ rng it
there exists s such that s = x and len s = n.

The following propositions are true:

(1) 〈〈d〉〉 is tabular.

(2) m 7−→ (n 7−→ x) is tabular.

(3) For every s holds 〈s〉 is tabular.

(4) For all finite sequences s1, s2 such that len s1 = n and len s2 = n holds
〈s1, s2〉 is tabular.

(5) ε is tabular.

(6) 〈ε, ε〉 is tabular.

(7) 〈〈a1〉, 〈a2〉〉 is tabular.

(8) 〈〈a1, a2〉, 〈b1, b2〉〉 is tabular.

A tabular finite sequence is non-trivial if:

(Def.2) there exists s such that s ∈ rng it and len s > 0.
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Let D be a non-empty set.

Let D be a non-empty set. A matrix over D is a tabular finite sequence of
elements of D∗.

We now state the proposition

(9) s is a matrix over D if and only if there exists n such that for every x
such that x ∈ rng s there exists p such that x = p and len p = n.

Let us consider D, m, n. A matrix over D is said to be a matrix over D of
dimension m× n if:

(Def.3) len it = m and for every p such that p ∈ rng it holds len p = n.

Let us consider D, n. A matrix over D of dimension n is a matrix over D of
dimension n× n.

We now define three new modes. Let us consider K. A matrix over K is a
matrix over the carrier of K.

Let us consider n. A matrix over K of dimension n is a matrix over the
carrier of K of dimension n× n.

Let us consider m. A matrix over K of dimension n×m is a matrix over the
carrier of K of dimension n×m.

We now state a number of propositions:

(10) m 7−→ (n 7−→ a) is a matrix over D of dimension m× n.

(11) For every finite sequence p of elements of D holds 〈p〉 is a matrix over
D of dimension 1× len p.

(12) For all p1, p2 such that len p1 = n and len p2 = n holds 〈p1, p2〉 is a
matrix over D of dimension 2× n.

(13) ε is a matrix over D of dimension 0×m.

(14) 〈ε〉 is a matrix over D of dimension 1× 0.

(15) 〈〈a〉〉 is a matrix over D of dimension 1.

(16) 〈ε, ε〉 is a matrix over D of dimension 2× 0.

(17) 〈〈a1, a2〉〉 is a matrix over D of dimension 1× 2.

(18) 〈〈a1〉, 〈a2〉〉 is a matrix over D of dimension 2× 1.

(19) 〈〈a1, a2〉, 〈b1, b2〉〉 is a matrix over D of dimension 2.

In the sequel M , M1, M2 will be matrices over D. Let M be a tabular
finite sequence. The functor widthM yields a natural number and is defined as
follows:

(Def.4) (i) there exists s such that s ∈ rngM and len s = widthM if lenM > 0,
(ii) widthM = 0, otherwise.

Next we state the proposition

(20) If lenM > 0, then for every n holds M is a matrix over D of dimension
lenM × n if and only if n = widthM .

Let M be a tabular finite sequence. The indices of M yielding a set is defined
by:

(Def.5) the indices of M = [: Seg lenM, Seg widthM :].
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Let us consider D, and let M be a matrix over D, and let us consider i,
j. Let us assume that 〈〈i, j〉〉 ∈ the indices of M . The functor Mi,j yielding an
element of D is defined as follows:

(Def.6) there exists p such that p = M(i) and Mi,j = p(j).

The following proposition is true

(21) If lenM1 = lenM2 and widthM1 = widthM2 and for all i, j such that
〈〈i, j〉〉 ∈ the indices of M1 holds M1i,j = M2i,j, then M1 = M2.

In this article we present several logical schemes. The scheme MatrixLambda
deals with a non-empty set A, a natural number B, a natural number C, and a
binary functor F yielding an element of A and states that:

there exists a matrix M over A of dimension B×C such that for all i, j such
that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = F(i, j)

for all values of the parameters.
The scheme MatrixEx concerns a non-empty set A, a natural number B, a

natural number C, and a ternary predicate P, and states that:
there exists a matrix M over A of dimension B×C such that for all i, j such

that 〈〈i, j〉〉 ∈ the indices of M holds P[i, j,Mi,j ]

provided the parameters have the following properties:
• for all i, j such that 〈〈i, j〉〉 ∈ [: SegB, Seg C :] for all elements x1, x2

of A such that P[i, j, x1] and P[i, j, x2] holds x1 = x2,
• for all i, j such that 〈〈i, j〉〉 ∈ [: SegB, Seg C :] there exists an element
x of A such that P[i, j, x].

The scheme SeqDLambda concerns a non-empty set A, a natural number B,
and a unary functor F yielding an element of A and states that:

there exists a finite sequence p of elements of A such that len p = B and for
every i such that i ∈ SegB holds p(i) = F(i)
for all values of the parameters.

We now state several propositions:

(22) For every matrix M over D of dimension n ×m such that lenM = 0
holds widthM = 0.

(23) For every matrix M over D of dimension 0 ×m holds lenM = 0 and
widthM = 0 and the indices of M = ∅.

(24) If n > 0, then for every matrix M over D of dimension n × m holds
lenM = n and widthM = m and the indices of M = [: Seg n, Segm :].

(25) For every matrix M over D of dimension n holds lenM = n and
widthM = n and the indices of M = [: Segn, Segn :].

(26) For every matrix M over D of dimension n ×m holds lenM = n and
the indices of M = [: Seg n, Seg widthM :].

(27) For all matrices M1, M2 over D of dimension n ×m holds the indices
of M1 = the indices of M2.

(28) For all matrices M1, M2 over D of dimension n×m such that for all i, j
such that 〈〈i, j〉〉 ∈ the indices of M1 holds M1i,j = M2i,j holds M1 = M2.
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(29) For every matrix M1 over D of dimension n and for all i, j such that
〈〈i, j〉〉 ∈ the indices of M1 holds 〈〈j, i〉〉 ∈ the indices of M1.

Let us consider D, and let M be a matrix over D. The functor MT yielding
a matrix over D is defined as follows:

(Def.7) len(MT) = widthM and for all i, j holds 〈〈i, j〉〉 ∈ the indices of MT if
and only if 〈〈j, i〉〉 ∈ the indices of M and for all i, j such that 〈〈j, i〉〉 ∈ the
indices of M holds MT

i,j = Mj,i.

We now define two new functors. Let us consider D, M , i. The functor
Line(M, i) yields a finite sequence of elements of D and is defined by:

(Def.8) len Line(M, i) = widthM and for every j such that j ∈ Seg widthM
holds Line(M, i)(j) = Mi,j.

The functor M � ,i yields a finite sequence of elements of D and is defined as
follows:

(Def.9) len(M � ,i) = lenM and for every j such that j ∈ Seg lenM holds
M � ,i(j) = Mj,i.

Let us consider D, and let M be a matrix over D, and let us consider i. Then
Line(M, i) is an element of DwidthM . Then M � ,i is an element of DlenM .

In the sequel A, B are matrices over K of dimension n. We now define five
new functors. Let us consider K, n. The functor Kn×n yields a non-empty set
and is defined as follows:

(Def.10) Kn×n = ( (the carrier of K)n)n.

The functor




0 . . . 0
...

. . .
...

0 . . . 0




n×n

K

yielding a matrix over K of dimension n is de-

fined as follows:

(Def.11)




0 . . . 0
...

. . .
...

0 . . . 0




n×n

K

= n 7−→ (n 7−→ 0K).

The functor




1 0
. . .

0 1




n×n

K

yielding a matrix over K of dimension n is de-

fined as follows:

(Def.12) for every i such that 〈〈i, i〉〉 ∈ the indices of




1 0
. . .

0 1




n×n

K

holds

(




1 0
. . .

0 1




n×n

K

)i,i = 1K and for all i, j such that 〈〈i, j〉〉 ∈ the indices
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of




1 0
. . .

0 1




n×n

K

and i 6= j holds (




1 0
. . .

0 1




n×n

K

)i,j = 0K .

Let us consider A. The functor −A yielding a matrix over K of dimension n is
defined as follows:

(Def.13) for all i, j such that 〈〈i, j〉〉 ∈ the indices of A holds (−A)i,j = −Ai,j .
Let us consider B. The functor A+B yielding a matrix over K of dimension n
is defined by:

(Def.14) for all i, j such that 〈〈i, j〉〉 ∈ the indices ofA holds (A+B)i,j = Ai,j+Bi,j.

The following two propositions are true:

(30) For all i, j such that 〈〈i, j〉〉 ∈ the indices of




0 . . . 0
...

. . .
...

0 . . . 0




n×n

K

holds

(




0 . . . 0
...

. . .
...

0 . . . 0




n×n

K

)i,j = 0K .

(31) For every x holds x is an element of Kn×n if and only if x is a matrix
over K of dimension n.

Let us consider K, n. A matrix over K of dimension n is called a diagonal
n-dimensional matrix over K if:

(Def.15) for all i, j such that 〈〈i, j〉〉 ∈ the indices of it and iti,j 6= 0K holds i = j.

In the sequel A, B, C will denote matrices over F of dimension n. One can
prove the following four propositions:

(32) A+B = B +A.

(33) A+B + C = A+ (B + C).

(34) A+




0 . . . 0
...

. . .
...

0 . . . 0




n×n

F

= A.

(35) A+−A =




0 . . . 0
...

. . .
...

0 . . . 0




n×n

F

.

Let us consider F , n. The functor F n×n
G yielding an Abelian group is defined

by:

(Def.16) the carrier of F n×n
G = F n×n and for all A, B holds (the addition

of F n×nG )(A, B) = A + B and for every A holds (the reverse-map of

F n×nG )(A) = −A and the zero of F n×n
G =




0 . . . 0
...

. . .
...

0 . . . 0




n×n

F

.
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Summary. We give an example of a compact space. Next we
define a locally finite subset family of topological spaces and paracompact
topological spaces. An open sets family of a metric space is defined next
and it has been shown that the metric space with any open sets family is
a topological space. Next we define metrizable space.

MML Identifier: PCOMPS 1.

The papers [15], [5], [6], [11], [10], [12], [13], [18], [8], [17], [9], [7], [16], [3], [2],
[1], [4], and [14] provide the terminology and notation for this paper. In the
sequel P1 denotes a metric space, x denotes an element of the carrier of P1, and
r, p denote real numbers. Next we state the proposition

(1) If r ≤ p and r > 0, then Ball(x, r) ⊆ Ball(x, p).

For simplicity we adopt the following convention: T will be a topological
space, x will be a point of T , W , A will be subsets of T , and F1 will be a
family of subsets of T . One can prove the following four propositions:

(2) A 6= ∅ if and only if A 6= ∅.
(3) If A = ∅, then A = ∅.
(4) A is closed.

(5) If F1 is a cover of T , then for every x there exists W such that x ∈ W
and W ∈ F1.

Let X be arbitrary. Then {X} is a non-empty set. Then 2X is a non-empty
family of subsets of X.

Let a be arbitrary. The functor {a}top yields a topological space and is
defined by:

(Def.1) {a}top = 〈{a}, 2{a}〉.
In the sequel a is arbitrary. We now state four propositions:

(6) {a}top = 〈{a}, 2{a}〉.
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(7) The topology of {a}top = 2{a}.
(8) The carrier of {a}top = {a}.
(9) {a}top is compact.

Let us consider T , x. Then {x} is a subset of T .

We now state the proposition

(10) If T is a T2 space, then {x} is closed.

For simplicity we follow the rules: T will be a topological space, x will be a
point of T , Z, V , W , Y , A, B will be subsets of T , and F1, G1 will be families
of subsets of T . Let us consider T . A family of subsets of T is locally finite if:

(Def.2) for every x there exists W such that x ∈ W and W is open and {V :
V ∈ it ∧ V ∩W 6= ∅} is finite.

Next we state three propositions:

(11) For every W holds {V : V ∈ F1 ∧ V ∩W 6= ∅} ⊆ F1.

(12) If F1 ⊆ G1 and G1 is locally finite, then F1 is locally finite.

(13) If F1 is finite, then F1 is locally finite.

Let us consider T , F1. The functor clf F1 yielding a family of subsets of T is
defined by:

(Def.3) Z ∈ clf F1 if and only if there exists W such that Z = W and W ∈ F1.

Next we state several propositions:

(14) clf F1 is closed.

(15) If F1 = ∅, then clf F1 = ∅.
(16) If F1 = {V }, then clf F1 = {V }.
(17) If F1 ⊆ G1, then clf F1 ⊆ clf G1.

(18) clf(F1 ∪G1) = clf F1 ∪ clf G1.

Next we state two propositions:

(19) If F1 is finite, then
⋃
F1 =

⋃
clf F1.

(20) F1 is finer than clf F1.

The scheme Lambda1top deals with a topological space A, a family B of
subsets of A, a family C of subsets of A, and a unary functor F yielding a
subset of A and states that:

there exists a function f from B into C such that for every subset Z of A
such that Z ∈ B holds f(Z) = F(Z)
provided the following condition is satisfied:
• for every subset Z of A such that Z ∈ B holds F(Z) ∈ C.
Next we state four propositions:

(21) If F1 is locally finite, then clf F1 is locally finite.

(22)
⋃
F1 ⊆

⋃
clf F1.

(23) If F1 is locally finite, then
⋃
F1 =

⋃
clf F1.

(24) If F1 is locally finite and F1 is closed, then
⋃
F1 is closed.

A topological space is paracompact if:
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(Def.4) for every family F1 of subsets of it such that F1 is a cover of it and F1

is open there exists a family G1 of subsets of it such that G1 is open and
G1 is a cover of it and G1 is finer than F1 and G1 is locally finite.

The following propositions are true:

(25) If T is compact, then T is paracompact.

(26) Suppose T is paracompact and A is closed and B is closed and A misses
B and for every x such that x ∈ B there exist V , W such that V is open
and W is open and A ⊆ V and x ∈W and V misses W . Then there exist
Y , Z such that Y is open and Z is open and A ⊆ Y and B ⊆ Z and Y
misses Z.

(27) If T is a T2 space and T is paracompact, then T is a T3 space.

(28) If T is a T2 space and T is paracompact, then T is a T4 space.

For simplicity we follow a convention: P1 will denote a metric space, x, y, z
will denote elements of the carrier of P1, r, p, q will denote real numbers, and
V , W will denote subsets of the carrier of P1. Let us consider P1. The open set
family of P1 yielding a family of subsets of the carrier of P1 is defined as follows:

(Def.5) for every V holds V ∈the open set family of P1 if and only if for every
x such that x ∈ V there exists r such that r > 0 and Ball(x, r) ⊆ V .

One can prove the following propositions:

(29) For every x there exists r such that r > 0 and Ball(x, r) ⊆ the carrier
of P1.

(30) If y ∈ Ball(x, r), then there exists p such that p > 0 and Ball(y, p) ⊆
Ball(x, r).

(31) If y ∈ Ball(x, r) ∩ Ball(z, p), then there exists q such that Ball(y, q) ⊆
Ball(x, r) and Ball(y, q) ⊆ Ball(z, p).

(32) For every V holds V ∈ the open set family of P1 if and only if for every
x such that x ∈ V there exists r such that r > 0 and Ball(x, r) ⊆ V .

(33) For all x, r holds Ball(x, r) ∈ the open set family of P1.

(34) The carrier of P1 ∈ the open set family of P1.

(35) For all V , W such that V ∈ the open set family of P1 and W ∈ the
open set family of P1 holds V ∩W ∈ the open set family of P1.

(36) For every family A of subsets of the carrier of P1 such that A ⊆ the
open set family of P1 holds

⋃
A ∈ the open set family of P1.

(37) 〈The carrier of P1,the open set family of P1〉 is a topological space.

Let us consider P1. The functor P1top yielding a topological space is defined
as follows:

(Def.6) P1top = 〈 the carrier of P1,the open set family of P1〉.
We now state the proposition

(38) P1top is a T2 space.

Let D be a non-empty set, and let f be a function from [:D, D :] into � . We
say that f is a metric of D if and only if:
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(Def.7) for all elements a, b, c of D holds f(a, b) = 0 if and only if a = b but
f(a, b) = f(b, a) and f(a, c) ≤ f(a, b) + f(b, c).

We now state two propositions:

(39) For every non-empty set D and for every function f from [:D, D :] into
� holds f is a metric of D if and only if 〈D, f〉 is a metric space.

(40) For every metric space M1 holds the distance of M1 is a metric of the
carrier of M1.

Let D be a non-empty set, and let f be a function from [:D, D :] into � . Let
us assume that f is a metric of D. The functor MetrSp(D, f) yielding a metric
space is defined by:

(Def.8) MetrSp(D, f) = 〈D, f〉.
A topological space is metrizable if:

(Def.9) there exists a function f from [: the carrier of it, the carrier of it :] into
� such that f is a metric of the carrier of it and the open set family of
MetrSp((the carrier of it), f) = the topology of it.
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Summary. This article is a continuation of [4]. We have estab-
lished a one-to-one correspondence between midpoint algebras and groups
with the operator 1

2
. In general we shall say that a given midpoint alge-

bra M and a group V are w-assotiated iff w is an atlas from M to V. At
the beginning of the paper a few facts which rather belong to [3], [5] are
proved.

MML Identifier: MIDSP 2.

The terminology and notation used here have been introduced in the following
articles: [2], [1], [3], [4], and [5]. In the sequel G is a group structure and x is
an element of G. Let us consider G, x. The functor 2x yielding an element of
G is defined by:

(Def.1) 2x = x+ x.

In the sequel M is a midpoint algebra structure. Let us consider M . A point
of M is an element of the points of M .

In the sequel p, q, r will be points of M and w will be a function from [: the
points of M, the points of M :] into the carrier of G. Let us consider M , G, w.
We say that M , G are associated w.r.t. w if and only if:

(Def.2) p⊕ q = r if and only if w(p, r) = w(r, q).

The following proposition is true

(1) If M , G are associated w.r.t. w, then p⊕ p = p.

We follow the rules: S will be a non-empty set, a, b, b′, c, c′, d will be
elements of S, and w will be a function from [:S, S :] into the carrier of G. Let
us consider S, G, w. We say that w is an atlas of S, G if and only if:

(Def.3) for every a, x there exists b such that w(a, b) = x and for all a, b, c such
that w(a, b) = w(a, c) holds b = c and for all a, b, c holds w(a, b) + w(b,
c) = w(a, c).
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Let us consider S, G, w, a, x. Let us assume that w is an atlas of S, G. The
functor (a, x).w yielding an element of S is defined by:

(Def.4) w(a, (a, x).w) = x.

In the sequel G denotes a group, x, y denote elements of G, and w denotes
a function from [:S, S :] into the carrier of G. One can prove the following
propositions:

(2) 2(0G) = 0G.

(3) If x+ y = x, then y = 0G.

(4) If w is an atlas of S, G, then w(a, a) = 0G.

(5) If w is an atlas of S, G and w(a, b) = 0G, then a = b.

(6) If w is an atlas of S, G, then w(a, b) = −w(b, a).

(7) If w is an atlas of S, G and w(a, b) = w(c, d), then w(b, a) = w(d, c).

(8) If w is an atlas of S, G, then for every b, x there exists a such that w(a,
b) = x.

(9) If w is an atlas of S, G and w(b, a) = w(c, a), then b = c.

(10) For every function w from [: the points of M, the points of M :] into the
carrier of G such that w is an atlas of the points of M , G and M , G are
associated w.r.t. w holds p⊕ q = q ⊕ p.

(11) For every function w from [: the points of M, the points of M :] into the
carrier of G such that w is an atlas of the points of M , G and M , G are
associated w.r.t. w there exists r such that r ⊕ p = q.

We adopt the following rules: G will denote an Abelian group and x, y, z, t
will denote elements of G. The following propositions are true:

(12) −(x+ y) = −x+−y.

(13) x+ y + (z + t) = x+ z + (y + t).

(14) 2(x+ y) = 2x+ 2y.

(15) 2(−x) = −2x.

(16) For every function w from [: the points of M, the points of M :] into the
carrier of G such that w is an atlas of the points of M , G and M , G are
associated w.r.t. w for all points a, b, c, d of M holds a⊕ b = c⊕ d if and
only if w(a, d) = w(c, b).

In the sequel w denotes a function from [:S, S :] into the carrier of G. Next
we state the proposition

(17) If w is an atlas of S, G, then for all a, b, b′, c, c′ such that w(a, b) = w(b,
c) and w(a, b′) = w(b′, c′) holds w(c, c′) = 2w(b, b′).

We follow the rules: M denotes a midpoint algebra and p, q, r, s denote
points of M . Let us consider M . Then vectgroupM is an Abelian group.

The following proposition is true

(18) For an arbitrary a holds a is an element of vectgroupM if and only
if a is a vector of M and 0vectgroupM = IM and for all elements a, b of
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vectgroupM and for all vectors x, y of M such that a = x and b = y
holds a+ b = x+ y.

An Abelian group is called a group with the operator 1
2 if:

(Def.5) for every element a of it there exists an element x of it such that 2x = a
and for every element a of it such that 2a = 0it holds a = 0it.

In the sequel G is a group with the operator 1
2 and x, y are elements of G.

One can prove the following two propositions:

(19) If x = −x, then x = 0G.

(20) If 2x = 2y, then x = y.

Let us consider G, x. The functor 1
2x yielding an element of G is defined as

follows:

(Def.6) 2 1
2x = x.

The following three propositions are true:

(21) 1
2(0G) = 0G and 1

2(x + y) = 1
2x + 1

2y but if 1
2x = 1

2y, then x = y and
1
22x = x.

(22) For every M being a midpoint algebra structure and for every function
w from [: the points of M, the points of M :] into the carrier of G such
that w is an atlas of the points of M , G and M , G are associated w.r.t.
w for all points a, b, c, d of M holds a⊕ b⊕ (c⊕ d) = a⊕ c⊕ (b⊕ d).

(23) For every M being a midpoint algebra structure and for every function
w from [: the points of M, the points of M :] into the carrier of G such
that w is an atlas of the points of M , G and M , G are associated w.r.t.
w holds M is a midpoint algebra.

Let us consider M . Then vectgroupM is a group with the operator 1
2 .

Let us consider M , p, q. The functor qp yields an element of vectgroupM
and is defined as follows:

(Def.7) qp =
−−→
[p, q].

Let us consider M . The functor vectM yields a function from [: the points
of M, the points of M :] into the carrier of vectgroupM and is defined by:

(Def.8) (vectM)(p, q) =
−−→
[p, q].

We now state four propositions:

(24) vectM is an atlas of the points of M , vectgroupM .

(25)
−−→
[p, q] =

−−→
[r, s] if and only if p⊕ s = q ⊕ r.

(26) p⊕ q = r if and only if
−−→
[p, r] =

−−→
[r, q].

(27) M , vectgroupM are associated w.r.t. vectM .

In the sequel w will denote a function from [:S, S :] into the carrier of G. Let
us consider S, G, w. Let us assume that w is an atlas of S, G. The functor @w
yielding a binary operation on S is defined as follows:

(Def.9) w(a, (@w)(a, b)) = w((@w)(a, b), b).
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We now state the proposition

(28) If w is an atlas of S, G, then for all a, b, c holds (@w)(a, b) = c if and
only if w(a, c) = w(c, b).

In the sequel a, b, c are points of 〈S, @w〉. We now state two propositions:

(29) (@w)(a, b) = a⊕ b.
(30) a⊕ b = c if and only if (@w)(a, b) = c.

Let us consider S, G, w. The functor Atlasw yielding a function from [:
the points of 〈S,@w〉, the points of 〈S, @w〉 :] into the carrier of G is defined as
follows:

(Def.10) Atlasw = w.

Next we state two propositions:

(31) If w is an atlas of S, G, then Atlasw is an atlas of the points of 〈S,
@w〉, G.

(32) If w is an atlas of S, G, then 〈S, @w〉, G are associated w.r.t. Atlasw.

Let us consider S, G, w. Let us assume that w is an atlas of S, G. The
functor MidSp(w) yielding a midpoint algebra is defined by:

(Def.11) MidSp(w) = 〈S, @w〉.
We follow the rules: M is a midpoint algebra structure, w is a function from

[: the points of M, the points of M :] into the carrier of G, and a, b, b1, b2, c are
points of M . The following proposition is true

(33) M is a midpoint algebra if and only if there exists G and there exists
w such that w is an atlas of the points of M , G and M , G are associated
w.r.t. w.

Let us consider M . We consider atlas structures over M which are systems
〈an algebra, a function〉,

where the algebra is a group with the operator 1
2 and the function is a function

from [: the points of M, the points of M :] into the carrier of the algebra.

Let M be a midpoint algebra. An atlas structure over M is said to be an
atlas of M if:

(Def.12) M , the algebra of it are associated w.r.t. the function of it and the
function of it is an atlas of the points of M , the algebra of it.

Let M be a midpoint algebra, and let W be an atlas of M . A vector of W
is an element of the algebra of W .

Let M be a midpoint algebra, and let W be an atlas of M , and let a, b be
points of M . The functor W (a, b) yields an element of the algebra of W and is
defined as follows:

(Def.13) W (a, b) = (the function of W )(a, b).

Let M be a midpoint algebra, and let W be an atlas of M , and let a be a
point of M , and let x be a vector of W . The functor (a, x).W yielding a point
of M is defined as follows:

(Def.14) (a, x).W = (a, x).(the function of W ).
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Let M be a midpoint algebra, and let W be an atlas of M . The functor 0W
yielding a vector of W is defined as follows:

(Def.15) 0W = 0the algebra of W .

We now state two propositions:

(34) If w is an atlas of the points of M , G and M , G are associated w.r.t.
w, then a⊕ c = b1 ⊕ b2 if and only if w(a, c) = w(a, b1) + w(a, b2).

(35) If w is an atlas of the points of M , G and M , G are associated w.r.t.
w, then a⊕ c = b if and only if w(a, c) = 2w(a, b).

For simplicity we adopt the following convention: M will be a midpoint
algebra, W will be an atlas of M , a, b, b1, b2, c, d will be points of M , and x
will be a vector of W . One can prove the following propositions:

(36) a⊕ c = b1 ⊕ b2 if and only if W (a, c) = W (a, b1) +W (a, b2).

(37) a⊕ c = b if and only if W (a, c) = 2W (a, b).

(38) For every a, x there exists b such that W (a, b) = x and for all a, b, c
such that W (a, b) = W (a, c) holds b = c and for all a, b, c holds W (a,
b) +W (b, c) = W (a, c).

(39) (i) W (a, a) = 0W ,
(ii) if W (a, b) = 0W , then a = b,

(iii) W (a, b) = −W (b, a),
(iv) if W (a, b) = W (c, d), then W (b, a) = W (d, c),
(v) for every b, x there exists a such that W (a, b) = x,
(vi) if W (b, a) = W (c, a), then b = c,
(vii) a⊕ b = c if and only if W (a, c) = W (c, b),

(viii) a⊕ b = c⊕ d if and only if W (a, d) = W (c, b),
(ix) W (a, b) = x if and only if (a, x).W = b.

(40) (a, 0W ).W = a.
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Summary. A continuation of [5]. The paper contains the defi-
nition and basic properties of a σ-additive, nonnegative measure, with

values in � , the enlarged set of real numbers, where � denotes set � =
� ∪ {−∞,+∞} - by R.Sikorski [12]. Some simple theorems concerning
basic properties of a σ-additive measure, measurable sets, measure zero
sets are proved. The work is the fourth part of the series of articles
concerning the Lebesgue measure theory.

MML Identifier: MEASURE2.

The terminology and notation used here have been introduced in the following
papers: [14], [13], [8], [9], [6], [7], [1], [11], [2], [10], [3], [4], and [5]. The following
proposition is true

(1) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every function F from � into S holds M · F
is non-negative.

The scheme RecExFun concerns a set A, a σ-field B of subsets of A, an
element C of B, and a ternary predicate P, and states that:

there exists a function f from � into B such that f(0) = C and for every
element n of � holds P[n, f(n), f(n+ 1)]
provided the following conditions are satisfied:
• for every natural number n and for every element x of B there exists

an element y of B such that P[n, x, y],
• for every natural number n and for all elements x, y1, y2 of B such

that P[n, x, y1] and P[n, x, y2] holds y1 = y2.
Let X be a set, and let S be a σ-field of subsets of X. A denumerable family

of subsets of X is called a family of measureable sets of S if:

(Def.1) it ⊆ S.

One can prove the following propositions:
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(2) For every set X and for every σ-field S of subsets of X and for every
denumerable family T of subsets of X holds T is a family of measureable
sets of S if and only if T ⊆ S.

(3) For every set X and for every σ-field S of subsets of X and for every
family T of measureable sets of S holds

⋂
T ∈ S and

⋃
T ∈ S.

Let X be a set, and let S be a σ-field of subsets of X, and let T be a family
of measureable sets of S. Then

⋂
T is an element of S.

Let X be a set, and let S be a σ-field of subsets of X, and let T be a family
of measureable sets of S. Then

⋃
T is an element of S.

Let X be a set, and let S be a σ-field of subsets of X, and let F be a function
from � into S, and let n be an element of � . Then F (n) is an element of S.

One can prove the following propositions:

(4) For every set X and for every σ-field S of subsets of X and for every
function N from � into S there exists a function F from � into S such
that F (0) = N(0) and for every element n of � holds F (n+ 1) = N(n+
1) \N(n).

(5) For every set X and for every σ-field S of subsets of X and for every
function N from � into S there exists a function F from � into S such
that F (0) = N(0) and for every element n of � holds F (n+ 1) = N(n+
1) ∪ F (n).

(6) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Let F be a function from � into S. Suppose F (0) = N(0)
and for every element n of � holds F (n + 1) = N(n + 1) ∪ F (n). Then
for an arbitrary r and for every natural number n holds r ∈ F (n) if and
only if there exists a natural number k such that k ≤ n and r ∈ N(k).

(7) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Then for every function F from � into S such that
F (0) = N(0) and for every element n of � holds F (n+1) = N(n+1)∪F (n)
for all natural numbers n, m such that n < m holds F (n) ⊆ F (m).

(8) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Let G be a function from � into S. Let F be a function
from � into S. Suppose that

(i) G(0) = N(0),
(ii) for every element n of � holds G(n+ 1) = N(n+ 1) ∪G(n),
(iii) F (0) = N(0),
(iv) for every element n of � holds F (n+ 1) = N(n+ 1) \G(n).

Then for all natural numbers n, m such that n ≤ m holds F (n) ⊆ G(m).

(9) For every set X and for every σ-field S of subsets of X and for every
function N from � into S and for every function G from � into S there
exists a function F from � into S such that F (0) = N(0) and for every
element n of � holds F (n+ 1) = N(n+ 1) \G(n).

(10) For every set X and for every σ-field S of subsets of X and for every
function N from � into S there exists a function F from � into S such
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that F (0) = ∅ and for every element n of � holds F (n+1) = N(0)\N(n).

(11) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Let G be a function from � into S. Let F be a function
from � into S. Suppose that

(i) G(0) = N(0),
(ii) for every element n of � holds G(n+ 1) = N(n+ 1) ∪G(n),

(iii) F (0) = N(0),
(iv) for every element n of � holds F (n+ 1) = N(n+ 1) \G(n).

Then for all natural numbers n, m such that n < m holds F (n)∩F (m) =
∅.

(12) For every set X and for every σ-field S of subsets of X and for every
function N from � into S and for every element n of � holds N(n) ∈
rngN .

(13) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every family T of measureable sets of S and
for every function F from � into S such that T = rngF holds M(

⋃
T ) ≤∑

(M · F ).

(14) For every set X and for every σ-field S of subsets of X and for every
family T of measureable sets of S there exists a function F from � into
S such that T = rngF .

(15) Let X be a set. Let S be a σ-field of subsets of X. Let N be a
function from � into S. Let F be a function from � into S. Then if
F (0) = ∅ and for every element n of � holds F (n+ 1) = N(0) \N(n) and
N(n+ 1) ⊆ N(n), then for every element n of � holds F (n) ⊆ F (n+ 1).

(16) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every family T of measureable sets of S such
that for every set A such that A ∈ T holds A is a set of measure zero
w.r.t. M holds

⋃
T is a set of measure zero w.r.t. M .

(17) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every family T of measureable sets of S such
that there exists a set A such that A ∈ T and A is a set of measure zero
w.r.t. M holds

⋂
T is a set of measure zero w.r.t. M .

(18) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every family T of measureable sets of S such
that for every set A such that A ∈ T holds A is a set of measure zero
w.r.t. M holds

⋂
T is a set of measure zero w.r.t. M .

Let X be a set, and let S be a σ-field of subsets of X. A family of measureable
sets of S is called a family of measureable non-decrement sets of S if:

(Def.2) there exists a function F from � into S such that it = rngF and for
every element n of � holds F (n) ⊆ F (n+ 1).

We now state the proposition

(19) For every set X and for every σ-field S of subsets of X and for every
family T of measureable sets of S holds T is a family of measureable non-
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decrement sets of S if and only if there exists a function F from � into S
such that T = rngF and for every element n of � holds F (n) ⊆ F (n+ 1).

Let X be a set, and let S be a σ-field of subsets of X. A family of measureable
sets of S is called a family of measureable non-increment sets of S if:

(Def.3) there exists a function F from � into S such that it = rngF and for
every element n of � holds F (n+ 1) ⊆ F (n).

We now state several propositions:

(20) For every set X and for every σ-field S of subsets of X and for every
family T of measureable sets of S holds T is a family of measureable non-
increment sets of S if and only if there exists a function F from � into S
such that T = rngF and for every element n of � holds F (n+ 1) ⊆ F (n).

(21) Let X be a set. Let S be a σ-field of subsets of X. Then for every
functionN from � into S and for every function F from � into S such that
F (0) = ∅ and for every element n of � holds F (n+ 1) = N(0) \N(n) and
N(n+ 1) ⊆ N(n) holds rngF is a family of measureable non-decrement
sets of S.

(22) For every set X and for every non-empty family S of subsets of X and
for every function N from � into S such that for every element n of �
holds N(n) ⊆ N(n + 1) for all natural numbers m, n such that n < m
holds N(n) ⊆ N(m).

(23) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Let F be a function from � into S. Suppose F (0) = N(0)
and for every element n of � holds F (n + 1) = N(n + 1) \ N(n) and
N(n) ⊆ N(n + 1). Then for all natural numbers n, m such that n < m
holds F (n) ∩ F (m) = ∅.

(24) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Then for every function F from � into S such that
F (0) = N(0) and for every element n of � holds F (n+1) = N(n+1)\N(n)
and N(n) ⊆ N(n+ 1) holds

⋃
rngF =

⋃
rngN .

(25) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Then for every function F from � into S such that
F (0) = N(0) and for every element n of � holds F (n+1) = N(n+1)\N(n)
and N(n) ⊆ N(n+ 1) holds F is a sequence of separated subsets of S.

(26) Let X be a set. Let S be a σ-field of subsets of X. Let N be a function
from � into S. Let F be a function from � into S. Suppose F (0) = N(0)
and for every element n of � holds F (n + 1) = N(n + 1) \ N(n) and
N(n) ⊆ N(n+ 1). Then N(0) = F (0) and for every element n of � holds
N(n+ 1) = F (n+ 1) ∪N(n).

(27) For every set X and for every σ-field S of subsets of X and for every σ-
measureM on S and for every function F from � into S such that for every
element n of � holds F (n) ⊆ F (n+1) holds M(

⋃
rngF ) = sup rng(M ·F ).
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Summary. A continuation of [9]. It deals with the method of
creation of the distance in the Cartesian product of metric spaces. The
distance between two points belonging to Cartesian product of metric
spaces has been defined as square root of the sum of squares of distances
of appriopriate coordinates (or projections) of these points. It is shown
that the product of metric spaces with such a distance is a metric space.
Examples of metric spaces defined in this way are given.

MML Identifier: METRIC 4.

The articles [7], [15], [4], [5], [2], [6], [1], [10], [11], [3], [8], [13], [12], [14], and
[9] provide the terminology and notation for this paper. We adopt the following
convention: X, Y are metric spaces, x1, y1, z1 are elements of the carrier of
X, and x2, y2, z2 are elements of the carrier of Y . Let us consider X, Y . The
functor ρ[:X,Y :] yields a function from [: [: the carrier of X, the carrier of Y :], [:
the carrier of X, the carrier of Y :] :] into � and is defined by:

(Def.1) for all elements x1, y1 of the carrier of X and for all elements x2, y2

of the carrier of Y and for all elements x, y of [: the carrier of X, the
carrier of Y :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρ[:X,Y :](x,

y) =
√

(ρ(x1, y1))2 + (ρ(x2, y2))2.

Next we state the proposition

(1) Let X be a metric space. Let Y be a metric space. Let F be a function
from [: [: the carrier of X, the carrier of Y :], [: the carrier of X, the carrier
of Y :] :] into � . Then F = ρ[:X,Y :] if and only if for all elements x1, y1 of
the carrier of X and for all elements x2, y2 of the carrier of Y and for all
elements x, y of [: the carrier of X, the carrier of Y :] such that x = 〈〈x1,

x2〉〉 and y = 〈〈y1, y2〉〉 holds F (x, y) =
√

(ρ(x1, y1))2 + (ρ(x2, y2))2.

Next we state several propositions:

(2) For all elements a, b of � such that 0 ≤ a and 0 ≤ b holds
√
a+ b = 0

if and only if a = 0 and b = 0.
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(3) For all elements x, y of [: the carrier of X, the carrier of Y :] such that
x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρ[:X,Y :](x, y) = 0 if and only if x = y.

(4) For all elements x, y of [: the carrier of X, the carrier of Y :] such that
x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρ[:X,Y :](x, y) = ρ[:X,Y :](y, x).

(5) For all elements a, b, c, d of � such that 0 ≤ a and 0 ≤ b and 0 ≤ c and

0 ≤ d holds
√

(a+ c)2 + (b+ d)2 ≤
√
a2 + b2 +

√
c2 + d2.

(6) For all elements x, y, z of [: the carrier of X, the carrier of Y :] such
that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 and z = 〈〈z1, z2〉〉 holds ρ[:X,Y :](x,
z) ≤ ρ[:X,Y :](x, y) + ρ[:X,Y :](y, z).

Let us consider X, Y , and let x, y be elements of [: the carrier of X, the
carrier of Y :]. The functor ρ2(x, y) yielding a real number is defined as follows:

(Def.2) ρ2(x, y) = ρ[:X,Y :](x, y).

Next we state the proposition

(7) For all elements x, y of [: the carrier of X, the carrier of Y :] holds
ρ2(x, y) = ρ[:X,Y :](x, y).

Let X, Y be metric spaces. The functor [:X,Y :] yielding a metric space is
defined as follows:

(Def.3) [:X,Y :] = 〈[: the carrier of X, the carrier of Y :], ρ[:X,Y :]〉.
We now state the proposition

(8) For every metric space X and for every metric space Y holds 〈[: the
carrier of X, the carrier of Y :], ρ[:X,Y :]〉 is a metric space.

In the sequel Z will be a metric space and x3, y3, z3 will be elements of the
carrier of Z. Let us consider X, Y , Z. The functor ρ[:X,Y,Z:] yielding a function
from [: [: the carrier of X, the carrier of Y, the carrier of Z :], [: the carrier of X,
the carrier of Y, the carrier of Z :] :] into � is defined by the condition (Def.4).

(Def.4) Let x1, y1 be elements of the carrier of X. Let x2, y2 be elements
of the carrier of Y . Let x3, y3 be elements of the carrier of Z. Then
for all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρ[:X,Y,Z:](x,

y) =
√

(ρ(x1, y1))2 + (ρ(x2, y2))2 + (ρ(x3, y3))2.

One can prove the following propositions:

(9) Let X be a metric space. Let Y be a metric space. Let Z be a metric
space. Let F be a function from [: [: the carrier of X, the carrier of Y, the
carrier of Z :], [: the carrier of X, the carrier of Y, the carrier of Z :] :] into
� . Then F = ρ[:X,Y,Z:] if and only if for all elements x1, y1 of the carrier of
X and for all elements x2, y2 of the carrier of Y and for all elements x3,
y3 of the carrier of Z and for all elements x, y of [: the carrier of X, the
carrier of Y, the carrier of Z :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2,

y3〉〉 holds F (x, y) =
√

(ρ(x1, y1))2 + (ρ(x2, y2))2 + (ρ(x3, y3))2.
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(10) For all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρ[:X,Y,Z:](x,
y) = 0 if and only if x = y.

(11) For all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρ[:X,Y,Z:](x,
y) = ρ[:X,Y,Z:](y, x).

(12) For all elements a, b, c of � holds (a+ b+ c)2 = a2 + b2 + c2 + (2 · a ·
b+ 2 · a · c+ 2 · b · c).

(13) Let a, b, c, d, e, f be elements of � . Suppose 0 ≤ a and 0 ≤ b and 0 ≤ c
and 0 ≤ d and 0 ≤ e and 0 ≤ f . Then 2 · (a · d) · (c · b) + 2 · (a · f) · (e · c) +
2 · (b · f) · (e · d) ≤ (a · d)2 + (c · b)2 + (a · f)2 + (e · c)2 + (b · f)2 + (e · d)2.

(14) Let a, b, c, d, e, f be elements of � . Then a2 ·d2 +(a2 ·f2 +c2 ·b2)+e2 ·
c2+b2 ·f2+e2 ·d2+e2 ·f2+b2 ·d2 +a2 ·c2 = (a2+b2+e2) ·(c2 +d2+f2).

(15) Let a, b, c, d, e, f be elements of � . Suppose 0 ≤ a and 0 ≤ b and
0 ≤ c and 0 ≤ d and 0 ≤ e and 0 ≤ f . Then (a · c + b · d + e · f)2 ≤
(a2 + b2 + e2) · (c2 + d2 + f2).

(16) Let x, y, z be elements of [: the carrier of X, the carrier of Y, the carrier
of Z :]. Then if x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 and z = 〈〈z1, z2, z3〉〉,
then ρ[:X,Y,Z:](x, z) ≤ ρ[:X,Y,Z:](x, y) + ρ[:X,Y,Z:](y, z).

Let us consider X, Y , Z, and let x, y be elements of [: the carrier of X, the
carrier of Y, the carrier of Z :]. The functor ρ3(x, y) yielding a real number is
defined as follows:

(Def.5) ρ3(x, y) = ρ[:X,Y,Z:](x, y).

One can prove the following proposition

(17) For all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] holds ρ3(x, y) = ρ[:X,Y,Z:](x, y).

Let X, Y , Z be metric spaces. The functor [:X,Y :] yields a metric space and
is defined by:

(Def.6) [:X,Y :] = 〈[: the carrier of X, the carrier of Y, the carrier of Z :],
ρ[:X,Y,Z:]〉.

The following proposition is true

(18) For every metric space X and for every metric space Y and for every
metric space Z holds 〈[: the carrier of X, the carrier of Y, the carrier of
Z :], ρ[:X,Y,Z:]〉 is a metric space.

In the sequel x1, x2, y1, y2, z1, z2 denote elements of � . The function ρ[: 
 , 
 :]

from [: [: � , � :], [: � , � :] :] into � is defined by:

(Def.7) for all elements x1, y1, x2, y2 of � and for all elements x, y of [: � ,
� :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρ[: 
 , 
 :](x, y) = ρ 
 (x1,
y1) + ρ 
 (x2, y2).

The following propositions are true:
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(19) For all elements x1, x2, y1, y2 of � and for all elements x, y of [: � , � :]
such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρ[: 
 , 
 :](x, y) = 0 if and only
if x = y.

(20) For all elements x, y of [: � , � :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉
holds ρ[: 
 , 
 :](x, y) = ρ[: 
 , 
 :](y, x).

(21) For all elements x, y, z of [: � , � :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1,
y2〉〉 and z = 〈〈z1, z2〉〉 holds ρ[: 
 , 
 :](x, z) ≤ ρ[: 
 , 
 :](x, y) + ρ[: 
 , 
 :](y, z).

The metric space [: � M , � M :] is defined by:

(Def.8) [: � M , � M :] = 〈[: � , � :], ρ[: 
 , 
 :]〉.
The function ρ 
 2

from [: [: � , � :], [: � , � :] :] into � is defined as follows:

(Def.9) for all elements x1, y1, x2, y2 of � and for all elements x, y of [: � , � :]
such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds

ρ 
 2
(x, y) =

√
ρ 
 (x1, y1)2 + ρ 
 (x2, y2)2.

We now state three propositions:

(22) For all elements x1, x2, y1, y2 of � and for all elements x, y of [: � , � :]

such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρ 
 2
(x, y) = 0 if and only if

x = y.

(23) For all elements x, y of [: � , � :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉
holds ρ 
 2

(x, y) = ρ 
 2
(y, x).

(24) For all elements x, y, z of [: � , � :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1,

y2〉〉 and z = 〈〈z1, z2〉〉 holds ρ 
 2
(x, z) ≤ ρ 
 2

(x, y) + ρ 
 2
(y, z).

The Euclidean plain being a metric space is defined as follows:

(Def.10) the Euclidean plain= 〈[: � , � :], ρ 
 2〉.
In the sequel x3, y3, z3 denote elements of � . The function ρ[: 
 , 
 , 
 :] from [: [: � ,

� , � :], [: � , � , � :] :] into � is defined by the condition (Def.11).

(Def.11) Let x1, y1, x2, y2, x3, y3 be elements of � . Then for all elements x, y of
[: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρ[: 
 , 
 , 
 :] (x,
y) = ρ 
 (x1, y1) + ρ 
 (x2, y2) + ρ 
 (x3, y3).

We now state three propositions:

(25) For all elements x1, x2, y1, y2, x3, y3 of � and for all elements x, y of
[: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρ[: 
 , 
 , 
 :] (x,
y) = 0 if and only if x = y.

(26) For all elements x, y of [: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and y =
〈〈y1, y2, y3〉〉 holds ρ[: 
 , 
 , 
 :] (x, y) = ρ[: 
 , 
 , 
 :](y, x).

(27) For all elements x, y, z of [: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and
y = 〈〈y1, y2, y3〉〉 and z = 〈〈z1, z2, z3〉〉 holds ρ[: 
 , 
 , 
 :](x, z) ≤ ρ[: 
 , 
 , 
 :] (x,
y) + ρ[: 
 , 
 , 
 :] (y, z).

The metric space [: � M , � M , � M :] is defined as follows:

(Def.12) [: � M , � M , � M :] = 〈[: � , � , � :], ρ[: 
 , 
 , 
 :] 〉.
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The function ρ 
 3
from [: [: � , � , � :], [: � , � , � :] :] into � is defined by the con-

dition (Def.13).

(Def.13) Let x1, y1, x2, y2, x3, y3 be elements of � . Then for all elements x, y

of [: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρ 
 3
(x,

y) =
√
ρ 
 (x1, y1)2 + ρ 
 (x2, y2)2 + ρ 
 (x3, y3)2.

One can prove the following three propositions:

(28) For all elements x1, x2, y1, y2, x3, y3 of � and for all elements x, y of

[: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρ 
 3
(x,

y) = 0 if and only if x = y.

(29) For all elements x, y of [: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and y =

〈〈y1, y2, y3〉〉 holds ρ 
 3
(x, y) = ρ 
 3

(y, x).

(30) For all elements x, y, z of [: � , � , � :] such that x = 〈〈x1, x2, x3〉〉 and

y = 〈〈y1, y2, y3〉〉 and z = 〈〈z1, z2, z3〉〉 holds ρ 
 3
(x, z) ≤ ρ 
 3

(x, y) + ρ 
 3
(y,

z).

The Euclidean space being a metric space is defined as follows:

(Def.14) the Euclidean space= 〈[: � , � , � :], ρ 
 3〉.
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[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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Summary. The Banach theorem in a compact metric spaces is
proved.

MML Identifier: ALI2.

The terminology and notation used in this paper have been introduced in the
following papers: [9], [15], [3], [4], [8], [11], [13], [9], [11], [5], [7], [18], [6], [17],
[1], [2], [6], [4], and [5]. In the sequel M will be a metric space. Next we state
the proposition

(1) For every set F such that F is finite and F 6= ∅ and for all sets B, C
such that B ∈ F and C ∈ F holds B ⊆ C or C ⊆ B there exists a set m
such that m ∈ F and for every set C such that C ∈ F holds m ⊆ C.

Let M be a metric space. A function from the carrier of M into the carrier
of M is said to be a contraction of M if:

(Def.1) there exists a real number L such that 0 < L and L < 1 and for all
points x, y of M holds ρ(it(x), it(y)) ≤ L · ρ(x, y).

Next we state the proposition

(2) For every contraction f of M such that Mtop is compact there exists a
point c of M such that f(c) = c and for every point x of M such that
f(x) = x holds x = c.
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Summary. Consider a quadratic trinomial of the form P (x) =
ax2 + bx + c, where a 6= 0. The determinat of the equation P (x) = 0 is
of the form ∆(a, b, c) = b2 − 4ac. We prove several quadratic inequalities
when ∆(a, b, c) < 0, ∆(a, b, c) = 0 and ∆(a, b, c) > 0.

MML Identifier: QUIN 1.

The articles [3], [1], [2], and [4] provide the terminology and notation for this
paper. In the sequel x is a real number and a, b, c are real numbers. Let
us consider a, b, c. The functor ∆(a, b, c) yielding a real number is defined as
follows:

(Def.1) ∆(a, b, c) = b2 − 4 · a · c.
The following propositions are true:

(1) If a 6= 0, then a · x2 + b · x+ c = a · (x+ b
2·a)2 − ∆(a,b,c)

4·a .

(2) If a > 0 and ∆(a, b, c) ≤ 0, then a · x2 + b · x+ c ≥ 0.

(3) If a > 0 and ∆(a, b, c) < 0, then a · x2 + b · x+ c > 0.

(4) If a < 0 and ∆(a, b, c) ≤ 0, then a · x2 + b · x+ c ≤ 0.

(5) If a < 0 and ∆(a, b, c) < 0, then a · x2 + b · x+ c < 0.

(6) If a > 0 and a · x2 + b · x+ c ≥ 0, then (2 · a · x+ b)2 −∆(a, b, c) ≥ 0.

(7) If a > 0 and a · x2 + b · x+ c > 0, then (2 · a · x+ b)2 −∆(a, b, c) > 0.

(8) If a < 0 and a · x2 + b · x+ c ≤ 0, then (2 · a · x+ b)2 −∆(a, b, c) ≥ 0.

(9) If a < 0 and a · x2 + b · x+ c < 0, then (2 · a · x+ b)2 −∆(a, b, c) > 0.

(10) If for every x holds a · x2 + b · x+ c ≥ 0 and a > 0, then ∆(a, b, c) ≤ 0.

(11) If for every x holds a · x2 + b · x+ c ≤ 0 and a < 0, then ∆(a, b, c) ≤ 0.

(12) If for every x holds a · x2 + b · x+ c > 0 and a > 0, then ∆(a, b, c) < 0.

(13) If for every x holds a · x2 + b · x+ c < 0 and a < 0, then ∆(a, b, c) < 0.

(14) If a 6= 0 and a · x2 + b · x+ c = 0, then (2 · a · x+ b)2 −∆(a, b, c) = 0.
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(15) Suppose a 6= 0 and ∆(a, b, c) > 0 and a · x2 + b · x + c = 0. Then

x =
−b−
√

∆(a,b,c)

2·a or x =
−b+
√

∆(a,b,c)

2·a .

(16) Suppose a 6= 0 and ∆(a, b, c) > 0. Then a · x2 + b · x + c = a · (x −
−b−
√

∆(a,b,c)

2·a ) · (x− −b+
√

∆(a,b,c)

2·a ).

(17) If a < 0 and ∆(a, b, c) > 0, then
−b+
√

∆(a,b,c)

2·a <
−b−
√

∆(a,b,c)

2·a .

(18) Suppose a < 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c > 0 if and only

if
−b+
√

∆(a,b,c)

2·a < x and x <
−b−
√

∆(a,b,c)

2·a .

(19) Suppose a < 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c < 0 if and only

if x <
−b+
√

∆(a,b,c)

2·a or x >
−b−
√

∆(a,b,c)

2·a .

(20) Suppose a < 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c ≥ 0 if and only

if
−b+
√

∆(a,b,c)

2·a ≤ x and x ≤ −b−
√

∆(a,b,c)

2·a .

(21) Suppose a < 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c ≤ 0 if and only

if x ≤ −b+
√

∆(a,b,c)

2·a or x ≥ −b−
√

∆(a,b,c)

2·a .

(22) If a 6= 0 and ∆(a, b, c) = 0 and a · x2 + b · x+ c = 0, then x = − b
2·a .

(23) If a > 0 and (2 · a · x+ b)2 −∆(a, b, c) > 0, then a · x2 + b · x+ c > 0.

(24) If a > 0 and ∆(a, b, c) = 0, then a · x2 + b · x + c > 0 if and only if
x 6= − b

2·a .

(25) If a < 0 and (2 · a · x+ b)2 −∆(a, b, c) > 0, then a · x2 + b · x+ c < 0.

(26) If a < 0 and ∆(a, b, c) = 0, then a · x2 + b · x + c < 0 if and only if
x 6= − b

2·a .

(27) If a > 0 and ∆(a, b, c) > 0, then
−b+
√

∆(a,b,c)

2·a >
−b−
√

∆(a,b,c)

2·a .

(28) Suppose a > 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c < 0 if and only

if
−b−
√

∆(a,b,c)

2·a < x and x <
−b+
√

∆(a,b,c)

2·a .

(29) Suppose a > 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c > 0 if and only

if x <
−b−
√

∆(a,b,c)

2·a or x >
−b+
√

∆(a,b,c)

2·a .

(30) Suppose a > 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c ≤ 0 if and only

if
−b−
√

∆(a,b,c)

2·a ≤ x and x ≤ −b+
√

∆(a,b,c)

2·a .

(31) Suppose a > 0 and ∆(a, b, c) > 0. Then a · x2 + b · x+ c ≥ 0 if and only

if x ≤ −b−
√

∆(a,b,c)

2·a or x ≥ −b+
√

∆(a,b,c)

2·a .
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[4] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

Received July 19, 1991



510



FORMALIZED MATHEMATICS

Vol.2, No.4, September–October 1991
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Summary. Basing on the notion of real linear space (see [15]) we
introduce real unitary space. At first, we define the scalar product of two
vectors and examine some of its properties. On the basis of this notion
we introduce the norm and the distance in real unitary space and study
the properties of these concepts. Next, proceeding from the definition of
the sequence in real unitary space and basic operations on sequences we
prove several theorems which will be used in our further considerations.

MML Identifier: BHSP 1.

The terminology and notation used here are introduced in the following articles:
[5], [12], [16], [3], [4], [1], [6], [2], [17], [10], [11], [9], [15], [14], [13], [8], and [7].
We consider unitary space structures which are systems
〈vectors, a scalar product〉,

where the vectors constitute a real linear space and the scalar product is a
function from [: the vectors of the vectors, the vectors of the vectors :] into � .

In the sequel X will denote a unitary space structure and a, b will denote
real numbers. Let us consider X. A point of X is an element of the vectors of
the vectors of X.

In the sequel x, y will denote points of X. Let us consider X, x, y. The
functor (x|y) yielding a real number is defined as follows:

(Def.1) (x|y) = (the scalar product of X)(〈〈x, y〉〉).
A unitary space structure is said to be a real unitary space if it satisfies the

condition (Def.2).

(Def.2) Let x, y, z be points of it. Given a. Then
(i) (x|x) = 0 if and only if x = 0the vectors of it,
(ii) 0 ≤ (x|x),

(iii) (x|y) = (y|x),
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(iv) ((x+ y)|z) = (x|z) + (y|z),
(v) ((a · x)|y) = a · (x|y).

We follow the rules: X denotes a real unitary space and x, y, z, u, v denote
points of X. We now state a number of propositions:

(1) (x|x) = 0 if and only if x = 0the vectors of X .

(2) 0 ≤ (x|x).

(3) (x|y) = (y|x).

(4) ((x+ y)|z) = (x|z) + (y|z).
(5) ((a · x)|y) = a · (x|y).

(6) (0the vectors of X |0the vectors of X) = 0.

(7) (x|(y + z)) = (x|y) + (x|z).
(8) (x|(a · y)) = a · (x|y).

(9) ((a · x)|y) = (x|(a · y)).

(10) ((a · x+ b · y)|z) = a · (x|z) + b · (y|z).
(11) (x|(a · y + b · z)) = a · (x|y) + b · (x|z).
(12) ((−x)|y) = (x|−y).

(13) ((−x)|y) = −(x|y).

(14) (x|−y) = −(x|y).

(15) ((−x)|−y) = (x|y).

(16) ((x− y)|z) = (x|z)− (y|z).
(17) (x|(y − z)) = (x|y)− (x|z).
(18) ((x− y)|(u− v)) = ((x|u)− (x|v)− (y|u)) + (y|v).

(19) (0the vectors of X |x) = 0.

(20) (x|0the vectors of X) = 0.

(21) ((x+ y)|(x+ y)) = (x|x) + 2 · (x|y) + (y|y).

(22) ((x+ y)|(x− y)) = (x|x)− (y|y).

(23) ((x− y)|(x− y)) = ((x|x)− 2 · (x|y)) + (y|y).

(24) |(x|y)| ≤
√

(x|x) ·
√

(y|y).

Let us consider X, x, y. We say that x, y are ortogonal if and only if:

(Def.3) (x|y) = 0.

The following propositions are true:

(25) If x, y are ortogonal, then y, x are ortogonal.

(26) If x, y are ortogonal, then x, −y are ortogonal.

(27) If x, y are ortogonal, then −x, y are ortogonal.

(28) If x, y are ortogonal, then −x, −y are ortogonal.

(29) x, 0the vectors of X are ortogonal.

(30) If x, y are ortogonal, then ((x+ y)|(x+ y)) = (x|x) + (y|y).

(31) If x, y are ortogonal, then ((x− y)|(x− y)) = (x|x) + (y|y).

Let us consider X, x. The functor ‖x‖ yielding a real number is defined by:
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(Def.4) ‖x‖ =
√

(x|x).

The following propositions are true:

(32) ‖x‖ = 0 if and only if x = 0the vectors of X .

(33) ‖a · x‖ = |a| · ‖x‖.
(34) 0 ≤ ‖x‖.
(35) |(x|y)| ≤ ‖x‖ · ‖y‖.
(36) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
(37) ‖−x‖ = ‖x‖.
(38) ‖x‖ − ‖y‖ ≤ ‖x− y‖.
(39) |‖x‖ − ‖y‖| ≤ ‖x− y‖.

Let us consider X, x, y. The functor ρ(x, y) yielding a real number is defined
by:

(Def.5) ρ(x, y) = ‖x− y‖.
One can prove the following propositions:

(40) ρ(x, y) = ρ(y, x).

(41) ρ(x, x) = 0.

(42) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

(43) x 6= y if and only if ρ(x, y) 6= 0.

(44) ρ(x, y) ≥ 0.

(45) x 6= y if and only if ρ(x, y) > 0.

(46) ρ(x, y) =
√

((x− y)|(x− y)).

(47) ρ(x+ y, u+ v) ≤ ρ(x, u) + ρ(y, v).

(48) ρ(x− y, u− v) ≤ ρ(x, u) + ρ(y, v).

(49) ρ(x− z, y − z) = ρ(x, y).

(50) ρ(x− z, y − z) ≤ ρ(z, x) + ρ(z, y).

Let us consider X. A subset of X is a subset of the vectors of the vectors of
X.

Let us consider X. A function is called a sequence of X if:

(Def.6) dom it = � and rng it ⊆ the vectors of the vectors of X.

For simplicity we adopt the following rules: s1, s2, s3, s4, s′1 denote sequences
of X, k, n, m denote natural numbers, f denotes a function, and d is arbitrary.
We now state four propositions:

(51) f is a sequence of X if and only if dom f = � and rng f ⊆ the vectors
of the vectors of X.

(52) f is a sequence of X if and only if dom f = � and for every d such that
d ∈ � holds f(d) is a point of X.

(53) For all s1, s′1 such that for every n holds s1(n) = s′1(n) holds s1 = s′1.

(54) For every n holds s1(n) is a point of X.
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Let us consider X, s1, n. Then s1(n) is a point of X.

The scheme Ex Seq in RUS concerns a real unitary space A and a unary
functor F yielding a point of A and states that:

there exists a sequence s1 of A such that for every n holds s1(n) = F(n)
for all values of the parameters.

Let us consider X, s2, s3. The functor s2 + s3 yielding a sequence of X is
defined by:

(Def.7) for every n holds (s2 + s3)(n) = s2(n) + s3(n).

Let us consider X, s2, s3. The functor s2 − s3 yielding a sequence of X is
defined as follows:

(Def.8) for every n holds (s2 − s3)(n) = s2(n)− s3(n).

Let us consider X, s1, a. The functor a · s1 yields a sequence of X and is
defined as follows:

(Def.9) for every n holds (a · s1)(n) = a · s1(n).

Let us consider X, s1. The functor −s1 yields a sequence of X and is defined
by:

(Def.10) for every n holds (−s1)(n) = −s1(n).

Let us consider X, s1. We say that s1 is constant if and only if:

(Def.11) there exists x such that for every n holds s1(n) = x.

Let us consider X, s1, x. The functor s1 + x yielding a sequence of X is
defined as follows:

(Def.12) for every n holds (s1 + x)(n) = s1(n) + x.

Let us consider X, s1, x. The functor s1 − x yields a sequence of X and is
defined by:

(Def.13) for every n holds (s1 − x)(n) = s1(n)− x.

We now state a number of propositions:

(55) s2 + s3 = s3 + s2.

(56) s2 + (s3 + s4) = s2 + s3 + s4.

(57) If s2 is constant and s3 is constant and s1 = s2 +s3, then s1 is constant.

(58) If s2 is constant and s3 is constant and s1 = s2−s3, then s1 is constant.

(59) If s2 is constant and s1 = a · s2, then s1 is constant.

(60) For every x there exists s1 such that rng s1 = {x}.
(61) There exists s1 such that rng s1 = {0the vectors of X}.
(62) If there exists x such that for every n holds s1(n) = x, then there exists

x such that rng s1 = {x}.
(63) If there exists x such that rng s1 = {x}, then for every n holds s1(n) =

s1(n+ 1).

(64) If for every n holds s1(n) = s1(n + 1), then for all n, k holds s1(n) =
s1(n+ k).
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(65) If for all n, k holds s1(n) = s1(n + k), then for all n, m holds s1(n) =
s1(m).

(66) If for all n, m holds s1(n) = s1(m), then there exists x such that for
every n holds s1(n) = x.

(67) s1 is constant if and only if there exists x such that rng s1 = {x}.
(68) s1 is constant if and only if for every n holds s1(n) = s1(n+ 1).

(69) s1 is constant if and only if for all n, k holds s1(n) = s1(n+ k).

(70) s1 is constant if and only if for all n, m holds s1(n) = s1(m).

(71) s2 − s3 = s2 +−s3.

(72) s1 = s1 + 0the vectors of X .

(73) a · (s2 + s3) = a · s2 + a · s3.

(74) (a+ b) · s1 = a · s1 + b · s1.

(75) a · b · s1 = a · (b · s1).

(76) 1 · s1 = s1.

(77) (−1) · s1 = −s1.

(78) s1 − x = s1 +−x.

(79) s2 − s3 = −(s3 − s2).

(80) s1 = s1 − 0the vectors of X .

(81) s1 = −−s1.

(82) s2 − (s3 + s4) = s2 − s3 − s4.

(83) (s2 + s3)− s4 = s2 + (s3 − s4).

(84) s2 − (s3 − s4) = (s2 − s3) + s4.

(85) a · (s2 − s3) = a · s2 − a · s3.
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Summary. A continuation of [8]. It contains the definitions of
the convergent sequence and the limit of the sequence. The convergence
with respect to the norm and the distance is also introduced. Last part
is devoted to the following concepts: ball, closed ball and sphere.

MML Identifier: BHSP 2.

The articles [5], [14], [19], [3], [4], [1], [7], [6], [2], [20], [12], [18], [13], [11], [17],
[16], [15], [10], [9], and [8] provide the notation and terminology for this paper.
For simplicity we follow a convention: X is a real unitary space, x, y, z are
points of X, g, g1, g2 are points of X, a, q, r are real numbers, s1, s2, s3, s′1
are sequences of X, and k, n, m are natural numbers. Let us consider X, s1.
We say that s1 is convergent if and only if:

(Def.1) there exists g such that for every r such that r > 0 there exists m such
that for every n such that n ≥ m holds ρ(s1(n), g) < r.

The following propositions are true:

(1) If s1 is constant, then s1 is convergent.

(2) If s1 is convergent and there exists k such that for every n such that
k ≤ n holds s′1(n) = s1(n), then s′1 is convergent.

(3) If s2 is convergent and s3 is convergent, then s2 + s3 is convergent.

(4) If s2 is convergent and s3 is convergent, then s2 − s3 is convergent.

(5) If s1 is convergent, then a · s1 is convergent.

(6) If s1 is convergent, then −s1 is convergent.

(7) If s1 is convergent, then s1 + x is convergent.

(8) If s1 is convergent, then s1 − x is convergent.
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(9) s1 is convergent if and only if there exists g such that for every r such
that r > 0 there exists m such that for every n such that n ≥ m holds
‖s1(n)− g‖ < r.

Let us consider X, s1. Let us assume that s1 is convergent. The functor
lim s1 yields a point of X and is defined as follows:

(Def.2) for every r such that r > 0 there exists m such that for every n such
that n ≥ m holds ρ(s1(n), lim s1) < r.

Next we state a number of propositions:

(10) If s1 is constant and x ∈ rng s1, then lim s1 = x.

(11) If s1 is constant and there exists n such that s1(n) = x, then lim s1 = x.

(12) If s1 is convergent and there exists k such that for every n such that
n ≥ k holds s′1(n) = s1(n), then lim s1 = lim s′1.

(13) If s2 is convergent and s3 is convergent, then lim(s2 + s3) = lim s2 +
lim s3.

(14) If s2 is convergent and s3 is convergent, then lim(s2 − s3) = lim s2 −
lim s3.

(15) If s1 is convergent, then lim(a · s1) = a · lim s1.

(16) If s1 is convergent, then lim(−s1) = −lim s1.

(17) If s1 is convergent, then lim(s1 + x) = lim s1 + x.

(18) If s1 is convergent, then lim(s1 − x) = lim s1 − x.

(19) If s1 is convergent, then lim s1 = g if and only if for every r such
that r > 0 there exists m such that for every n such that n ≥ m holds
‖s1(n)− g‖ < r.

Let us consider X, s1. The functor ‖s1‖ yielding a sequence of real numbers
is defined by:

(Def.3) for every n holds ‖s1‖(n) = ‖s1(n)‖.
Next we state three propositions:

(20) If s1 is convergent, then ‖s1‖ is convergent.

(21) If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and lim‖s1‖ =
‖g‖.

(22) If s1 is convergent and lim s1 = g, then ‖s1 − g‖ is convergent and
lim‖s1 − g‖ = 0.

Let us consider X, s1, x. The functor ρ(s1, x) yielding a sequence of real
numbers is defined by:

(Def.4) for every n holds (ρ(s1, x))(n) = ρ(s1(n), x).

We now state a number of propositions:

(23) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent.

(24) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent and
lim ρ(s1, g) = 0.
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(25) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖s2 + s3‖ is convergent and lim‖s2 + s3‖ = ‖g1 + g2‖.

(26) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖(s2 +s3)−(g1 +g2)‖ is convergent and lim‖(s2 +s3)−(g1 +g2)‖ = 0.

(27) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖s2 − s3‖ is convergent and lim‖s2 − s3‖ = ‖g1 − g2‖.

(28) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ‖s2 − s3 − (g1 − g2)‖ is convergent and lim‖s2 − s3 − (g1 − g2)‖ = 0.

(29) If s1 is convergent and lim s1 = g, then ‖a · s1‖ is convergent and
lim‖a · s1‖ = ‖a · g‖.

(30) If s1 is convergent and lim s1 = g, then ‖a · s1− a · g‖ is convergent and
lim‖a · s1 − a · g‖ = 0.

(31) If s1 is convergent and lim s1 = g, then ‖−s1‖ is convergent and
lim‖−s1‖ = ‖−g‖.

(32) If s1 is convergent and lim s1 = g, then ‖−s1 − −g‖ is convergent and
lim‖−s1 −−g‖ = 0.

(33) If s1 is convergent and lim s1 = g, then ‖(s1 +x)−(g+x)‖ is convergent
and lim‖(s1 + x)− (g + x)‖ = 0.

(34) If s1 is convergent and lim s1 = g, then ‖s1 − x‖ is convergent and
lim‖s1 − x‖ = ‖g − x‖.

(35) If s1 is convergent and lim s1 = g, then ‖s1− x− (g− x)‖ is convergent
and lim‖s1 − x− (g − x)‖ = 0.

(36) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ρ(s2 + s3, g1 + g2) is convergent and lim ρ(s2 + s3, g1 + g2) = 0.

(37) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,
then ρ(s2 − s3, g1 − g2) is convergent and lim ρ(s2 − s3, g1 − g2) = 0.

(38) If s1 is convergent and lim s1 = g, then ρ(a · s1, a · g) is convergent and
lim ρ(a · s1, a · g) = 0.

(39) If s1 is convergent and lim s1 = g, then ρ(s1 + x, g + x) is convergent
and lim ρ(s1 + x, g + x) = 0.

Let us consider X, x, r. Let us assume that r ≥ 0. The functor Ball(x, r)
yielding a subset of X is defined by:

(Def.5) Ball(x, r) = {y : ‖x− y‖ < r}, where y ranges over points of X.

Let us consider X, x, r. Let us assume that r ≥ 0. The functor Ball(x, r)
yielding a subset of X is defined by:

(Def.6) Ball(x, r) = {y : ‖x− y‖ ≤ r}, where y ranges over points of X.

Let us consider X, x, r. Let us assume that r ≥ 0. The functor Sphere(x, r)
yields a subset of X and is defined as follows:

(Def.7) Sphere(x, r) = {y : ‖x− y‖ = r}, where y ranges over points of X.

The following propositions are true:

(40) If r ≥ 0, then z ∈ Ball(x, r) if and only if ‖x− z‖ < r.
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(41) If r ≥ 0, then z ∈ Ball(x, r) if and only if ρ(x, z) < r.

(42) If r > 0, then x ∈ Ball(x, r).

(43) If r ≥ 0, then if y ∈ Ball(x, r) and z ∈ Ball(x, r), then ρ(y, z) < 2 · r.
(44) If r ≥ 0, then if y ∈ Ball(x, r), then y − z ∈ Ball(x− z, r).
(45) If r ≥ 0, then if y ∈ Ball(x, r), then y − x ∈ Ball(0the vectors of X , r).

(46) If r ≥ 0, then if y ∈ Ball(x, r) and r ≤ q, then y ∈ Ball(x, q).

(47) If r ≥ 0, then z ∈ Ball(x, r) if and only if ‖x− z‖ ≤ r.
(48) If r ≥ 0, then z ∈ Ball(x, r) if and only if ρ(x, z) ≤ r.
(49) If r ≥ 0, then x ∈ Ball(x, r).

(50) If r ≥ 0, then if y ∈ Ball(x, r), then y ∈ Ball(x, r).

(51) If r ≥ 0, then z ∈ Sphere(x, r) if and only if ‖x− z‖ = r.

(52) If r ≥ 0, then z ∈ Sphere(x, r) if and only if ρ(x, z) = r.

(53) If r ≥ 0, then if y ∈ Sphere(x, r), then y ∈ Ball(x, r).

(54) If r ≥ 0, then Ball(x, r) ⊆ Ball(x, r).

(55) If r ≥ 0, then Sphere(x, r) ⊆ Ball(x, r).

(56) If r ≥ 0, then Ball(x, r) ∪ Sphere(x, r) = Ball(x, r).
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MML Identifier: BHSP 3.

The articles [5], [18], [22], [3], [4], [1], [10], [8], [9], [7], [15], [2], [23], [16], [17],
[14], [21], [20], [19], [13], [11], [12], and [6] provide the notation and terminology
for this paper. For simplicity we follow the rules: X is a real unitary space, x is
a point of X, g is a point of X, a, r are real numbers, M is a real number, s1,
s2, s3, s4 are sequences of X, N1 is an increasing sequence of naturals, and k,
n, m are natural numbers. Let us consider X, s1. We say that s1 is a Cauchy
sequence if and only if:

(Def.1) for every r such that r > 0 there exists k such that for all n, m such
that n ≥ k and m ≥ k holds ρ(s1(n), s1(m)) < r.

One can prove the following propositions:

(1) If s1 is constant, then s1 is a Cauchy sequence.

(2) s1 is a Cauchy sequence if and only if for every r such that r > 0
there exists k such that for all n, m such that n ≥ k and m ≥ k holds
‖s1(n)− s1(m)‖ < r.

(3) If s2 is a Cauchy sequence and s3 is a Cauchy sequence, then s2 + s3 is
a Cauchy sequence.

(4) If s2 is a Cauchy sequence and s3 is a Cauchy sequence, then s2 − s3 is
a Cauchy sequence.

(5) If s1 is a Cauchy sequence, then a · s1 is a Cauchy sequence.

(6) If s1 is a Cauchy sequence, then −s1 is a Cauchy sequence.
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(7) If s1 is a Cauchy sequence, then s1 + x is a Cauchy sequence.

(8) If s1 is a Cauchy sequence, then s1 − x is a Cauchy sequence.

(9) If s1 is convergent, then s1 is a Cauchy sequence.

Let us consider X, s2, s3. We say that s2 is compared to s3 if and only if:

(Def.2) for every r such that r > 0 there exists m such that for every n such
that n ≥ m holds ρ(s2(n), s3(n)) < r.

One can prove the following propositions:

(10) s1 is compared to s1.

(11) If s2 is compared to s3, then s3 is compared to s2.

(12) If s2 is compared to s3 and s3 is compared to s4, then s2 is compared
to s4.

(13) s2 is compared to s3 if and only if for every r such that r > 0 there
exists m such that for every n such that n ≥ m holds ‖s2(n)−s3(n)‖ < r.

(14) If there exists k such that for every n such that n ≥ k holds s2(n) =
s3(n), then s2 is compared to s3.

(15) If s2 is a Cauchy sequence and s2 is compared to s3, then s3 is a Cauchy
sequence.

(16) If s2 is convergent and s2 is compared to s3, then s3 is convergent.

(17) If s2 is convergent and lim s2 = g and s2 is compared to s3, then s3 is
convergent and lim s3 = g.

Let us consider X, s1. We say that s1 is bounded if and only if:

(Def.3) there exists M such that M > 0 and for every n holds ‖s1(n)‖ ≤M .

One can prove the following propositions:

(18) If s2 is bounded and s3 is bounded, then s2 + s3 is bounded.

(19) If s1 is bounded, then −s1 is bounded.

(20) If s2 is bounded and s3 is bounded, then s2 − s3 is bounded.

(21) If s1 is bounded, then a · s1 is bounded.

(22) If s1 is constant, then s1 is bounded.

(23) For every m there exists M such that M > 0 and for every n such that
n ≤ m holds ‖s1(n)‖ < M .

(24) If s1 is convergent, then s1 is bounded.

(25) If s2 is bounded and s2 is compared to s3, then s3 is bounded.

Let us consider X, N1, s1. Then s1 ·N1 is a sequence of X.

Let us consider X, s2, s1. We say that s2 is a subsequence of s1 if and only
if:

(Def.4) there exists N1 such that s2 = s1 ·N1.

One can prove the following propositions:

(26) For every n holds (s1 ·N1)(n) = s1(N1(n)).

(27) s1 is a subsequence of s1.
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(28) If s2 is a subsequence of s3 and s3 is a subsequence of s4, then s2 is a
subsequence of s4.

(29) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(30) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

(31) If s1 is bounded and s2 is a subsequence of s1, then s2 is bounded.

(32) If s1 is convergent and s2 is a subsequence of s1, then s2 is convergent.

(33) If s2 is a subsequence of s1 and s1 is convergent, then lim s2 = lim s1.

(34) If s1 is a Cauchy sequence and s2 is a subsequence of s1, then s2 is a
Cauchy sequence.

Let us consider X, s1, k. The functor s1 ↑ k yields a sequence of X and is
defined by:

(Def.5) for every n holds (s1 ↑ k)(n) = s1(n+ k).

The following propositions are true:

(35) s1 ↑ 0 = s1.

(36) s1 ↑ k ↑m = s1 ↑m ↑ k.

(37) s1 ↑ k ↑m = s1 ↑ (k +m).

(38) (s2 + s3) ↑ k = s2 ↑ k + s3 ↑ k.

(39) (−s1) ↑ k = −s1 ↑ k.

(40) (s2 − s3) ↑ k = s2 ↑ k − s3 ↑ k.

(41) (a · s1) ↑ k = a · (s1 ↑ k).

(42) (s1 ·N1) ↑ k = s1 · (N1 ↑ k).

(43) s1 ↑ k is a subsequence of s1.

(44) If s1 is convergent, then s1 ↑ k is convergent and lim(s1 ↑ k) = lim s1.

(45) If s1 is convergent and there exists k such that s2 = s1 ↑ k, then s2 is
convergent and lim s2 = lim s1.

(46) If s1 is convergent and there exists k such that s1 = s2 ↑ k, then s2 is
convergent.

(47) If s1 is a Cauchy sequence and there exists k such that s1 = s2 ↑k, then
s2 is a Cauchy sequence.

(48) If s1 is a Cauchy sequence, then s1 ↑ k is a Cauchy sequence.

(49) If s2 is compared to s3, then s2 ↑ k is compared to s3 ↑ k.

(50) If s1 is bounded, then s1 ↑ k is bounded.

(51) If s1 is constant, then s1 ↑ k is constant.

Let us consider X. We say that X is a complete space if and only if:

(Def.6) for every s1 such that s1 is a Cauchy sequence holds s1 is convergent.

The following propositions are true:

(52) If X is a complete space and s2 is a Cauchy sequence and s2 is compared
to s3, then s3 is a Cauchy sequence.

(53) IfX is a complete space and s1 is a Cauchy sequence, then s1 is bounded.
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Let us consider X. We say that X is a Hilbert space if and only if:

(Def.7) X is a real unitary space and X is a complete space.
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[19] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[20] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized

Mathematics, 1(2):297–301, 1990.
[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–

296, 1990.

[22] Zinaida Trybulec and Halina Świe
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Summary. If V is any non-empty set of sets, we define EnsV to
be the category with the objects of all sets X ∈ V , morphisms of all
mappings from X into Y , with the ususal composition of mappings. By
a mapping we mean a triple 〈X,Y, f〉 where f is a function from X into
Y . The notations and concepts included correspond to those presented in
[11,9]. We also introduce representable functors to illustrate properties
of the category Ens.

MML Identifier: ENS 1.

The notation and terminology used here are introduced in the following papers:
[15], [16], [13], [2], [3], [7], [5], [1], [14], [10], [12], [4], [8], and [6].

Mappings

In the sequel V denotes a non-empty set and A, B denote elements of V . Let
us consider V . The functor FuncsV yielding a non-empty set of functions is
defined by:

(Def.1) FuncsV =
⋃{BA}.

We now state three propositions:

(1) For an arbitrary f holds f ∈ Funcs V if and only if there exist A, B
such that if B = ∅, then A = ∅ but f is a function from A into B.

(2) BA ⊆ FuncsV .

(3) For every non-empty subset W of V holds FuncsW ⊆ FuncsV .

In the sequel f is an element of FuncsV . Let us consider V . The functor
MapsV yielding a non-empty set is defined as follows:

(Def.2) MapsV = {〈〈〈〈A, B〉〉, f〉〉 : (B = ∅ ⇒ A = ∅)∧f is a function fromA into B}.
In the sequel m, m1, m2, m3 are elements of MapsV . One can prove the

following four propositions:
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(4) There exist f , A, B such that m = 〈〈〈〈A, B〉〉, f〉〉 but if B = ∅, then
A = ∅ and f is a function from A into B.

(5) For every function f from A into B such that if B = ∅, then A = ∅
holds 〈〈〈〈A, B〉〉, f〉〉 ∈ MapsV .

(6) MapsV ⊆ [: [:V, V :], Funcs V :].

(7) For every non-empty subset W of V holds MapsW ⊆ MapsV .

We now define three new functors. Let us consider V , m. The functor
graph(m) yields a function and is defined as follows:

(Def.3) graph(m) = m2.

The functor domm yields an element of V and is defined by:

(Def.4) domm = (m1)1.

The functor codm yielding an element of V is defined by:

(Def.5) codm = (m1)2.

The following three propositions are true:

(8) m = 〈〈〈〈 domm, codm〉〉, graph(m)〉〉.
(9) codm 6= ∅ or domm = ∅ but graph(m) is a function from domm into

codm.

(10) For every function f and for all sets A, B such that 〈〈〈〈A, B〉〉, f〉〉 ∈
MapsV holds if B = ∅, then A = ∅ but f is a function from A into B.

Let us consider V , A. The functor id(A) yields an element of MapsV and is
defined by:

(Def.6) id(A) = 〈〈〈〈A, A〉〉, idA 〉〉.
The following proposition is true

(11) graph(id(A)) = idA and dom id(A) = A and cod id(A) = A.

Let us consider V , m1, m2. Let us assume that codm1 = domm2. The
functor m2 ·m1 yields an element of MapsV and is defined as follows:

(Def.7) m2 ·m1 = 〈〈〈〈domm1, codm2〉〉, graph(m2) · graph(m1)〉〉.
One can prove the following propositions:

(12) If domm2 = codm1, then graph((m2 · m1)) = graph(m2) · graph(m1)
and dom(m2 ·m1) = domm1 and cod(m2 ·m1) = codm2.

(13) If domm2 = codm1 and domm3 = codm2, then m3 · (m2 · m1) =
m3 ·m2 ·m1.

(14) m · id(domm) = m and id(codm) ·m = m.

Let us consider V , A, B. The functor Maps(A,B) yields a set and is defined
by:

(Def.8) Maps(A,B) = {〈〈〈〈A, B〉〉, f〉〉 : 〈〈〈〈A, B〉〉, f〉〉 ∈ MapsV }, where f ranges
over elements of FuncsV .

The following propositions are true:

(15) For every function f from A into B such that if B = ∅, then A = ∅
holds 〈〈〈〈A, B〉〉, f〉〉 ∈ Maps(A,B).
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(16) If m ∈ Maps(A,B), then m = 〈〈〈〈A, B〉〉, graph(m)〉〉.
(17) Maps(A,B) ⊆ MapsV .

(18) MapsV =
⋃{Maps(A,B)}.

(19) m ∈ Maps(A,B) if and only if domm = A and codm = B.

(20) If m ∈ Maps(A,B), then graph(m) ∈ BA.

Let us consider V , m. We say that m is a surjection if and only if:

(Def.9) rng graph(m) = codm.

Category Ens

We now define four new functors. Let us consider V . The functor DomV yields
a function from Maps V into V and is defined by:

(Def.10) for every m holds DomV (m) = domm.

The functor CodV yields a function from MapsV into V and is defined as follows:

(Def.11) for every m holds CodV (m) = codm.

The functor ·V yields a partial function from [: MapsV, MapsV :] to MapsV and
is defined as follows:

(Def.12) for all m2, m1 holds 〈〈m2, m1〉〉 ∈ dom(·V ) if and only if domm2 =
codm1 and for all m2, m1 such that domm2 = codm1 holds ·V (〈〈m2,
m1〉〉) = m2 ·m1.

The functor IdV yields a function from V into Maps V and is defined by:

(Def.13) for every A holds IdV (A) = id(A).

Let us consider V . The functor EnsV yields a category structure and is
defined by:

(Def.14) EnsV = 〈V,Maps V,DomV ,CodV , ·V , IdV 〉.
We now state the proposition

(21) 〈V,Maps V,DomV ,CodV , ·V , IdV 〉 is a category.

Let us consider V . Then EnsV is a category.

In the sequel a, b are objects of EnsV . Next we state the proposition

(22) A is an object of EnsV .

Let us consider V , A. The functor @A yielding an object of EnsV is defined
as follows:

(Def.15) @A = A.

One can prove the following proposition

(23) a is an element of V .

Let us consider V , a. The functor @a yields an element of V and is defined
by:

(Def.16) @a = a.

In the sequel f , g denote morphisms of EnsV . The following proposition is
true
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(24) m is a morphism of EnsV .

Let us consider V , m. The functor @m yields a morphism of EnsV and is
defined as follows:

(Def.17) @m = m.

One can prove the following proposition

(25) f is an element of Maps V .

Let us consider V , f . The functor @f yields an element of MapsV and is
defined as follows:

(Def.18) @f = f .

One can prove the following propositions:

(26) dom f = dom(@f) and cod f = cod(@f).

(27) hom(a, b) = Maps(@a,@b).

(28) If dom g = cod f , then g · f = (@g) · (@f).

(29) ida = id(@a).

(30) If a = ∅, then a is an initial object.

(31) If ∅ ∈ V and a is an initial object, then a = ∅.
(32) For every universal class W and for every object a of EnsW such that

a is an initial object holds a = ∅.
(33) If there exists arbitrary x such that a = {x}, then a is a terminal object.

(34) If V 6= {∅} and a is a terminal object, then there exists arbitrary x such
that a = {x}.

(35) For every universal class W and for every object a of EnsW such that
a is a terminal object there exists arbitrary x such that a = {x}.

(36) f is monic if and only if graph((@f)) is one-to-one.

(37) If f is epi and there exists A and there exist arbitrary x1, x2 such that
x1 ∈ A and x2 ∈ A and x1 6= x2, then @f is a surjection.

(38) If @f is a surjection, then f is epi.

(39) For every universal class W and for every morphism f of EnsW such
that f is epi holds @f is a surjection.

(40) For every non-empty subset W of V holds EnsW is full subcategory of
EnsV .

Representable Functors

We follow a convention: C will be a category, a, b, c will be objects of C, and
f , g, h, f ′, g′ will be morphisms of C. Let us consider C. The functor Hom(C)
yields a non-empty set and is defined as follows:

(Def.19) Hom(C) = {hom(a, b)}.
We now state two propositions:

(41) hom(a, b) ∈ Hom(C).
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(42) If hom(a, cod f) = ∅, then hom(a,dom f) = ∅ but if hom(dom f, a) = ∅,
then hom(cod f, a) = ∅.

We now define two new functors. Let us consider C, a, f . The functor
hom(a, f) yielding a function from hom(a,dom f) into hom(a, cod f) is defined
by:

(Def.20) for every g such that g ∈ hom(a,dom f) holds (hom(a, f))(g) = f · g.
The functor hom(f, a) yields a function from hom(cod f, a) into hom(dom f, a)
and is defined by:

(Def.21) for every g such that g ∈ hom(cod f, a) holds (hom(f, a))(g) = g · f .

We now state several propositions:

(43) hom(a, idc) = idhom(a,c).

(44) hom(idc, a) = idhom(c,a).

(45) If dom g = cod f , then hom(a, g · f) = hom(a, g) · hom(a, f).

(46) If dom g = cod f , then hom(g · f, a) = hom(f, a) · hom(g, a).

(47) 〈〈〈〈hom(a,dom f), hom(a, cod f)〉〉, hom(a, f)〉〉 is an element of
Maps Hom(C).

(48) 〈〈〈〈hom(cod f, a), hom(dom f, a)〉〉, hom(f, a)〉〉 is an element of
Maps Hom(C).

We now define two new functors. Let us consider C, a. The functor hom(a,−)
yields a function from the morphisms of C into Maps Hom(C) and is defined as
follows:

(Def.22) for every f holds (hom(a,−))(f) = 〈〈〈〈 hom(a,dom f), hom(a, cod f)〉〉,
hom(a, f)〉〉.

The functor hom(−, a) yields a function from the morphisms of C into
Maps Hom(C)
and is defined as follows:

(Def.23) for every f holds (hom(−, a))(f) = 〈〈〈〈hom(cod f, a), hom(dom f, a)〉〉,
hom(f, a)〉〉.

The following propositions are true:

(49) If Hom(C) ⊆ V , then hom(a,−) is a functor from C to EnsV .

(50) If Hom(C) ⊆ V , then hom(−, a) is a contravariant functor from C into
EnsV .

(51) If hom(dom f, cod f ′) = ∅, then hom(cod f,dom f ′) = ∅.
Let us consider C, f , g. The functor hom(f, g) yielding a function from

hom(cod f,dom g) into hom(dom f, cod g) is defined by:

(Def.24) for every h such that h ∈ hom(cod f,dom g) holds (hom(f, g))(h) =
g · h · f .

We now state several propositions:

(52) 〈〈〈〈hom(cod f,dom g), hom(dom f, cod g)〉〉, hom(f, g)〉〉 is an element of
Maps Hom(C).

(53) hom(ida, f) = hom(a, f) and hom(f, ida) = hom(f, a).
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(54) hom(ida, idb) = idhom(a,b).

(55) hom(f, g) = hom(dom f, g) · hom(f,dom g).

(56) If cod g = dom f and dom g′ = cod f ′, then hom(f ·g, g′·f ′) = hom(g, g′)·
hom(f, f ′).

Let us consider C. The functor homC(−,−) yielding a function from the
morphisms of [:C, C :] into Maps Hom(C) is defined as follows:

(Def.25) for all f , g holds (homC(−,−))(〈〈f, g〉〉) =
〈〈〈〈 hom(cod f,dom g), hom(dom f, cod g)〉〉, hom(f, g)〉〉.

The following two propositions are true:

(57) hom(a,−) = (curry(homC(−,−)))(ida) and
hom(−, a) = (curry′(homC(−,−)))(ida).

(58) If Hom(C) ⊆ V , then homC(−,−) is a functor from [:Cop, C :] to EnsV .

We now define two new functors. Let us consider V , C, a. Let us assume
that Hom(C) ⊆ V . The functor homV (a,−) yields a functor from C to EnsV
and is defined by:

(Def.26) homV (a,−) = hom(a,−).

The functor homV (−, a) yields a contravariant functor from C into EnsV and
is defined as follows:

(Def.27) homV (−, a) = hom(−, a).

Let us consider V , C. Let us assume that Hom(C) ⊆ V . The functor
homC

V (−,−) yielding a functor from [:Cop, C :] to EnsV is defined as follows:

(Def.28) homC
V (−,−) = homC(−,−).

One can prove the following propositions:

(59) If Hom(C) ⊆ V , then
(homV (a,−))(f) = 〈〈〈〈hom(a,dom f), hom(a, cod f)〉〉, hom(a, f)〉〉.

(60) If Hom(C) ⊆ V , then (Obj(homV (a,−)))(b) = hom(a, b).

(61) If Hom(C) ⊆ V , then
(homV (−, a))(f) = 〈〈〈〈hom(cod f, a), hom(dom f, a)〉〉, hom(f, a)〉〉.

(62) If Hom(C) ⊆ V , then (Obj(homV (−, a)))(b) = hom(b, a).

(63) If Hom(C) ⊆ V , then (homC
V (−,−))(〈〈f op, g〉〉) = 〈〈〈〈hom(cod f,dom g),

hom(dom f, cod g)〉〉, hom(f, g)〉〉.
(64) If Hom(C) ⊆ V , then (Obj(homC

V (−,−)))(〈〈aop, b〉〉) = hom(a, b).

(65) If Hom(C) ⊆ V , then (homC
V (−,−))(aop,−) = homV (a,−).

(66) If Hom(C) ⊆ V , then (homC
V (−,−))(−, a) = homV (−, a).
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Summary. We present a Borsuk’s theorem published first in [3]
(compare also [4, pages 119–120]). It is slightly generalized, the assump-
tion of metrizability is omitted. We introduce concepts needed for the
formulation and the proof of theorems on upper semi-continuous decom-
positions, retracts, strong deformation retract. However, only those facts
that are necessary in the proof have been proved.

MML Identifier: BORSUK 1.

The terminology and notation used here have been introduced in the following
articles: [22], [7], [21], [2], [24], [23], [20], [12], [18], [14], [8], [13], [16], [25], [11],
[10], [6], [5], [17], [1], [19], [9], and [15].

Preliminaries

We follow a convention: X, Y , X1, X2, Y1, Y2 will be sets, A will be a subset
of X, and e, u will be arbitrary. The following propositions are true:

(1) If X meets Y1 and X ⊆ Y2, then X meets Y1 ∩ Y2.

(2) If e ∈ [:X1, Y1 :] and e ∈ [:X2, Y2 :], then e ∈ [:X1 ∩X2, Y1 ∩ Y2 :].

(3) idX
◦A = A.

(4) idX
−1A = A.

(5) For every function F such that X ⊆ F −1 X1 holds F ◦ X ⊆ X1.

(6) (X 7−→ u) ◦ X1 ⊆ {u}.
(7) If [:X1, X2 :] ⊆ [: Y1, Y2 :] and [:X1, X2 :] 6= ∅, then X1 ⊆ Y1 and X2 ⊆ Y2.

(8) If {e} meets X, then e ∈ X.

The scheme NonUniqExD deals with a set A, a set B, and a binary predicate
P, and states that:

there exists a function f from A into B such that for every e such that e ∈ A
holds P[e, f(e)]
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provided the following requirement is met:
• for every e such that e ∈ A there exists u such that u ∈ B and P[e,
u].

We now state several propositions:

(9) If e ∈ 2[:X,Y :], then (◦ π1(X × Y ))(e) = π1(X × Y ) ◦ e.
(10) If e ∈ 2[:X,Y :], then (◦ π2(X × Y ))(e) = π2(X × Y ) ◦ e.
(11) If e ∈ [:X, Y :], then e = 〈〈e1, e2〉〉.
(12) For every subset X1 of X and for every subset Y1 of Y such that [:X1,

Y1 :] 6= ∅ holds π1(X×Y )◦ [:X1, Y1 :] = X1 and π2(X×Y )◦ [:X1, Y1 :] = Y1.

(13) For every subset X1 of X and for every subset Y1 of Y such that [:X1,
Y1 :] 6= ∅ holds (◦ π1(X × Y ))([:X1, Y1 :]) = X1 and (◦ π2(X × Y ))([:X1,
Y1 :]) = Y1.

(14) Let A be a subset of [:X, Y :]. Then for every family H of subsets of [:X,
Y :] such that for every e such that e ∈ H holds e ⊆ A and there exists a
subset X1 of X and there exists a subset Y1 of Y such that e = [:X1, Y1 :]
holds [:

⋃
((◦ π1(X × Y )) ◦ H),

⋂
((◦ π2(X × Y )) ◦ H) :] ⊆ A.

(15) Let A be a subset of [:X, Y :]. Then for every family H of subsets of [:X,
Y :] such that for every e such that e ∈ H holds e ⊆ A and there exists a
subset X1 of X and there exists a subset Y1 of Y such that e = [:X1, Y1 :]
holds [:

⋂
((◦ π1(X × Y )) ◦ H),

⋃
((◦ π2(X × Y )) ◦ H) :] ⊆ A.

(16) For every set X and for every non-empty set Y and for every function f
from X into Y and for every family H of subsets of X holds

⋃
((◦ f)◦H) =

f ◦
⋃
H.

In the sequel X, Y , Z denote non-empty sets. One can prove the following
propositions:

(17) For every family a of subsets of X holds
⋃⋃

a =
⋃{⋃A : A ∈ a}, where

A ranges over subsets of X.

(18) For every family D of subsets of X such that
⋃
D = X for every subset

A of D and for every subset B of X such that B =
⋃
A holds Bc ⊆ ⋃(Ac).

(19) For every function F from X into Y and for every function G from
X into Z such that for all elements x, x′ of X such that F (x) = F (x′)
holds G(x) = G(x′) there exists a function H from Y into Z such that
H · F = G.

(20) For all X, Y , Z and for every element y of Y and for every function F
from X into Y and for every function G from Y into Z holds F −1 {y} ⊆
(G · F ) −1 {G(y)}.

(21) For every function F from X into Y and for every element x of X and
for every element z of Z holds [:F, idZ :](〈〈x, z〉〉) = 〈〈F (x), z〉〉.

(22) For every function F from X into Y and for every subset A of X holds
idX

◦A = A.

(23) For every function F from X into Y and for every subset A of X and
for every subset B of Z holds [:F, idZ :] ◦ [:A, B :] = [:F ◦ A, B :].
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(24) For every function F from X into Y and for every element y of Y and
for every element z of Z holds [:F, idZ :] −1 {〈〈y, z〉〉} = [:F −1 {y}, {z} :].

Let B, A be non-empty sets, and let x be an element of B. Then A 7−→ x is
a function from A into B.

Let Y be a non-empty set, and let y be an element of Y . Then {y} is a
subset of Y .

Partitions

One can prove the following four propositions:

(25) For every partition D of X and for every subset A of D holds
⋃
A is a

subset of X.

(26) For every partition D of X and for all subsets A, B of D holds
⋃

(A ∩
B) =

⋃
A ∩⋃B.

(27) For every partition D of X and for every subset A of D and for every
subset B of X such that B =

⋃
A holds Bc =

⋃
(Ac).

(28) For every equivalence relation E of X holds ClassesE is non-empty.

Let us consider X, and let D be a non-empty partition of X. The projection
onto D yielding a function from X into D is defined as follows:

(Def.1) for every element p of X holds p ∈ (the projection onto D)(p).

Next we state several propositions:

(29) For every non-empty partition D of X and for every element p of X
and for every element A of D such that p ∈ A holds A = (the projection
onto D)(p).

(30) For every non-empty partition D of X and for every element p of D
holds p = (the projection onto D) −1 {p}.

(31) For every non-empty partition D of X and for every subset A of D
holds (the projection onto D) −1 A =

⋃
A.

(32) For every non-empty partition D of X and for every element W of D
there exists an element W ′ of X such that (the projection onto D)(W ′) =
W .

(33) For every non-empty partition D of X and for every subset W of X
such that for every subset B of X such that B ∈ D and B meets W holds
B ⊆W holds W = (the projection onto D)−1 (the projection onto D)◦W .

Topological Preliminaries

In the sequel X, Y denote topological spaces. We now state two propositions:

(34) ΩX 6= ∅X .

(35) For every subspace Y of X holds the carrier of Y ⊆ the carrier of X.

Let X, Y be topological spaces, and let F be a function from the carrier of
X into the carrier of Y . Let us note that one can characterize the predicate F



538 andrzej trybulec

is continuous by the following (equivalent) condition:

(Def.2) for every point W of X and for every neighborhood G of F (W ) there
exists a neighborhood H of W such that F ◦ H ⊆ G.

The following proposition is true

(36) For every point y of Y holds (the carrier of X) 7−→ y is continuous.

Let us consider X, Y . A map from X into Y is called a continuous map from
X into Y if:

(Def.3) it is continuous.

Let X, Y , Z be topological spaces, and let F be a continuous map from X
into Y , and let G be a continuous map from Y into Z. Then G·F is a continuous
map from X into Z.

We now state two propositions:

(37) For every continuous map A from X into Y and for every subset G of
Y holds A −1 IntG ⊆ Int(A −1 G).

(38) For every point W of Y and for every continuous map A from X into
Y and for every neighborhood G of W holds A −1 G is a neighborhood of
A −1 {W}.

Let X, Y be topological spaces, and let W be a point of Y , and let A be
a continuous map from X into Y , and let G be a neighborhood of W . Then
A −1 G is a neighborhood of A −1 {W}.

One can prove the following propositions:

(39) For every X and for all subsets A, B of the carrier of X and for every
neighborhood U1 of B such that A ⊆ B holds U1 is a neighborhood of A.

(40) For every subset A of X and for every point x of X holds A is a neigh-
borhood of x if and only if A is a neighborhood of {x}.

(41) For every point x of X holds {x} is compact.

(42) For every subspace Y of X and for every subset A of X and for every
subset B of Y such that A = B holds A is compact if and only if B is
compact.

Cartesian Products of Topological Spaces

Let us considerX, Y . The functor [:X, Y :] yielding a topological space is defined
by:

(Def.4) the carrier of [:X, Y :] = [: the carrier of X, the carrier of Y :] and the
topology of [:X, Y :] = {⋃A : A ⊆ {[:X1, Y1 :] : X1 ∈ the topology of
X ∧ Y1 ∈ the topology of Y }}, where X1 ranges over subsets of X, and
Y1 ranges over subsets of Y .

Next we state three propositions:

(43) The carrier of [:X, Y :] = [: the carrier of X, the carrier of Y :].
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(44) The topology of [:X, Y :] = {⋃A : A ⊆ {[:X1, Y1 :] : X1 ∈ the topology
of X ∧Y1 ∈ the topology of Y }}, where X1 ranges over subsets of X, and
Y1 ranges over subsets of Y .

(45) For every subset B of [:X, Y :] holds B is open if and only if there exists
a family A of subsets of the carrier of [:X, Y :] such that B =

⋃
A and for

every e such that e ∈ A there exists a subset X1 of X and there exists a
subset Y1 of Y such that e = [:X1, Y1 :] and X1 is open and Y1 is open.

Let X, Y be topological spaces, and let A be a subset of X, and let B be a
subset of Y . Then [:A, B :] is a subset of [:X, Y :].

Let X, Y be topological spaces, and let x be a point of X, and let y be a
point of Y . Then 〈〈x, y〉〉 is a point of [:X, Y :].

Next we state four propositions:

(46) For every subset V of X and for every subset W of Y such that V is
open and W is open holds [: V, W :] is open.

(47) For every subset V of X and for every subset W of Y holds Int[:V,
W :] = [: IntV, IntW :].

(48) For every point x of X and for every point y of Y and for every neigh-
borhood V of x and for every neighborhood W of y holds [:V, W :] is a
neighborhood of 〈〈x, y〉〉.

(49) For every subset A of X and for every subset B of Y and for every
neighborhood V of A and for every neighborhood W of B holds [: V, W :]
is a neighborhood of [:A, B :].

Let X, Y be topological spaces, and let x be a point of X, and let y be a
point of Y , and let V be a neighborhood of x, and let W be a neighborhood of
y. Then [:V, W :] is a neighborhood of 〈〈x, y〉〉.

Next we state the proposition

(50) For every point X3 of [:X, Y :] there exists a point W of X and there
exists a point T of Y such that X3 = 〈〈W, T 〉〉.

Let X, Y be topological spaces, and let A be a subset of X, and let t be a
point of Y , and let V be a neighborhood of A, and let W be a neighborhood of
t. Then [:V, W :] is a neighborhood of [:A, {t} :].

Let us consider X, Y , and let A be a subset of [:X, Y :]. The functor
BaseAppr(A) yields a family of subsets of [:X, Y :] and is defined by:

(Def.5) BaseAppr(A) = {[:X1, Y1 :] : [:X1, Y1 :] ⊆ A ∧X1 is open∧Y1 is open},
where X1 ranges over subsets of X, and Y1 ranges over subsets of Y .

We now state several propositions:

(51) For every subset A of [:X, Y :] holds BaseAppr(A) is open.

(52) For all subsets A, B of [:X, Y :] such that A ⊆ B holds BaseAppr(A) ⊆
BaseAppr(B).

(53) For every subset A of [:X, Y :] holds
⋃

BaseAppr(A) ⊆ A.

(54) For every subset A of [:X, Y :] such that A is open holds
A =

⋃
BaseAppr(A).
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(55) For every subset A of [:X, Y :] holds IntA =
⋃

BaseAppr(A).

We now define two new functors. Let us considerX, Y . The functor π1(X,Y )
yielding a function from 2the carrier of [:X, Y :] into 2the carrier of X is defined by:

(Def.6) π1(X,Y ) = ◦ π1( (the carrier of X)× the carrier of Y ).

The functor π2(X,Y ) yields a function from 2the carrier of [:X,Y :] into 2the carrier of Y

and is defined as follows:

(Def.7) π2(X,Y ) = ◦ π2( (the carrier of X)× the carrier of Y ).

We now state a number of propositions:

(56) Let A be a subset of [:X, Y :]. Then for every family H of subsets of [:X,
Y :] such that for every e such that e ∈ H holds e ⊆ A and there exists a
subset X1 of X and there exists a subset Y1 of Y such that e = [:X1, Y1 :]
holds [:

⋃
(π1(X,Y ) ◦ H),

⋂
(π2(X,Y ) ◦ H) :] ⊆ A.

(57) For every family H of subsets of [:X, Y :] and for every set C such that
C ∈ π1(X,Y ) ◦ H there exists a subset D of [:X, Y :] such that D ∈ H
and C = π1( (the carrier of X)× the carrier of Y ) ◦ D.

(58) For every family H of subsets of [:X, Y :] and for every set C such that
C ∈ π2(X,Y ) ◦ H there exists a subset D of [:X, Y :] such that D ∈ H
and C = π2( (the carrier of X)× the carrier of Y ) ◦ D.

(59) For every subset D of [:X, Y :] such that D is open for every subset X1

of X and for every subset Y1 of Y holds if X1 = π1( (the carrier of X)×
the carrier of Y ) ◦D, then X1 is open but if Y1 = π2( (the carrier of X)×
the carrier of Y ) ◦ D, then Y1 is open.

(60) For every family H of subsets of [:X, Y :] such that H is open holds
π1(X,Y ) ◦ H is open and π2(X,Y ) ◦ H is open.

(61) For every family H of subsets of [:X, Y :] such that π1(X,Y ) ◦H = ∅ or
π2(X,Y ) ◦ H = ∅ holds H = ∅.

(62) For every family H of subsets of [:X, Y :] and for every subset X1 of X
and for every subset Y1 of Y such that H is a cover of [:X1, Y1 :] holds if
Y1 6= ∅, then π1(X,Y )◦H is a cover of X1 but if X1 6= ∅, then π2(X,Y )◦H
is a cover of Y1.

(63) For every family H of subsets of X and for every subset Y of X such
that H is a cover of Y there exists a family F of subsets of X such that
F ⊆ H and F is a cover of Y and for every set C such that C ∈ F holds
C ∩ Y 6= ∅.

(64) For every family F of subsets of X and for every family H of subsets
of [:X, Y :] such that F is finite and F ⊆ π1(X,Y ) ◦ H there exists a
family G of subsets of [:X, Y :] such that G ⊆ H and G is finite and
F = π1(X,Y ) ◦ G.

(65) For every subset X1 of X and for every subset Y1 of Y such that [:X1,
Y1 :] 6= ∅ holds π1(X,Y )([:X1, Y1 :]) = X1 and π2(X,Y )([:X1, Y1 :]) = Y1.

(66) π1(X,Y )(∅) = ∅ and π2(X,Y )(∅) = ∅.
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(67) For every point t of Y and for every subset A of the carrier of X such
that A is compact for every neighborhood G of [:A, {t} :] there exists a
neighborhood V of A and there exists a neighborhood W of t such that
[:V, W :] ⊆ G.

Partitions of Topological Spaces

Let us consider X. The trivial decomposition of X yielding a non-empty parti-
tion of the carrier of X is defined by:

(Def.8) the trivial decomposition of X = Classes(4the carrier of X).

We now state the proposition

(68) For every subset A of X such that A ∈ the trivial decomposition of X
there exists a point x of X such that A = {x}.

Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The decomposition space of D yielding a topological space is
defined as follows:

(Def.9) the carrier of the decomposition space of D = D and the topology of
the decomposition space of D = {A :

⋃
A ∈ the topology of X}, where A

ranges over subsets of D.

One can prove the following proposition

(69) For every non-empty partition D of the carrier of X and for every subset
A of D holds

⋃
A ∈ the topology of X if and only if A ∈ the topology of

the decomposition space of D.

Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The projection onto D yielding a continuous map from X into the
decomposition space of D is defined as follows:

(Def.10) the projection onto D = the projection onto D.

We now state three propositions:

(70) For every non-empty partition D of the carrier of X and for every point
W of X holds W ∈ (the projection onto D)(W ).

(71) For every non-empty partition D of the carrier of X and for every point
W of the decomposition space of D there exists a point W ′ of X such
that (the projection onto D)(W ′) = W .

(72) For every non-empty partition D of the carrier of X holds rng(the pro-
jection onto D) = the carrier of the decomposition space of D.

Let X4 be a topological space, and let X be a subspace of X4, and let D be
a non-empty partition of the carrier of X. The trivial extension of D yields a
non-empty partition of the carrier of X4 and is defined as follows:

(Def.11) the trivial extension of D = D ∪ {{p} : p /∈ the carrier of X}, where p
ranges over points of X4.

The following propositions are true:
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(73) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X holds D ⊆ the trivial
extension of D.

(74) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every subset A of
X4 such that A ∈ the trivial extension of D holds A ∈ D or there exists
a point x of X4 such that x /∈ ΩX and A = {x}.

(75) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point x of
X4 such that x /∈ the carrier of X holds {x} ∈ the trivial extension of D.

(76) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W ∈ the carrier of X holds (the projection onto the trivial
extension of D)(W ) = (the projection onto D)(W ).

(77) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W /∈ the carrier of X holds (the projection onto the trivial
extension of D)(W ) = {W}.

(78) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for all points W ,
W ′ of X4 such that W /∈ the carrier of X and (the projection onto the
trivial extension of D)(W ) = (the projection onto the trivial extension of
D)(W ′) holds W = W ′.

(79) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point e
of X4 such that (the projection onto the trivial extension of D)(e) ∈ the
carrier of the decomposition space of D holds e ∈ the carrier of X.

(80) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every e such that
e ∈ the carrier of X holds (the projection onto the trivial extension of
D)(e) ∈ the carrier of the decomposition space of D.

Upper Semicontinuous Decompositions

Let X be a topological space. A non-empty partition of the carrier of X is said
to be an upper semi-continuous decomposition of X if:

(Def.12) for every subset A of X such that A ∈ it for every neighborhood V of
A there exists a subset W of X such that W is open and A ⊆ W and
W ⊆ V and for every subset B of X such that B ∈ it and B meets W
holds B ⊆W .

We now state two propositions:

(81) For every upper semi-continuous decomposition D of X and for every
point t of the decomposition space of D and for every neighborhood G
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of (the projection onto D) −1 {t} holds (the projection onto D) ◦ G is a
neighborhood of t.

(82) The trivial decomposition of X is an upper semi-continuous decompo-
sition of X.

Let us consider X. A subspace of X is called a closed subspace of X if:

(Def.13) for every subset A of X such that A = the carrier of it holds A is closed.

Let X4 be a topological space, and let X be a closed subspace of X4, and let
D be an upper semi-continuous decomposition of X. Then the trivial extension
of D is an upper semi-continuous decomposition of X4.

Let X be a topological space. An upper semi-continuous decomposition of
X is called an upper semi-continuous decomposition into compacta of X if:

(Def.14) for every subset A of X such that A ∈ it holds A is compact.

Let X4 be a topological space, and let X be a closed subspace of X4, and let
D be an upper semi-continuous decomposition into compacta of X. Then the
trivial extension of D is an upper semi-continuous decomposition into compacta
of X4.

Let X be a topological space, and let Y be a closed subspace of X, and let
D be an upper semi-continuous decomposition into compacta of Y . Then the
decomposition space of D is a closed subspace of the decomposition space of the
trivial extension of D.

Borsuk’s Theorems on the Decomposition of Retracts

The topological space � is defined by:

(Def.15) for every subset P of (the metric space of real numbers)top such that
P = [0, 1] holds � = (the metric space of real numbers)top � P .

Next we state the proposition

(83) The carrier of � = [0, 1].

We now define two new functors. The point 0 � of � is defined by:

(Def.16) 0 � = 0.

The point 1 � of � is defined by:

(Def.17) 1 � = 1.

Let A be a topological space, and let B be a subspace of A, and let F be a
continuous map from A into B. We say that F is a retraction if and only if:

(Def.18) for every pointW of A such that W ∈ the carrier of B holds F (W ) = W .

We now define two new predicates. Let X be a topological space, and let Y
be a subspace of X. We say that Y is a retract of X if and only if:

(Def.19) there exists a continuous map F from X into Y such that F is a retrac-
tion.

We say that Y is a strong deformation retract of X if and only if:
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(Def.20) there exists a continuous map H from [:X, � :] into X such that for every
point A of X holds H(〈〈A, 0 � 〉〉) = A and H(〈〈A, 1 � 〉〉) ∈ the carrier of Y but
if A ∈ the carrier of Y , then for every point T of � holds H(〈〈A, T 〉〉) = A.

We now state two propositions:

(84) For every topological space X4 and for every closed subspace X of X4

and for every upper semi-continuous decomposition D into compacta of
X such that X is a retract of X4 holds the decomposition space of D is a
retract of the decomposition space of the trivial extension of D.

(85) For every topological space X4 and for every closed subspace X of X4

and for every upper semi-continuous decomposition D into compacta of X
such that X is a strong deformation retract of X4 holds the decomposition
space of D is a strong deformation retract of the decomposition space of
the trivial extension of D.
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Summary. A supplement of [3] and [2], i.e. some useful and ex-
planatory properties of the product and also the curried and uncurried
functions are shown. Besides, the functions yielding functions are con-
sidered: two different products and other operation of such functions are
introduced. Finally, two facts are presented: quasi-distributivity of the

power of the set to other one w.r.t. the union (X

⊎
x
f(x) ≈

∏
x
Xf(x))

and quasi-distributivity of the poroduct w.r.t. the raising to the power
(
∏
x
f(x)X ≈ (

∏
x
f(x))X).

MML Identifier: FUNCT 6.

The articles [16], [14], [8], [17], [5], [12], [9], [11], [6], [4], [13], [15], [7], [10], [2],
[1], and [3] provide the notation and terminology for this paper.

Properties of Cartesian product

For simplicity we follow the rules: x, y, y1, y2, z, a will be arbitrary, f , g,
h, h′, f1, f2 will denote functions, i will denote a natural number, X, Y , Z,
V1, V2 will denote sets, P will denote a permutation of X, D, D1, D2, D3

will denote non-empty sets, d1 will denote an element of D1, d2 will denote an
element of D2, and d3 will denote an element of D3. We now state a number of
propositions:

(1) x ∈ ∏〈X〉 if and only if there exists y such that y ∈ X and x = 〈y〉.
(2) z ∈ ∏〈X,Y 〉 if and only if there exist x, y such that x ∈ X and y ∈ Y

and z = 〈x, y〉.
(3) a ∈ ∏〈X,Y,Z〉 if and only if there exist x, y, z such that x ∈ X and

y ∈ Y and z ∈ Z and a = 〈x, y, z〉.
(4)

∏〈D〉 = D1.

(5)
∏〈D1, D2〉 = {〈d1, d2〉}.

(6)
∏〈D,D〉 = D2.
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(7)
∏〈D1, D2, D3〉 = {〈d1, d2, d3〉}.

(8)
∏〈D,D,D〉 = D3.

(9)
∏

(i 7−→ D) = Di.

(10)
∏
f ⊆ (

⋃
f)dom f .

Curried and uncurried functions of some functions

The following propositions are true:

(11) If x ∈ dom� f , then there exist y, z such that x = 〈〈y, z〉〉.
(12) � ([:X, Y :] 7−→ z) = [:Y, X :] 7−→ z.

(13) curry f = curry′ � f and uncurry f = � uncurry′ f .

(14) If [:X, Y :] 6= ∅, then curry([:X, Y :] 7−→ z) = X 7−→ (Y 7−→ z) and
curry′([:X, Y :] 7−→ z) = Y 7−→ (X 7−→ z).

(15) uncurry(X 7−→ (Y 7−→ z)) = [:X, Y :] 7−→ z and uncurry′(X 7−→
(Y 7−→ z)) = [: Y, X :] 7−→ z.

(16) If x ∈ dom f and g = f(x), then rng g ⊆ rng uncurry f and rng g ⊆
rng uncurry′ f .

(17) dom uncurry(X 7−→ f) = [:X, dom f :] and rng uncurry(X 7−→ f) ⊆
rng f and dom uncurry′(X 7−→ f) = [: dom f, X :] and rng uncurry′(X 7−→
f) ⊆ rng f .

(18) If X 6= ∅, then rng uncurry(X 7−→ f) = rng f and rng uncurry′(X 7−→
f) = rng f .

(19) If [:X, Y :] 6= ∅ and f ∈ Z [:X,Y :], then curry f ∈ (ZY )X and curry′ f ∈
(ZX)Y .

(20) If f ∈ (ZY )X , then uncurry f ∈ Z [:X,Y :] and uncurry′ f ∈ Z [:Y,X :].

(21) If curry f ∈ (ZY )X or curry′ f ∈ (ZX)Y but dom f ⊆ [:V1, V2 :], then
f ∈ Z [:X,Y :].

(22) If uncurry f ∈ Z [:X, Y :] or uncurry′ f ∈ Z [:Y,X :] but rng f ⊆ V1→̇V2 and
dom f = X, then f ∈ (ZY )X .

(23) If f ∈ [:X, Y :]→̇Z, then curry f ∈ X→̇(Y →̇Z) and
curry′ f ∈ Y →̇(X→̇Z).

(24) If f ∈ X→̇(Y →̇Z), then uncurry f ∈ [:X, Y :]→̇Z and uncurry′ f ∈ [:Y,
X :]→̇Z.

(25) If curry f ∈ X→̇(Y →̇Z) or curry′ f ∈ Y →̇(X→̇Z) but dom f ⊆ [: V1,
V2 :], then f ∈ [:X, Y :]→̇Z.

(26) If uncurry f ∈ [:X, Y :]→̇Z or uncurry′ f ∈ [:Y, X :]→̇Z but rng f ⊆
V1→̇V2 and dom f ⊆ X, then f ∈ X→̇(Y →̇Z).

Functions yielding functions

Let X be a set. The functor Subf X is defined as follows:

(Def.1) x ∈ Subf X if and only if x ∈ X and x is a function.
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Next we state four propositions:

(27) Subf X ⊆ X.

(28) x ∈ f −1 Subf rng f if and only if x ∈ dom f and f(x) is a function.

(29) Subf ∅ = ∅ and Subf{f} = {f} and Subf{f, g} = {f, g} and
Subf{f, g, h} = {f, g, h}.

(30) If Y ⊆ Subf X, then Subf Y = Y .

We now define three new functors. Let f be a function. The functor
domκ f(κ) yielding a function is defined by:

(Def.2) dom(domκ f(κ)) = f −1 Subf rng f and for every x such that x ∈ f −1

Subf rng f holds (domκ f(κ))(x) = π1(f(x)).

The functor rngκ f(κ) yields a function and is defined as follows:

(Def.3) dom(rngκ f(κ)) = f −1 Subf rng f and for every x such that x ∈ f −1

Subf rng f holds (rngκ f(κ))(x) = π2(f(x)).

The functor
⋂
f is defined as follows:

(Def.4)
⋂
f =

⋂
rng f .

Next we state a number of propositions:

(31) If x ∈ dom f and g = f(x), then x ∈ dom(domκ f(κ)) and
(domκ f(κ))(x) = dom g
and x ∈ dom(rngκ f(κ)) and (rngκ f(κ))(x) = rng g.

(32) domκ � (κ) = � and rngκ � (κ) = � .

(33) domκ〈f〉(κ) = 〈dom f〉 and rngκ〈f〉(κ) = 〈rng f〉.
(34) domκ〈f, g〉(κ) = 〈dom f,dom g〉 and rngκ〈f, g〉(κ) = 〈rng f, rng g〉.
(35) domκ〈f, g, h〉(κ) = 〈dom f,dom g,dom h〉 and rngκ〈f, g, h〉(κ) = 〈rng f,

rng g, rng h〉.
(36) domκ(X 7−→ f)(κ) = X 7−→ dom f and rngκ(X 7−→ f)(κ) = X 7−→

rng f .

(37) If f 6= � , then x ∈ ⋂ f if and only if for every y such that y ∈ dom f
holds x ∈ f(y).

(38)
⋃ � = ∅ and

⋂ � = ∅.
(39)

⋃〈X〉 = X and
⋂〈X〉 = X.

(40)
⋃〈X,Y 〉 = X ∪ Y and

⋂〈X,Y 〉 = X ∩ Y .

(41)
⋃〈X,Y,Z〉 = X ∪ Y ∪ Z and

⋂〈X,Y,Z〉 = X ∩ Y ∩ Z.

(42)
⋃

(∅ 7−→ Y ) = ∅ and
⋂

(∅ 7−→ Y ) = ∅.
(43) If X 6= ∅, then

⋃
(X 7−→ Y ) = Y and

⋂
(X 7−→ Y ) = Y .

Let f be a function, and let x, y be arbitrary. The functor f(x)(y) is defined
by:

(Def.5) f(x)(y) = (uncurry f)(〈〈x, y〉〉).
We now state several propositions:

(44) If x ∈ dom f and g = f(x) and y ∈ dom g, then f(x)(y) = g(y).
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(45) If x ∈ dom f , then 〈f〉(1)(x) = f(x) and 〈f, g〉(1)(x) = f(x) and 〈f, g,
h〉(1)(x) = f(x).

(46) If x ∈ dom g, then 〈f, g〉(2)(x) = g(x) and 〈f, g, h〉(2)(x) = g(x).

(47) If x ∈ domh, then 〈f, g, h〉(3)(x) = h(x).

(48) If x ∈ X and y ∈ dom f , then (X 7−→ f)(x)(y) = f(y).

Cartesian product of functions with the same domain

Let f be a function. The functor
∏∗ f yielding a function is defined as follows:

(Def.6)
∏∗ f = curry(uncurry′ f � [:

⋂
(domκ f(κ)), dom f :]).

We now state several propositions:

(49) dom
∏∗ f =

⋂
(domκ f(κ)) and rng

∏∗ f ⊆ ∏(rngκ f(κ)).

(50) If x ∈ dom
∏∗ f , then (

∏∗ f)(x) is a function.

(51) If x ∈ dom
∏∗ f and g = (

∏∗ f)(x), then dom g = f −1 Subf rng f
and for every y such that y ∈ dom g holds 〈〈y, x〉〉 ∈ dom uncurry f and
g(y) = (uncurry f)(〈〈y, x〉〉).

(52) If x ∈ dom
∏∗ f , then for every g such that g ∈ rng f holds x ∈ dom g.

(53) If g ∈ rng f and for every g such that g ∈ rng f holds x ∈ dom g, then
x ∈ dom

∏∗ f .

(54) If x ∈ dom f and g = f(x) and y ∈ dom
∏∗ f and h = (

∏∗ f)(y), then
g(y) = h(x).

(55) If x ∈ dom f and f(x) is a function and y ∈ dom
∏∗ f , then f(x)(y) =

(
∏∗ f)(y)(x).

Cartesian product of functions

Let f be a function. The functor
∏◦ f yielding a function is defined by the

conditions (Def.7).

(Def.7) (i) dom
∏◦ f =

∏
(domκ f(κ)),

(ii) for every g such that g ∈ ∏
(domκ f(κ)) there exists h such that

(
∏◦ f)(g) = h and domh = f −1 Subf rng f and for every x such that
x ∈ domh holds h(x) = (uncurry f)(〈〈x, g(x)〉〉).

The following propositions are true:

(56) If g ∈ ∏(domκ f(κ)) and x ∈ dom g, then (
∏◦ f)(g)(x) = f(x)(g(x)).

(57) If x ∈ dom f and g = f(x) and h ∈ ∏(domκ f(κ)) and h′ = (
∏◦ f)(h),

then h(x) ∈ dom g and h′(x) = g(h(x)) and h′ ∈ ∏(rngκ f(κ)).

(58) rng
∏◦ f =

∏
(rngκ f(κ)).

(59) If � /∈ rng f , then
∏◦ f is one-to-one if and only if for every g such that

g ∈ rng f holds g is one-to-one.
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Properties of Cartesian products of functions

The following propositions are true:

(60)
∏∗ � = � and

∏◦ � = { � } 7−→ � .

(61) dom
∏∗〈h〉 = domh and for every x such that x ∈ domh holds

(
∏∗〈h〉)(x) = 〈h(x)〉.

(62) dom
∏∗〈f1, f2〉 = dom f1∩dom f2 and for every x such that x ∈ dom f1∩

dom f2 holds (
∏∗〈f1, f2〉)(x) = 〈f1(x), f2(x)〉.

(63) If X 6= ∅, then dom
∏∗(X 7−→ f) = dom f and for every x such that

x ∈ dom f holds (
∏∗(X 7−→ f))(x) = X 7−→ f(x).

(64) dom
∏◦〈h〉 =

∏〈domh〉 and rng
∏◦〈h〉 =

∏〈rng h〉 and for every x such
that x ∈ domh holds (

∏◦〈h〉)(〈x〉) = 〈h(x)〉.
(65) (i) dom

∏◦〈f1, f2〉 =
∏〈dom f1,dom f2〉,

(ii) rng
∏◦〈f1, f2〉 =

∏〈rng f1, rng f2〉,
(iii) for all x, y such that x ∈ dom f1 and y ∈ dom f2 holds (

∏◦〈f1, f2〉)(〈x,
y〉) = 〈f1(x), f2(y)〉.

(66) dom
∏◦(X 7−→ f) = (dom f)X and rng

∏◦(X 7−→ f) = (rng f)X and
for every g such that g ∈ (dom f)X holds (

∏◦(X 7−→ f))(g) = f · g.
(67) If x ∈ dom f1 and x ∈ dom f2, then for all y1, y2 holds 〈f1, f2〉(x) = 〈〈y1,

y2〉〉 if and only if (
∏∗〈f1, f2〉)(x) = 〈y1, y2〉.

(68) If x ∈ dom f1 and y ∈ dom f2, then for all y1, y2 holds [: f1, f2 :](〈〈x,
y〉〉) = 〈〈y1, y2〉〉 if and only if (

∏◦〈f1, f2〉)(〈x, y〉) = 〈y1, y2〉.
(69) If dom f = X and dom g = X and for every x such that x ∈ X holds

f(x) ≈ g(x), then
∏
f ≈ ∏ g.

(70) If dom f = domh and dom g = rng h and h is one-to-one and for every
x such that x ∈ domh holds f(x) ≈ g(h(x)), then

∏
f ≈ ∏ g.

(71) If dom f = X, then
∏
f ≈ ∏(f · P ).

Function yielding powers

Let us consider f , X. The functor Xf yielding a function is defined by:

(Def.8) dom(Xf ) = dom f and for every x such that x ∈ dom f holds X f (x) =
Xf(x).

We now state several propositions:

(72) If ∅ /∈ rng f , then ∅f = dom f 7−→ ∅.
(73) X

�
= � .

(74) Y 〈X〉 = 〈Y X〉.
(75) Z〈X,Y 〉 = 〈ZX , ZY 〉.
(76) ZX 7−→Y = X 7−→ ZY .

(77) X
⋃

disjoin f ≈ ∏(Xf ).

Let us consider X, f . The functor fX yielding a function is defined by:
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(Def.9) dom(fX) = dom f and for every x such that x ∈ dom f holds fX(x) =
f(x)X .

Next we state several propositions:

(78) f∅ = dom f 7−→ { � }.
(79) � X = � .

(80) 〈Y 〉X = 〈Y X〉.
(81) 〈Y,Z〉X = 〈Y X , ZX〉.
(82) (Y 7−→ Z)X = Y 7−→ ZX .

(83)
∏

(fX) ≈ (
∏
f)X .
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The terminology and notation used here are introduced in the following papers:
[15], [11], [2], [14], [16], [13], [7], [5], [6], [8], [10], [12], [1], [9], [3], [4], and [17].
For simplicity we follow a convention: x, y will be arbitrary, n, m, k will denote
natural numbers, t1 will denote a tree decorated by [: � , � qua a non-empty
set :], w, s, t will denote finite sequences of elements of � , X will denote a set,
and D will denote a non-empty set. Next we state the proposition

(1) If X is finite, then cardX = 2 if and only if there exist x, y such that
X = {x, y} and x 6= y.

Let Z be a tree. The root of Z yields an element of Z and is defined as
follows:

(Def.1) the root of Z = ε.

Let us consider D, and let T be a tree decorated by D. The root of T yields
an element of D and is defined by:

(Def.2) the root of T = T (the root of domT ).

Next we state a number of propositions:

(2) 〈n〉 = 〈m〉 if and only if n = m.

(3) If n 6= m, then 〈n〉 and 〈m〉 	 s are not comparable.

(4) For every s such that s 6= ε there exist w, n such that s = 〈n〉 	 w.

(5) If n 6= m, then 〈n〉 � 〈m〉 	 s.
(6) If n 6= m, then 〈n〉 � 〈m〉 	 s.
(7) 〈n〉 � 〈m〉.
(8) If w 6= ε, then s ≺ s 	 w.

(9) The elementary tree of 1 = {ε, 〈0〉}.
(10) The elementary tree of 2 = {ε, 〈0〉, 〈1〉}.
(11) For every tree Z and for all n, m such that n ≤ m and 〈m〉 ∈ Z holds

〈n〉 ∈ Z.
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(12) If w 	 t ≺ w 	 s, then t ≺ s.
(13) t1 ∈ � ∗ →̇[: � , � qua a non-empty set :].

(14) For all trees Z, Z1 and for every element z of Z holds z ∈ Z(z/Z1).

(15) For all trees Z, Z1, Z2 and for every element z of Z such that Z(z/Z1) =
Z(z/Z2) holds Z1 = Z2.

(16) For all trees Z, Z1, Z2 decorated by D and for every element z of domZ
such that Z(z/Z1) = Z(z/Z2) holds Z1 = Z2.

(17) For all trees Z1, Z2 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1(p/Z2) and for every element w of
Z1 such that v = w and w ≺ p holds succ v = succw.

(18) For all trees Z1, Z2 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1(p/Z2) and for every element w of Z1

such that v = w and p and w are not comparable holds succ v = succw.

(19) For all trees Z1, Z2 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1(p/Z2) and for every element w of
Z2 such that v = p 	 w holds succ v ≈ succw.

(20) For every tree Z1 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1 and for every element w of Z1 � p
such that v = p 	 w holds succ v ≈ succw.

(21) For every tree Z and for every element p of Z such that Z is finite holds
succ p is finite.

(22) For every tree Z such that Z is finite and the branch degree of the root
of Z = 0 holds cardZ = 1 and Z = {ε}.

(23) For every tree Z such that Z is finite and the branch degree of the root
of Z = 1 holds succ(the root of Z) = {〈0〉}.

(24) For every tree Z such that Z is finite and the branch degree of the root
of Z = 2 holds succ(the root of Z) = {〈0〉, 〈1〉}.

In the sequel s′, w′ will be elements of � ∗ . One can prove the following
propositions:

(25) For every tree Z and for every element o of Z such that o 6= the root of
Z holds Z � o ≈ {o 	 s′ : o 	 s′ ∈ Z} and the root of Z /∈ {o 	 w′ : o 	 w′ ∈ Z}.

(26) For every tree Z and for every element o of Z such that o 6= the root of
Z and Z is finite holds card(Z � o) < cardZ.

(27) For every tree Z and for every element z of Z such that succ(the root of
Z) = {z} and Z is finite holds Z = (the elementary tree of 1)(〈0〉/(Z � z)).

(28) For every tree Z decorated by D and for every element z of domZ such
that succ(the root of domZ) = {z} and domZ is finite holds Z = ( the
elementary tree of 1 7−→ the root of Z)(〈0〉/(Z � z)).

(29) For every tree Z and for all elements x1, x2 of Z such that Z is finite
and x1 = 〈0〉 and x2 = 〈1〉 and succ(the root of Z) = {x1, x2} holds
Z = (the elementary tree of 2)(〈0〉/(Z � x1))(〈1〉/(Z � x2)).
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(30) Let Z be a tree decorated by D. Then for all elements x1, x2 of domZ
such that domZ is finite and x1 = 〈0〉 and x2 = 〈1〉 and succ(the root of
domZ) = {x1, x2} holds Z = ( the elementary tree of 2 7−→ the root of
Z)(〈0〉/(Z � x1))(〈1〉/(Z � x2)).

The non-empty set V is defined by:

(Def.3) V = [: {3}, � :].

A variable is an element of V.

The non-empty set C is defined as follows:

(Def.4) C = [: {0, 1, 2}, � :].

A conective is an element of C.
One can prove the following proposition

(31) C ∩ V = ∅.
In the sequel p, q denote variables. Let T be a tree, and let v be an element

of T . Then the branch degree of v is a natural number.

Let D be a non-empty set. A non-empty set is called a non-empty set of
trees decorated by D if:

(Def.5) for every x such that x ∈ it holds x is a tree decorated by D.

Let D0 be a non-empty set, and let D be a non-empty set of trees decorated
by D0. We see that the element of D is a tree decorated by D0.

The non-empty set WFF of trees decorated by [: � , � qua a non-empty set :]
is defined by the condition (Def.6).

(Def.6) Let x be a tree decorated by [: � , � qua a non-empty set :]. Then x ∈
WFF if and only if the following conditions are satisfied:

(i) domx is finite,
(ii) for every element v of domx holds the branch degree of v ≤ 2 but if

the branch degree of v = 0, then x(v) = 〈〈0, 0〉〉 or there exists k such that
x(v) = 〈〈3, k〉〉 but if the branch degree of v = 1, then x(v) = 〈〈1, 0〉〉 or
x(v) = 〈〈1, 1〉〉 but if the branch degree of v = 2, then x(v) = 〈〈2, 0〉〉.

A MP-formula is an element of WFF.

In the sequel A, A1, B, B1, C denote MP-formulae. Let us consider A, and
let a be an element of domA. Then A � a is a MP-formula.

Let a be an element of C. The functor Arity(a) yielding a natural number is
defined by:

(Def.7) Arity(a) = a1.

Let D be a non-empty set, and let T , T1 be trees decorated by D, and let
p be a finite sequence of elements of � . Let us assume that p ∈ domT . The
functor T (p← T1) yields a tree decorated by D and is defined by:

(Def.8) T (p← T1) = T (p/T1).

The following propositions are true:

(32) (The elementary tree of 1 7−→ 〈〈1, 0〉〉)(〈0〉/A) is a MP-formula.
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(33) (The elementary tree of 1 7−→ 〈〈1, 1〉〉)(〈0〉/A) is a MP-formula.

(34) (The elementary tree of 2 7−→ 〈〈2, 0〉〉)(〈0〉/A)(〈1〉/B) is a MP-formula.

We now define three new functors. Let us consider A. The functor ¬A yields
a MP-formula and is defined as follows:

(Def.9) ¬A = ( the elementary tree of 1 7−→ 〈〈1, 0〉〉)(〈0〉/A).

The functor � A yields a MP-formula and is defined as follows:

(Def.10) � A = ( the elementary tree of 1 7−→ 〈〈1, 1〉〉)(〈0〉/A).

Let us consider B. The functor A ∧ B yielding a MP-formula is defined as
follows:

(Def.11) A ∧B = ( the elementary tree of 2 7−→ 〈〈2, 0〉〉)(〈0〉/A)(〈1〉/B).

We now define three new functors. Let us consider A. The functor � A yields
a MP-formula and is defined as follows:

(Def.12) � A = ¬ � ¬A.

Let us consider B. The functor A ∨ B yields a MP-formula and is defined as
follows:

(Def.13) A ∨B = ¬(¬A ∧ ¬B).

The functor A⇒ B yields a MP-formula and is defined by:

(Def.14) A⇒ B = ¬(A ∧ ¬B).

The following propositions are true:

(35) The elementary tree of 0 7−→ 〈〈3, n〉〉 is a MP-formula.

(36) The elementary tree of 0 7−→ 〈〈0, 0〉〉 is a MP-formula.

Let us consider p. The functor @p yields a MP-formula and is defined by:

(Def.15) @p = the elementary tree of 0 7−→ p.

We now state four propositions:

(37) If @p = @q, then p = q.

(38) If ¬A = ¬B, then A = B.

(39) If � A = � B, then A = B.

(40) If A ∧B = A1 ∧B1, then A = A1 and B = B1.

The MP-formula VERUM is defined by:

(Def.16) VERUM = the elementary tree of 0 7−→ 〈〈0, 0〉〉.
Next we state several propositions:

(41) card domA 6= 0.

(42) If card domA = 1, then A = VERUM or there exists p such that
A = @p.

(43) If card domA ≥ 2, then there exists B such that A = ¬B or A = � B
or there exist B, C such that A = B ∧ C.

(44) card domA < card dom¬A.

(45) card domA < card dom � A.

(46) card domA < card dom(A ∧B) and card domB < card dom(A ∧B).
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We now define four new attributes. A MP-formula is atomic if:

(Def.17) there exists p such that it = @p.

A MP-formula is negative if:

(Def.18) there exists A such that it = ¬A.

A MP-formula is necessitive if:

(Def.19) there exists A such that it = � A.

A MP-formula is conjunctive if:

(Def.20) there exist A, B such that it = A ∧B.

The scheme MP Ind deals with a unary predicate P, and states that:
for every element A of WFF holds P[A]

provided the parameter satisfies the following conditions:
• P[VERUM],
• for every variable p holds P[@p],
• for every element A of WFF such that P[A] holds P[¬A],
• for every element A of WFF such that P[A] holds P[ � A],
• for all elements A, B of WFF such that P[A] and P[B] holds
P[A ∧B].

The following propositions are true:

(47) For every element A of WFF holds A = VERUM or A is a MP-formula
or A is a MP-formula or A is a MP-formula or A is a MP-formula.

(48) A = VERUM or there exists p such that A = @p or there exists B such
that A = ¬B or there exists B such that A = � B or there exist B, C
such that A = B ∧ C.

(49) @p 6= ¬A and @p 6= � A and @p 6= A ∧B.

(50) ¬A 6= � B and ¬A 6= B ∧ C.

(51) � A 6= B ∧C.

(52) VERUM 6= @p and VERUM 6= ¬A and VERUM 6= � A and VERUM 6=
A ∧B.

The scheme MP Func Ex deals with a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a unary functor G yielding an
element of A, a unary functor H yielding an element of A, and a binary functor
I yielding an element of A and states that:

there exists a function f from WFF into A such that f(VERUM) = B and
for every variable p holds f(@p) = F(p) and for every element A of WFF and
for every element d of A such that f(A) = d holds f(¬A) = G(d) and for every
element A of WFF and for every element d of A such that f(A) = d holds
f( � A) = H(d) and for all elements A, B of WFF and for all elements d1, d2 of
A such that d1 = f(A) and d2 = f(B) holds f(A ∧B) = I(d1, d2)
for all values of the parameters.
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The papers [19], [9], [1], [4], [20], [2], [18], [13], [5], [8], [14], [21], [7], [15], [12],
[11], [17], [6], [10], [16], and [3] provide the terminology and notation for this
paper. For simplicity we follow the rules: M is a metric space, c, g are elements
of the carrier of M , F is a family of subsets of the carrier of M , A, B are
subsets of the carrier of M , f is a function, n, m, p, k are natural numbers,
and r, s, L are real numbers. Next we state four propositions:

(1) For every L such that 0 < L and L < 1 for all n, m such that n ≤ m
holds Lm ≤ Ln.

(2) For every L such that 0 < L and L < 1 for every k holds Lk ≤ 1 and
0 < Lk.

(3) For every L such that 0 < L and L < 1 for every s such that 0 < s
there exists n such that Ln < s.

(4) For every set X such that X is finite and X 6= ∅ and for all sets Y , Z
such that Y ∈ X and Z ∈ X holds Y ⊆ Z or Z ⊆ Y there exists a set V
such that V ∈ X and for every set Z such that Z ∈ X holds V ⊆ Z.

Let us consider M , F . Then
⋃
F is a subset of the carrier of M .

Let D be a non-empty set. Then ΩD is a subset of D. Then ∅D is a subset
of D.

Let us consider M . We say that M is totally bounded if and only if:

(Def.1) for every r such that r > 0 there exists F such that F is finite and the
carrier of M =

⋃
F and for every A such that A ∈ F there exists g such

that A = Ball(g, r).

Let us consider M . A function is called a sequence of M if:

(Def.2) dom it = � and rng it ⊆ the carrier of M .

In the sequel S1 will denote a sequence of M . The following proposition is
true
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(5) f is a sequence of M if and only if dom f = � and for every n holds
f(n) is an element of the carrier of M .

Let us consider M , S1, n. Then S1(n) is an element of the carrier of M .

Let us consider M , S1. We say that S1 is convergent if and only if:

(Def.3) there exists an element x of the carrier of M such that for every r such
that r > 0 there exists n such that for every m such that n ≤ m holds
ρ(S1(m), x) < r.

Let us consider M , S1. Let us assume that S1 is convergent. The functor
limS1 yields an element of the carrier of M and is defined by:

(Def.4) for every r such that r > 0 there exists n such that for every m such
that m ≥ n holds ρ(S1(m), limS1) < r.

The following proposition is true

(6) For every S1 such that S1 is convergent holds limS1 = g if and only if
for every r such that 0 < r there exists n such that for every m such that
n ≤ m holds ρ(S1(m), g) < r.

Let us consider M , S1. We say that S1 is a Cauchy sequence if and only if:

(Def.5) for every r such that r > 0 there exists p such that for all n, m such
that p ≤ n and p ≤ m holds ρ(S1(n), S1(m)) < r.

Let us consider M . We say that M is complete if and only if:

(Def.6) for every S1 such that S1 is a Cauchy sequence holds S1 is convergent.

We now state two propositions:

(7) For every S1 such that S1 is convergent holds S1 is a Cauchy sequence.

(8) For every S1 holds S1 is a Cauchy sequence if and only if for every r
such that r > 0 there exists p such that for all n, k such that p ≤ n holds
ρ(S1(n+ k), S1(n)) < r.

Let us consider M . A function from the carrier of M into the carrier of M
is called a contraction of M if:

(Def.7) there exists L such that 0 < L and L < 1 and for all points x, y of M
holds ρ(it(x), it(y)) ≤ L · ρ(x, y).

We now state four propositions:

(9) For every contraction f of M such that M is complete there exists c
such that f(c) = c and for every element y of the carrier of M such that
f(y) = y holds y = c.

(10) If Mtop is compact, then M is complete.

(11) For every contraction f of M such that Mtop is compact there exists an
element c of the carrier of M such that f(c) = c and for every element y
of the carrier of M such that f(y) = y holds y = c.

(12) If Mtop is compact, then M is totally bounded.

We now define two new predicates. Let us consider M . We say that M is
bounded if and only if:
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(Def.8) there exists r such that 0 < r and for all points x, y of M holds ρ(x, y) ≤
r.

Let us consider A. We say that A is bounded if and only if:

(Def.9) (i) there exists r such that 0 < r and for all points x, y of M such that
x ∈ A and y ∈ A holds ρ(x, y) ≤ r if A 6= ∅.

One can prove the following propositions:

(13) If A 6= ∅, then A is bounded if and only if there exists r such that 0 < r
and for all points x, y of M such that x ∈ A and y ∈ A holds ρ(x, y) ≤ r.

(14) ∅the carrier of M is bounded.

(15) If A 6= ∅, then A is bounded if and only if there exist r, c such that 0 < r
and c ∈ A and for every point z of M such that z ∈ A holds ρ(c, z) ≤ r.

(16) If 0 < r, then g ∈ Ball(g, r) and Ball(g, r) 6= ∅.
(17) If r ≤ 0, then Ball(g, r) = ∅.
(18) If 0 < r, then Ball(g, r) is bounded.

(19) Ball(g, r) is bounded.

(20) If A is bounded and B is bounded, then A ∪B is bounded.

(21) If A is bounded and B ⊆ A, then B is bounded.

(22) If A = {g}, then A is bounded.

(23) If A is finite, then A is bounded.

(24) If F is finite and for every A such that A ∈ F holds A is bounded, then⋃
F is bounded.

(25) M is bounded if and only if Ωthe carrier of M is bounded.

(26) If M is totally bounded, then M is bounded.

Let us consider M , A. Let us assume that A 6= ∅ and A is bounded. The
functor ∨A yields a real number and is defined as follows:

(Def.10) for all points x, y of M such that x ∈ A and y ∈ A holds ρ(x, y) ≤ ∨A
and for every s such that for all points x, y of M such that x ∈ A and
y ∈ A holds ρ(x, y) ≤ s holds ∨A ≤ s.

We now state several propositions:

(27) Suppose A 6= ∅ and A is bounded. Then ∨A = r if and only if for all
points x, y of M such that x ∈ A and y ∈ A holds ρ(x, y) ≤ r and for
every s such that for all points x, y of M such that x ∈ A and y ∈ A
holds ρ(x, y) ≤ s holds r ≤ s.

(28) If A = {g}, then ∨A = 0.

(29) If A 6= ∅ and A is bounded, then 0 ≤ ∨A.

(30) If A 6= ∅ and A is bounded, then ∨A = 0 if and only if there exists a
point g of M such that A = {g}.

(31) If 0 < r, then ∨Ball(g, r) ≤ 2 · r.
(32) If A 6= ∅ and A is bounded and B 6= ∅ and B ⊆ A, then B is bounded

and ∨B ≤ ∨A.
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(33) If A 6= ∅ and A is bounded and B 6= ∅ and B is bounded and A∩B 6= ∅,
then A ∪B is bounded and ∨(A ∪B) ≤ ∨A+ ∨B.

Let us consider M , S1. Then rngS1 is a subset of the carrier of M .

One can prove the following proposition

(34) If S1 is a Cauchy sequence, then rngS1 is bounded.
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The articles [13], [2], [14], [3], [1], [11], [7], [5], [4], [12], [10], [6], [9], and [8]
provide the notation and terminology for this paper. For simplicity we follow
the rules: x, y will be arbitrary, D will be a non-empty set, U1 will be a
universal class, and G, H will be group structures. Let us consider x. Then
{x} is a non-empty set.

The following propositions are true:

(1) For all sets X, Y , A and for all x, y such that 〈〈x, y〉〉 ∈ A and A ⊆ [:X,
Y :] holds x is an element of X and y is an element of Y .

(2) For all sets X, Y , A and for an arbitrary z such that z ∈ A and A ⊆ [:X,
Y :] there exists an element x of X and there exists an element y of Y such
that z = 〈〈x, y〉〉.

(3) For all elements u1, u2, u3, u4 of U1 holds 〈〈u1, u2, u3〉〉 is an element of
U1 and 〈〈u1, u2, u3, u4〉〉 is an element of U1.

(4) For all x, y such that x ∈ y and y ∈ U1 holds x ∈ U1.

In this article we present several logical schemes. The scheme PartLambda2
deals with a set A, a set B, a set C, a binary functor F , and a binary predicate
P, and states that:

there exists a partial function f from [:A, B :] to C such that for all x, y holds
〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B and P[x, y] and for all x, y such
that 〈〈x, y〉〉 ∈ dom f holds f(〈〈x, y〉〉) = F(x, y)
provided the following requirement is met:
• for all x, y such that x ∈ A and y ∈ B and P[x, y] holds F(x, y) ∈ C.
The scheme PartLambda2D deals with a non-empty set A, a non-empty set

B, a set C, a binary functor F , and a binary predicate P, and states that:
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there exists a partial function f from [:A, B :] to C such that for every element
x of A and for every element y of B holds 〈〈x, y〉〉 ∈ dom f if and only if P[x,
y] and for every element x of A and for every element y of B such that 〈〈x,
y〉〉 ∈ dom f holds f(〈〈x, y〉〉) = F(x, y)
provided the parameters satisfy the following condition:
• for every element x of A and for every element y of B such that
P[x, y] holds F(x, y) ∈ C.

We now define three new functors. op2 is a binary operation on {∅}.
op1 is a unary operation on {∅}.
op0 is an element of {∅}.
We now state three propositions:

(5) op2(∅, ∅) = ∅ and op1(∅) = ∅ and op0 = ∅.
(6) {∅} ∈ U1 and 〈〈{∅}, {∅}〉〉 ∈ U1 and [: {∅}, {∅} :] ∈ U1 and op2 ∈ U1 and

op1 ∈ U1.

(7) 〈{∅}, op2, op1, op0〉 is a group with the operator 1
2 .

The trivial group being a group with the operator 1
2 is defined as follows:

(Def.1) the trivial group= 〈{∅}, op2, op1, op0〉.
We now state the proposition

(8) If G = the trivial group , then for every element x of G holds x = ∅
and for all elements x, y of G holds x+ y = ∅ and for every element x of
G holds −x = ∅ and 0G = ∅.

In the sequel C denotes a category and O denotes a non-empty subset of the
objects of C. Let us consider C, O. The functor MorphsO yields a non-empty
subset of the morphisms of C and is defined by:

(Def.2) MorphsO =
⋃{hom(a, b) : a ∈ O ∧ b ∈ O}, where a ranges over objects

of C, and b ranges over objects of C.

We now define four new functors. Let us consider C, O. The functor domO
yielding a function from MorphsO into O is defined by:

(Def.3) domO = (the dom-map of C) � MorphsO.

The functor codO yields a function from MorphsO into O and is defined by:

(Def.4) codO = (the cod-map of C) � MorphsO.

The functor compO yielding a partial function from [: MorphsO, MorphsO qua a
non-empty set :] to MorphsO is defined as follows:

(Def.5) compO = (the composition of C) � [: MorphsO, MorphsO :].

The functor IO yielding a function from O into MorphsO is defined by:

(Def.6) IO = (the id-map of C) � O.

Next we state the proposition

(9) 〈O,MorphsO,domO, codO, compO, IO〉 is full subcategory of C.

Let us consider C, O. The functor catO yielding a subcategory of C is
defined as follows:

(Def.7) catO = 〈O,MorphsO,domO, codO, compO, IO〉.
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Next we state the proposition

(10) The objects of catO = O.

Let us consider G, H. A map from G into H is a function from the carrier
of G into the carrier of H.

Let G1, G2, G3 be group structures, and let f be a map from G1 into G2,
and let g be a map from G2 into G3. Then g · f is a map from G1 into G3.

Let us consider G. The functor idG yields a map from G into G and is defined
by:

(Def.8) idG = id(the carrier of G).

One can prove the following two propositions:

(11) For every element x of G holds idG(x) = x.

(12) For every map f from G into H holds f · idG = f and idH ·f = f .

Let us consider G, H. The functor zero(G,H) yielding a map from G into
H is defined by:

(Def.9) zero(G,H) = (the carrier of G) 7−→ 0H .

Let us consider G, H, and let f be a map from G into H. We say that f is
additive if and only if:

(Def.10) for all elements x, y of G holds f(x+ y) = f(x) + f(y).

One can prove the following propositions:

(13) For all G1, G2, G3 being group structures and for every map f from G1

into G2 and for every map g from G2 into G3 and for every element x of
G1 holds (g · f)(x) = g(f(x)).

(14) For all G1, G2, G3 being group structures and for every map f from G1

into G2 and for every map g from G2 into G3 such that f is additive and
g is additive holds g · f is additive.

(15) For every element x of G holds (zero(G,H))(x) = 0H .

(16) For every group H holds zero(G,H) is additive.

In the sequel G, H are groups. We consider group morphism structures
which are systems
〈a dom-map, a cod-map, a Fun〉,

where the dom-map, the cod-map are a group and the Fun is a map from the
dom-map into the cod-map.

We now define two new functors. Let f be a group morphism structure. The
functor dom f yielding a group is defined as follows:

(Def.11) dom f = the dom-map of f .

The functor cod f yields a group and is defined by:

(Def.12) cod f = the cod-map of f .

Let f be a group morphism structure. The functor fun f yields a map from
dom f into cod f and is defined by:

(Def.13) fun f = the Fun of f .
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Next we state the proposition

(17) For every f being a group morphism structure and for all groups G1,
G2 and for every map f0 from G1 into G2 such that f = 〈G1, G2, f0〉 holds
dom f = G1 and cod f = G2 and funf = f0.

Let us consider G, H. The functor ZEROG yielding a group morphism
structure is defined as follows:

(Def.14) ZEROG = 〈G,H, zero(G,H)〉.
A group morphism structure is said to be a morphism of groups if:

(Def.15) fun it is additive.

One can prove the following proposition

(18) For every morphism F of groups holds the Fun of F is additive.

Let us consider G, H. Then ZEROG is a morphism of groups.

Let us consider G, H. A morphism of groups is said to be a morphism from
G to H if:

(Def.16) dom it = G and cod it = H.

We now state three propositions:

(19) For every f being a group morphism structure such that dom f = G
and cod f = H and fun f is additive holds f is a morphism from G to H.

(20) For every map f from G into H such that f is additive holds 〈G,H, f〉
is a morphism from G to H.

(21) idG is additive.

Let us consider G. The functor IG yields a morphism from G to G and is
defined by:

(Def.17) IG = 〈G,G, idG〉.
Let us consider G, H. Then ZEROG is a morphism from G to H.

We now state several propositions:

(22) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉 and f is additive.

(23) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉.

(24) For every morphism F of groups there exist G, H such that F is a
morphism from G to H.

(25) For every morphism F of groups there exist groups G, H and there
exists a map f from G into H such that F is a morphism from G to H
and F = 〈G,H, f〉 and f is additive.

(26) For all morphisms g, f of groups such that dom g = cod f there exist
groups G1, G2, G3 such that g is a morphism from G2 to G3 and f is a
morphism from G1 to G2.

(27) For every morphism F of groups holds F is a morphism from domF to
codF .
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Let G, F be morphisms of groups. Let us assume that domG = codF . The
functor G · F yielding a morphism of groups is defined by:

(Def.18) for all groups G1, G2, G3 and for every map g from G2 into G3 and for
every map f from G1 into G2 such that G = 〈G2, G3, g〉 and F = 〈G1,
G2, f〉 holds G · F = 〈G1, G3, g · f〉.

Next we state the proposition

(28) For all groups G1, G2, G3 and for every morphism G from G2 to G3

and for every morphism F from G1 to G2 holds G ·F is a morphism from
G1 to G3.

Let G1, G2, G3 be groups, and let G be a morphism from G2 to G3, and let
F be a morphism from G1 to G2. Then G · F is a morphism from G1 to G3.

The following propositions are true:

(29) For all groups G1, G2, G3 and for every morphism G from G2 to G3

and for every morphism F from G1 to G2 and for every map g from G2

into G3 and for every map f from G1 into G2 such that G = 〈G2, G3, g〉
and F = 〈G1, G2, f〉 holds G · F = 〈G1, G3, g · f〉.

(30) For all morphisms f , g of groups such that dom g = cod f there exist
groups G1, G2, G3 and there exists a map f0 from G1 into G2 and there
exists a map g0 from G2 into G3 such that f = 〈G1, G2, f0〉 and g = 〈G2,
G3, g0〉 and g · f = 〈G1, G3, g0 · f0〉.

(31) For all morphisms f , g of groups such that dom g = cod f holds dom(g ·
f) = dom f and cod(g · f) = cod g.

(32) For all groups G1, G2, G3, G4 and for every morphism f from G1 to
G2 and for every morphism g from G2 to G3 and for every morphism h
from G3 to G4 holds h · (g · f) = h · g · f .

(33) For all morphisms f , g, h of groups such that domh = cod g and
dom g = cod f holds h · (g · f) = h · g · f .

(34) dom(IG) = G and cod(IG) = G and for every morphism f of groups
such that cod f = G holds IG · f = f and for every morphism g of groups
such that dom g = G holds g · IG = g.

A non-empty set is called a non-empty set of groups if:

(Def.19) for every element x of it holds x is a group.

In the sequel V will be a non-empty set of groups. Let us consider V . We
see that the element of V is a group.

We now state two propositions:

(35) For every morphism f of groups and for every element x of {f} holds
x is a morphism of groups.

(36) For every morphism f from G to H and for every element x of {f}
holds x is a morphism from G to H.

A non-empty set is called a non-empty set of morphisms of groups if:

(Def.20) for every element x of it holds x is a morphism of groups.
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Let M be a non-empty set of morphisms of groups. We see that the element
of M is a morphism of groups.

We now state the proposition

(37) For every morphism f of groups holds {f} is a non-empty set of mor-
phisms of groups.

Let us consider G, H. A non-empty set of morphisms of groups is called a
non-empty set of morphisms from G into H if:

(Def.21) for every element x of it holds x is a morphism from G to H.

The following two propositions are true:

(38) D is a non-empty set of morphisms from G into H if and only if for
every element x of D holds x is a morphism from G to H.

(39) For every morphism f from G to H holds {f} is a non-empty set of
morphisms from G into H.

Let us consider G, H. The functor Morphs(G,H) yields a non-empty set of
morphisms from G into H and is defined by:

(Def.22) x ∈ Morphs(G,H) if and only if x is a morphism from G to H.

Let us consider G, H, and let M be a non-empty set of morphisms from G
into H. We see that the element of M is a morphism from G to H.

Let us consider x, y. The predicate Pob x, y is defined by:

(Def.23) there exist arbitrary x1, x2, x3, x4 such that x = 〈〈x1, x2, x3, x4〉〉 and
there exists G such that y = G and x1 = the carrier of G and x2 = the
addition of G and x3 = the reverse-map of G and x4 = the zero of G.

One can prove the following two propositions:

(40) For arbitrary x, y1, y2 such that Pob x, y1 and Pob x, y2 holds y1 = y2.

(41) There exists x such that x ∈ U1 and Pob x,the trivial group .

Let us consider U1. The functor GroupObj(U1) yields a non-empty set and
is defined as follows:

(Def.24) for every y holds y ∈ GroupObj(U1) if and only if there exists x such
that x ∈ U1 and Pob x, y.

The following propositions are true:

(42) The trivial group∈ GroupObj(U1).

(43) For every element x of GroupObj(U1) holds x is a group.

Let us consider U1. Then GroupObj(U1) is a non-empty set of groups.

Let us consider V . The functor MorphsV yielding a non-empty set of mor-
phisms of groups is defined by:

(Def.25) for every x holds x ∈ MorphsV if and only if there exist elements G,
H of V such that x is a morphism from G to H.

Let us consider V , and let F be an element of MorphsV . Then domF is an
element of V . Then codF is an element of V .
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Let us consider V , and let G be an element of V . The functor IG yields an
element of MorphsV and is defined by:

(Def.26) IG = IG.

We now define three new functors. Let us consider V . The functor domV
yields a function from MorphsV into V and is defined as follows:

(Def.27) for every element f of MorphsV holds (domV )(f) = dom f .

The functor codV yields a function from MorphsV into V and is defined as
follows:

(Def.28) for every element f of MorphsV holds (codV )(f) = cod f .

The functor IV yielding a function from V into MorphsV is defined as follows:

(Def.29) for every element G of V holds IV (G) = IG.

One can prove the following two propositions:

(44) For all elements g, f of MorphsV such that dom g = cod f there exist
elements G1, G2, G3 of V such that g is a morphism from G2 to G3 and
f is a morphism from G1 to G2.

(45) For all elements g, f of MorphsV such that dom g = cod f holds g · f ∈
MorphsV .

Let us consider V . The functor compV yields a partial function from
[: MorphsV, MorphsV :] to MorphsV and is defined by:

(Def.30) for all elements g, f of MorphsV holds 〈〈g, f〉〉 ∈ dom compV if and
only if dom g = cod f and for all elements g, f of MorphsV such that 〈〈g,
f〉〉 ∈ dom compV holds (comp V )(〈〈g, f〉〉) = g · f .

Let us consider U1. The functor GroupCat(U1) yielding a category structure
is defined by:

(Def.31) GroupCat(U1) = 〈GroupObj(U1),Morphs GroupObj(U1),
dom GroupObj(U1), cod GroupObj(U1), comp GroupObj(U1), IGroupObj(U1)〉.

Next we state several propositions:

(46) For all morphisms f , g of GroupCat(U1) holds 〈〈g, f〉〉 ∈ dom (the com-
position of GroupCat(U1)) if and only if dom g = cod f .

(47) For every morphism f of GroupCat(U1) and for every element f ′ of
Morphs GroupObj(U1)
and for every object b of GroupCat(U1) and for every element b′ of
GroupObj(U1) holds f is an element of Morphs GroupObj(U1) and f ′

is a morphism of GroupCat(U1) and b is an element of GroupObj(U1)
and b′ is an object of GroupCat(U1).

(48) For every object b of GroupCat(U1) and for every element b′

of GroupObj(U1) such that b = b′ holds
idb = Ib′ .

(49) For every morphism f of GroupCat(U1) and for every element f ′ of
Morphs GroupObj(U1) such that f = f ′ holds dom f = dom f ′ and
cod f = cod f ′.
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(50) Let f , g be morphisms of GroupCat(U1). Let f ′, g′ be elements of
Morphs GroupObj(U1). Suppose f = f ′ and g = g′. Then

(i) dom g = cod f if and only if dom g′ = cod f ′,
(ii) dom g = cod f if and only if 〈〈g′, f ′〉〉 ∈ dom comp GroupObj(U1),
(iii) if dom g = cod f , then g · f = g′ · f ′,
(iv) dom f = dom g if and only if dom f ′ = dom g′,
(v) cod f = cod g if and only if cod f ′ = cod g′.
Let us consider U1. Then GroupCat(U1) is a category.

Let us consider U1. The functor AbGroupObj(U1) yielding a non-empty
subset of the objects of GroupCat(U1) is defined as follows:

(Def.32) AbGroupObj(U1) = {G :
∨
H G = H}, where G ranges over elements of

the objects of GroupCat(U1), and H ranges over Abelian groups.

One can prove the following proposition

(51) The trivial group∈ AbGroupObj(U1).

Let us consider U1. The functor AbGroupCat(U1) yielding a subcategory of
GroupCat(U1) is defined as follows:

(Def.33) AbGroupCat(U1) = cat AbGroupObj(U1).

We now state the proposition

(52) The objects of AbGroupCat(U1) = AbGroupObj(U1).

Let us consider U1. The functor 1
2 GroupObj(U1) yields a non-empty subset

of the objects of AbGroupCat(U1) and is defined as follows:

(Def.34) 1
2 GroupObj(U1) = {G :

∨
H G = H}, where G ranges over elements

of the objects of AbGroupCat(U1), and H ranges over groups with the
operator 1

2 .

Let us consider U1. The functor 1
2 GroupCat(U1) yields a subcategory of

AbGroupCat(U1) and is defined by:

(Def.35) 1
2 GroupCat(U1) = cat 1

2 GroupObj(U1).

Next we state two propositions:

(53) The objects of 1
2 GroupCat(U1) = 1

2 GroupObj(U1).

(54) The trivial group∈ 1
2 GroupObj(U1).
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The articles [10], [8], [4], [5], [1], [6], [3], [9], [11], [2], [14], [16], [12], [15], and [13]
provide the terminology and notation for this paper. The following proposition
is true

(1) For all non-empty sets A, B and for every function f from A into B
holds f is one-to-one if and only if for all elements a, b of A such that
f(a) = f(b) holds a = b.

Let G be a group, and let A be a subgroup of G. We see that the subgroup
of A is a subgroup of G.

Let G be a group, and let A be a subgroup of G. We see that the normal
subgroup of A is a subgroup of A.

Let G be a group. Then {1}G is a normal subgroup of G. Then ΩG is a
normal subgroup of G.

For simplicity we adopt the following rules: n is a natural number, i is an
integer, G, H, I are groups, A, B are subgroups of G, N , M are normal
subgroups of G, a, a1, a2, a3, b are elements of G, c is an element of H, f is a
function from the carrier of G into the carrier of H, x is arbitrary, and A1, A2

are subsets of G. One can prove the following propositions:

(2) For every subgroup X of A and for every element x of A such that x = a
holds x ·X = a ·X qua a subgroup of G and X · x = (X qua a subgroup
of G) · a.

(3) For all subgroups X, Y of A holds (X qua a subgroup of G) ∩ Y qua a
subgroup of G = X ∩ Y .
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(4) a · b · a−1 = ba
−1

and a · (b · a−1) = ba
−1

.

(5) If b ∈ N , then ba ∈ N .

(6) a · A · A = a · A and a · (A · A) = a · A and A · A · a = A · a and
A · (A · a) = A · a.

(7) If A1 = {[a, b]}, then Gc = gr(A1).

(8) Gc is a subgroup of B if and only if for all a, b holds [a, b] ∈ B.

(9) If N is a subgroup of B, then N is a normal subgroup of B.

Let us consider G, B, M . Let us assume that M is a subgroup of B. The
functor (M)B yielding a normal subgroup of B is defined as follows:

(Def.1) (M)B = M .

One can prove the following proposition

(10) B ∩N is a normal subgroup of B and N ∩ B is a normal subgroup of
B.

Let us consider G, B, N . Then B ∩N is a normal subgroup of B.

Let us consider G, N , B. Then N ∩B is a normal subgroup of B.

A group is trivial if:

(Def.2) there exists x such that the carrier of it = {x}.
One can prove the following propositions:

(11) {1}G is trivial.

(12) G is trivial if and only if ord(G) = 1 and G is finite.

(13) If G is trivial, then {1}G = G.

Let us consider G, N . The functor CosetsN yielding a non-empty set is
defined by:

(Def.3) CosetsN = the left cosets of N .

In the sequel W1, W2 denote elements of CosetsN . One can prove the fol-
lowing propositions:

(14) CosetsN = the left cosets of N and CosetsN = the right cosets of N .

(15) If x ∈ CosetsN , then there exists a such that x = a ·N and x = N · a.

(16) a ·N ∈ CosetsN and N · a ∈ CosetsN .

(17) If x ∈ CosetsN , then x is a subset of G.

(18) If A1 ∈ CosetsN and A2 ∈ CosetsN , then A1 ·A2 ∈ CosetsN .

Let us consider G, N . The functor CosOpN yields a binary operation on
CosetsN and is defined by:

(Def.4) for all W1, W2, A1, A2 such that W1 = A1 and W2 = A2 holds
(CosOpN)(W1, W2) = A1 · A2.

In the sequel O is a binary operation on CosetsN . One can prove the fol-
lowing two propositions:

(19) If for all W1, W2, A1, A2 such that W1 = A1 and W2 = A2 holds O(W1,
W2) = A1 · A2, then O = CosOpN .
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(20) For all W1, W2, A1, A2 such that W1 = A1 and W2 = A2 holds
(CosOpN)(W1, W2) = A1 ·A2.

Let us consider G, N . The functor G/N yields a half group structure and is
defined as follows:

(Def.5) G/N = 〈CosetsN,CosOpN〉.
One can prove the following propositions:

(21) G/N = 〈CosetsN,CosOpN〉.
(22) The carrier of G/N = CosetsN .

(23) The operation of G/N = CosOpN .

In the sequel S, T1, T2 denote elements of G/N . Let us consider G, N , S.
The functor @S yields a subset of G and is defined by:

(Def.6) @S = S.

One can prove the following two propositions:

(24) (@T1) · (@T2) = T1 · T2.

(25) @T1 · T2 = (@T1) · (@T2).

Let us consider G, N . Then G/N is a group.

In the sequel S will denote an element of G/N . The following propositions
are true:

(26) There exists a such that S = a ·N and S = N · a.

(27) N · a is an element of G/N and a ·N is an element of G/N and N is an
element of G/N .

(28) x ∈ G/N if and only if there exists a such that x = a ·N and x = N · a.

(29) 1G/N = N .

(30) If S = a ·N , then S−1 = a−1 ·N .

(31) If the left cosets of N is finite, then G/N is finite.

(32) Ord(G/N ) = |• : N |.
(33) If the left cosets of N is finite, then ord(G/N ) = |• : N | � .

(34) If M is a subgroup of B, then B/(M)B is a subgroup of G/M .

(35) If M is a subgroup of N , then N/(M)N is a normal subgroup of G/M .

(36) G/N is an Abelian group if and only if Gc is a subgroup of N .

Let us consider G, H. A function from the carrier of G into the carrier of H
is called a homomorphism from G to H if:

(Def.7) it(a · b) = it(a) · it(b).
One can prove the following proposition

(37) If for all a, b holds f(a · b) = f(a) · f(b), then f is a homomorphism
from G to H.

In the sequel g, h will be homomorphisms from G to H, g1 will be a homo-
morphism from H to G, and h1 will be a homomorphism from H to I. One can
prove the following propositions:
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(38) dom g = the carrier of G and rng g ⊆ the carrier of H.

(39) g(a · b) = g(a) · g(b).
(40) g(1G) = 1H .

(41) g(a−1) = g(a)−1.

(42) g(ab) = g(a)g(b).

(43) g([a, b]) = [g(a), g(b)].

(44) g([a1, a2, a3]) = [g(a1), g(a2), g(a3)].

(45) g(an) = g(a)n.

(46) g(ai) = g(a)i.

(47) id(the carrier of G) is a homomorphism from G to G.

(48) h1 · h is a homomorphism from G to I.

Let us consider G, H, I, h, h1. Then h1 · h is a homomorphism from G to I.

Let us consider G, H, g. Then rng g is a subset of H.

Let us consider G, H. The functor G→ {1}H yields a homomorphism from
G to H and is defined by:

(Def.8) for every a holds (G→ {1}H )(a) = 1H .

The following proposition is true

(49) h1 · (G→ {1}H ) = G→ {1}I and (H → {1}I) · h = G→ {1}I .
Let us consider G, N . The canonical homomorphism onto cosets of N yield-

ing a homomorphism from G to G/N is defined as follows:

(Def.9) for every a holds (the canonical homomorphism onto cosets of N)(a) =
a ·N .

Let us consider G, H, g. The functor Ker g yields a normal subgroup of G
and is defined by:

(Def.10) the carrier of Ker g = {a : g(a) = 1H}.
The following three propositions are true:

(50) a ∈ Kerh if and only if h(a) = 1H .

(51) Ker(G→ {1}H) = G.

(52) Ker(the canonical homomorphism onto cosets of N) = N .

Let us consider G, H, g. The functor Im g yields a subgroup of H and is
defined as follows:

(Def.11) the carrier of Im g = g◦ (the carrier of G).

Next we state a number of propositions:

(53) rng g = the carrier of Im g.

(54) x ∈ Im g if and only if there exists a such that x = g(a).

(55) Im g = gr(rng g).

(56) Im(G→ {1}H ) = {1}H .

(57) Im(the canonical homomorphism onto cosets of N) = G/N .

(58) h is a homomorphism from G to Imh.
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(59) If G is finite, then Im g is finite.

(60) If G is an Abelian group, then Im g is an Abelian group.

(61) Ord(Im g) ≤ Ord(G).

(62) If G is finite, then ord(Im g) ≤ ord(G).

We now define two new predicates. Let us consider G, H, h. We say that h
is a monomorphism if and only if:

(Def.12) h is one-to-one.

We say that h is an epimorphism if and only if:

(Def.13) rng h = the carrier of H.

We now state several propositions:

(63) If h is a monomorphism and c ∈ Imh, then h(h−1(c)) = c.

(64) If h is a monomorphism, then h−1(h(a)) = a.

(65) If h is a monomorphism, then h−1 is a homomorphism from Imh to G.

(66) h is a monomorphism if and only if Kerh = {1}G.

(67) h is an epimorphism if and only if Imh = H.

(68) If h is an epimorphism, then for every c there exists a such that h(a) = c.

(69) The canonical homomorphism onto cosets of N is an epimorphism.

Let us consider G, H, h. We say that h is an isomorphism if and only if:

(Def.14) h is an epimorphism and h is a monomorphism.

One can prove the following propositions:

(70) h is an isomorphism if and only if rng h = the carrier of H and h is
one-to-one.

(71) If h is an isomorphism, then domh = the carrier of G and rng h = the
carrier of H.

(72) If h is an isomorphism, then h−1 is a homomorphism from H to G.

(73) If h is an isomorphism and g1 = h−1, then g1 is an isomorphism.

(74) If h is an isomorphism and h1 is an isomorphism, then h1 · h is an
isomorphism.

(75) The canonical homomorphism onto cosets of {1}G is an isomorphism.

Let us consider G, H. We say that G and H are isomorphic if and only if:

(Def.15) there exists h such that h is an isomorphism.

We now state a number of propositions:

(76) G and G are isomorphic.

(77) If G and H are isomorphic, then H and G are isomorphic.

(78) If G and H are isomorphic and H and I are isomorphic, then G and I
are isomorphic.

(79) If h is a monomorphism, then G and Imh are isomorphic.

(80) If G is trivial and H is trivial, then G and H are isomorphic.

(81) {1}G and {1}H are isomorphic.
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(82) G and G/{1}G are isomorphic and G/{1}G and G are isomorphic.

(83) G/ΩG is trivial.

(84) If G and H are isomorphic, then Ord(G) = Ord(H).

(85) If G and H are isomorphic but G is finite or H is finite, then G is finite
and H is finite.

(86) If G and H are isomorphic but G is finite or H is finite, then ord(G) =
ord(H).

(87) If G and H are isomorphic but G is trivial or H is trivial, then G is
trivial and H is trivial.

(88) If G and H are isomorphic but G is an Abelian group or H is an Abelian
group, then G is an Abelian group and H is an Abelian group.

(89) G/Ker g and Im g are isomorphic and Im g and G/Ker g are isomorphic.

(90) There exists a homomorphism h from G/Ker g to Im g such that h is
an isomorphism and g = h· the canonical homomorphism onto cosets of
Ker g.

(91) For every normal subgroup J of G/M such that J = N/(M)N and M is

a subgroup of N holds (G/M )/J and G/N are isomorphic.

(92) (BtN)/(N)BtN and B/(B∩N) are isomorphic.
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Summary. We define the trivial left module, morphism of left
modules and the field Z3. We proof some elementary facts.

MML Identifier: MOD 2.

The terminology and notation used in this paper are introduced in the following
articles: [14], [13], [4], [5], [6], [2], [3], [1], [7], [9], [11], [12], [10], and [8]. For
simplicity we adopt the following convention: x, y, z are arbitrary, D is a non-
empty set, R, R1, R2, R3 are associative rings, G is a left module structure
over R, H is a left module structure over R, S is a left module structure over
R, G1 is a left module structure over R1, G2 is a left module structure over
R2, G3 is a left module structure over R3, and U1 is a universal class. Let us
consider x. Then {x} is a non-empty set.

Let us consider R. lop(R) is a function from [: the carrier of R, the carrier
of the trivial group :] into the carrier of the trivial group.

Let us consider R. The functor RΘ yields a left module over R and is defined
by:

(Def.1) RΘ = 〈the trivial group, lop(R)〉.
Next we state the proposition

(1) For every vector x of RΘ holds x = Θ
RΘ.

Let us consider R1, R2, G1, G2. A map from G1 into G2 is a map from the
carrier of G1 into the carrier of G2.

Let us consider R1, R2, R3, G1, G2, G3, and let f be a map from G1 into
G2, and let g be a map from G2 into G3. Then g · f is a map from G1 into G3.

Let us consider R, G. The functor idG yielding a map from G into G is
defined as follows:

(Def.2) idG = id(the carrier of G).
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The following propositions are true:

(2) For every vector x of G holds idG(x) = x.

(3) For every map f from G1 into G2 holds f · idG1 = f and idG2 ·f = f .

Let us consider R1, R2, G1, G2. The functor zero(G1, G2) yields a map from
G1 into G2 and is defined as follows:

(Def.3) zero(G1, G2) = zero( the carrier of G1, the carrier of G2).

Let us consider R, and let G, H be left module structures over R, and let f
be a map from G into H. We say that f is linear if and only if:

(Def.4) for all vectors x, y of G holds f(x + y) = f(x) + f(y) and for every
scalar a of R and for every vector x of G holds f(a · x) = a · f(x).

The following propositions are true:

(4) For every map f from G into H such that f is linear holds f is additive.

(5) For every map f from G1 into G2 and for every map g from G2 into G3

and for every vector x of G1 holds (g · f)(x) = g(f(x)).

(6) For every map f from G into H and for every map g from H into S
such that f is linear and g is linear holds g · f is linear.

For simplicity we adopt the following rules: R, R1, R2 denote associative
rings, G denotes a left module over R, H denotes a left module over R, G1

denotes a left module over R1, and G2 denotes a left module over R2. The
following propositions are true:

(7) For every vector x of G1 holds (zero(G1, G2))(x) = ΘG2 .

(8) zero(G,H) is linear.

In the sequel G1 will denote a left module over R, G2 will denote a left
module over R, and G3 will denote a left module over R. Let us consider R.
We consider left module morphism structures over R which are systems
〈a dom-map, a cod-map, a Fun〉,

where the dom-map, the cod-map are a left module over R and the Fun is a map
from the dom-map into the cod-map.

In the sequel f will be a left module morphism structure over R. We now
define two new functors. Let us consider R, f . The functor dom f yields a left
module over R and is defined as follows:

(Def.5) dom f = the dom-map of f .

The functor cod f yields a left module over R and is defined as follows:

(Def.6) cod f = the cod-map of f .

Let us consider R, f . The functor fun f yields a map from dom f into cod f
and is defined by:

(Def.7) fun f = the Fun of f .

One can prove the following proposition

(9) For every map f0 from G1 into G2 such that f = 〈G1, G2, f0〉 holds
dom f = G1 and cod f = G2 and funf = f0.
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Let us consider R, G, H. The functor ZEROG yielding a left module mor-
phism structure over R is defined as follows:

(Def.8) ZEROG = 〈G,H, zero(G,H)〉.
Let us consider R. A left module morphism structure over R is said to be a

left module morphism of R if:

(Def.9) fun it is linear.

One can prove the following proposition

(10) For every left module morphism F of R holds the Fun of F is linear.

Let us consider R, G, H. Then ZEROG is a left module morphism of R.

Let us consider R, G, H. A left module morphism of R is said to be a
morphism from G to H if:

(Def.10) dom it = G and cod it = H.

One can prove the following three propositions:

(11) If dom f = G and cod f = H and fun f is linear, then f is a morphism
from G to H.

(12) For every map f from G into H such that f is linear holds 〈G,H, f〉 is
a morphism from G to H.

(13) idG is linear.

Let us consider R, G. The functor IG yields a morphism from G to G and is
defined by:

(Def.11) IG = 〈G,G, idG〉.
Let us consider R, G, H. Then ZEROG is a morphism from G to H.

The following propositions are true:

(14) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉 and f is linear.

(15) For every morphism F from G to H there exists a map f from G into
H such that F = 〈G,H, f〉.

(16) For every left module morphism F of R there exist G, H such that F
is a morphism from G to H.

(17) For every left module morphism F of R there exist left modules G, H
over R and there exists a map f from G into H such that F is a morphism
from G to H and F = 〈G,H, f〉 and f is linear.

(18) For all left module morphisms g, f of R such that dom g = cod f there
exist G1, G2, G3 such that g is a morphism from G2 to G3 and f is a
morphism from G1 to G2.

(19) For every left module morphism F of R holds F is a morphism from
domF to codF .

Let us consider R, and let G, F be left module morphisms of R. Let us
assume that domG = codF . The functor G · F yields a left module morphism
of R and is defined as follows:
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(Def.12) for all left modules G1, G2, G3 over R and for every map g from G2

into G3 and for every map f from G1 into G2 such that G = 〈G2, G3, g〉
and F = 〈G1, G2, f〉 holds G · F = 〈G1, G3, g · f〉.

Next we state the proposition

(20) For every morphism G from G2 to G3 and for every morphism F from
G1 to G2 holds G · F is a morphism from G1 to G3.

Let us consider R, G1, G2, G3, and let G be a morphism from G2 to G3, and
let F be a morphism from G1 to G2. The functor F [G] yielding a morphism
from G1 to G3 is defined by:

(Def.13) F [G] = G · F .

We now state several propositions:

(21) Let G be a morphism from G2 to G3. Then for every morphism F
from G1 to G2 and for every map g from G2 into G3 and for every map
f from G1 into G2 such that G = 〈G2, G3, g〉 and F = 〈G1, G2, f〉 holds
F [G] = 〈G1, G3, g · f〉 and G · F = 〈G1, G3, g · f〉.

(22) Let f , g be left module morphisms of R. Then if dom g = cod f , then
there exist left modules G1, G2, G3 over R and there exists a map f0 from
G1 into G2 and there exists a map g0 from G2 into G3 such that f = 〈G1,
G2, f0〉 and g = 〈G2, G3, g0〉 and g · f = 〈G1, G3, g0 · f0〉.

(23) For all left module morphisms f , g of R such that dom g = cod f holds
dom(g · f) = dom f and cod(g · f) = cod g.

(24) For all left modules G1, G2, G3, G4 over R and for every morphism f
from G1 to G2 and for every morphism g from G2 to G3 and for every
morphism h from G3 to G4 holds h · (g · f) = h · g · f .

(25) For all left module morphisms f , g, h of R such that domh = cod g and
dom g = cod f holds h · (g · f) = h · g · f .

(26) dom(IG) = G and cod(IG) = G and for every left module morphism
f of R such that cod f = G holds IG · f = f and for every left module
morphism g of R such that dom g = G holds g · IG = g.

(27) {x, y, z} is a non-empty set.

Let us consider x, y, z. Then {x, y, z} is a non-empty set.

We now state four propositions:

(28) For all elements u, v, w of U1 holds {u, v, w} is an element of U1.

(29) For every element u of U1 holds succ u is an element of U1.

(30) 0 is an element of U1 and 1 is an element of U1 and 2 is an element of
U1.

(31) 0 6= 1 and 0 6= 2 and 1 6= 2.

In the sequel a, b will be elements of {0,1,2}. We now define three new
functors. Let us consider a. The functor −a yields an element of {0,1,2} and
is defined as follows:
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(Def.14) (i) −a = 0 if a = 0,
(ii) −a = 2 if a = 1,

(iii) −a = 1 if a = 2.

Let us consider b. The functor a+ b yields an element of {0,1,2} and is defined
by:

(Def.15) (i) a+ b = b if a = 0,
(ii) a+ b = a if b = 0,

(iii) a+ b = 2 if a = 1 and b = 1,
(iv) a+ b = 0 if a = 1 and b = 2,
(v) a+ b = 0 if a = 2 and b = 1,
(vi) a+ b = 1 if a = 2 and b = 2.

The functor a · b yielding an element of {0,1,2} is defined by:

(Def.16) (i) a · b = 0 if b = 0,
(ii) a · b = 0 if a = 0,

(iii) a · b = a if b = 1,
(iv) a · b = b if a = 1,
(v) a · b = 1 if a = 2 and b = 2.

We now define five new functors. The binary operation add3 on {0,1,2} is
defined by:

(Def.17) add3(a, b) = a+ b.

The binary operation mult3 on {0,1,2} is defined by:

(Def.18) mult3(a, b) = a · b.
The unary operation compl3 on {0,1,2} is defined as follows:

(Def.19) compl3(a) = −a.

The element unit3 of {0,1,2} is defined as follows:

(Def.20) unit3 = 1.

The element zero3 of {0,1,2} is defined as follows:

(Def.21) zero3 = 0.

The field structure Z3 is defined by:

(Def.22) Z3 = 〈{0,1,2},mult3, add3, compl3,unit3, zero3〉.
Next we state several propositions:

(32) 0Z3 = 0 and 1Z3 = 1 and 0Z3 is an element of {0,1,2} and 1Z3 is an
element of {0,1,2} and the addition of Z3 = add3 and the multiplication
of Z3 = mult3 and the reverse-map of Z3 = compl3.

(33) For all scalars x, y of Z3 and for all elements X, Y of {0,1,2} such that
X = x and Y = y holds x+ y = X + Y and x · y = X · Y and −x = −X.

(34) Let x, y, z be scalars of Z3. Let X, Y , Z be elements of {0,1,2}.
Suppose X = x and Y = y and Z = z. Then x+ y+ z = X + Y +Z and
x+(y+z) = X+(Y +Z) and x ·y ·z = X ·Y ·Z and x ·(y ·z) = X ·(Y ·Z).
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(35) Let x, y, z, a, b be elements of {0,1,2}. Suppose a = 0 and b = 1.
Then

(i) x+ y = y + x,
(ii) x+ y + z = x+ (y + z),
(iii) x+ a = x,
(iv) x+−x = a,
(v) x · y = y · x,
(vi) x · y · z = x · (y · z),

(vii) x · b = x,
(viii) if x 6= a, then there exists an element y of {0,1,2} such that x · y = b,

(ix) a 6= b,
(x) x · (y + z) = x · y + x · z.

(36) Let F be a field structure. Suppose that
(i) for all scalars x, y, z of F holds x+y = y+x and x+y+z = x+(y+z)

and x+ 0F = x and x+−x = 0F and x · y = y · x and x · y · z = x · (y · z)
and x · 1F = x but if x 6= 0F , then there exists a scalar y of F such that
x · y = 1F and 0F 6= 1F and x · (y + z) = x · y + x · z.
Then F is a field.

(37) Z3 is a Fano field.

Let us note that it makes sense to consider the following constant. Then Z3

is a Fano field.

In the sequel D′ is a non-empty set. One can prove the following propositions:

(38) For every function f from D into D ′ such that D ∈ U1 and D′ ∈ U1

holds f ∈ U1.

(39) For every G being a field structure such that the carrier of G ∈ U1

holds the addition of G is an element of U1 and the reverse-map of G is an
element of U1 and the zero of G is an element of U1 and the multiplication
of G is an element of U1 and the unity of G is an element of U1.

(40) The carrier of Z3 ∈ U1 and the addition of Z3 is an element of U1 and
the reverse-map of Z3 is an element of U1 and the zero of Z3 is an element
of U1 and the multiplication of Z3 is an element of U1 and the unity of Z3

is an element of U1.
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[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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Summary. We define free modules and prove that every left mod-
ule over Skew-Field is free.

MML Identifier: MOD 3.

The papers [20], [5], [3], [2], [4], [19], [16], [14], [15], [1], [18], [6], [7], [8], [12],
[11], [9], [10], [13], and [17] provide the terminology and notation for this paper.
One can prove the following propositions:

(1) For every ring R and for every scalar a of R such that −a = 0R holds
a = 0R.

(2) For every integral domain R holds 0R 6= −1R.

For simplicity we follow the rules: x is arbitrary, R is an associative ring, V
is a left module over R, L, L1, L2 are linear combinations of V , a is a scalar of
R, v, w are vectors of V , F is a finite sequence of elements of the carrier of the
carrier of V , and C is a finite subset of V . We now state several propositions:

(3) If −v = w, then v = −w.

(4)
∑

(0LCV ) = ΘV .

(5) L1 + L2 = L2 + L1.

(6) If supportL ⊆ C, then there exists F such that F is one-to-one and
rngF = C and

∑
L =

∑
(LF ).

(7)
∑

(a · L) = a ·∑L.

(8)
∑

(−L) = −∑L.

(9)
∑

(L1 − L2) =
∑
L1 −

∑
L2.

(10) L+ 0LCV = L and 0LCV + L = L.

In the sequel W denotes a submodule of V , A, B denote subsets of V , and l
denotes a linear combination of A. Let us consider R, V , A. The functor Lin(A)
yielding a submodule of V is defined as follows:
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(Def.1) the carrier of the carrier of Lin(A) = {∑ l}.
The following propositions are true:

(11) x ∈ Lin(A) if and only if there exists l such that x =
∑
l.

(12) If x ∈ A, then x ∈ Lin(A).

(13) Lin(∅the carrier of the carrier of V ) = 0V .

(14) If Lin(A) = 0V , then A = ∅ or A = {ΘV }.
(15) If 0R 6= 1R and A = the carrier of the carrier of W , then Lin(A) = W .

(16) If 0R 6= 1R and A = the carrier of the carrier of V , then Lin(A) = V .

(17) If A ⊆ B, then Lin(A) is a submodule of Lin(B).

(18) If Lin(A) = V and A ⊆ B, then Lin(B) = V .

(19) Lin(A ∪B) = Lin(A) + Lin(B).

(20) Lin(A ∩B) is a submodule of Lin(A) ∩ Lin(B).

Let us consider R, V . A subset of V is base if:

(Def.2) it is linearly independent and Lin(it) = V .

Let us consider R. A left module over R is free if:

(Def.3) there exists a subset B of it such that B is base.

We now state the proposition

(21) 0V is free.

Let us consider R. A left module over R is called a free left R-module if:

(Def.4) it is free.

For simplicity we adopt the following convention: R will denote a skew field,
a, b will denote scalars of R, V will denote a left module over R, v, v1, v2

will denote vectors of V , and A, B will denote subsets of V . The following
propositions are true:

(22) 0R 6= −1R.

(23) {v} is linearly independent if and only if v 6= ΘV .

(24) v1 6= v2 and {v1, v2} is linearly independent if and only if v2 6= ΘV and
for every a holds v1 6= a · v2.

(25) v1 6= v2 and {v1, v2} is linearly independent if and only if for all a, b
such that a · v1 + b · v2 = ΘV holds a = 0R and b = 0R.

(26) If A is linearly independent, then there exists B such that A ⊆ B and
B is base.

(27) If Lin(A) = V , then there exists B such that B ⊆ A and B is base.

(28) V is free.

Let us consider R, V . A subset of V is called a basis of V if:

(Def.5) it is base.

In the sequel I is a basis of V . The following two propositions are true:

(29) If A is linearly independent, then there exists I such that A ⊆ I.

(30) If Lin(A) = V , then there exists I such that I ⊆ A.
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Minkowskian space.
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The terminology and notation used in this paper have been introduced in the
following articles: [1], [6], [7], [5], [3], [2], and [4]. We adopt the following rules:
V will denote a real linear space, u, u1, u2, v, v1, v2, w, w1, x, y will denote
vectors of V , and n will denote a real number. Let us consider V , x, y. Let us
assume that x, y span the space. Let us consider u. The functor ρM

x,y(u) yielding
a vector of V is defined as follows:

(Def.1) ρM
x,y(u) = π1

x,y(u) · x+ (−π2
x,y(u)) · y.

The following propositions are true:

(1) If x, y span the space, then ρM
x,y(u+ v) = ρM

x,y(u) + ρM
x,y(v).

(2) If x, y span the space, then ρM
x,y(n · u) = n · ρM

x,y(u).

(3) If x, y span the space, then ρM
x,y(0V ) = 0V .

(4) If x, y span the space, then ρM
x,y(−u) = −ρM

x,y(u).

(5) If x, y span the space, then ρM
x,y(u− v) = ρM

x,y(u)− ρM
x,y(v).

(6) If x, y span the space and ρM
x,y(u) = ρM

x,y(v), then u = v.

(7) If x, y span the space, then ρM
x,y(ρ

M
x,y(u)) = u.

(8) If x, y span the space, then there exists v such that u = ρM
x,y(v).

Let us consider V , x, y. Let us assume that x, y span the space. Let us
consider u. The functor ρE

x,y(u) yielding a vector of V is defined by:

(Def.2) ρE
x,y(u) = π2

x,y(u) · x+ (−π1
x,y(u)) · y.
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Next we state several propositions:

(9) If x, y span the space, then ρE
x,y(−v) = −ρE

x,y(v).

(10) If x, y span the space, then ρE
x,y(u+ v) = ρE

x,y(u) + ρE
x,y(v).

(11) If x, y span the space, then ρE
x,y(u− v) = ρE

x,y(u)− ρE
x,y(v).

(12) If x, y span the space, then ρE
x,y(n · u) = n · ρE

x,y(u).

(13) If x, y span the space and ρE
x,y(u) = ρE

x,y(v), then u = v.

(14) If x, y span the space, then ρE
x,y(ρ

E
x,y(u)) = −u.

(15) If x, y span the space, then there exists v such that ρE
x,y(v) = u.

We now define two new predicates. Let us consider V , x, y, u, v, u1, v1. Let
us assume that x, y span the space. We say that the segments u, v and u1, v1

are E-coherently orthogonal in the basis x, y if and only if:

(Def.3) ρE
x,y(u), ρE

x,y(v) � �‖ u1, v1.

We say that the segments u, v and u1, v1 are M-coherently orthogonal in the
basis x, y if and only if:

(Def.4) ρM
x,y(u), ρM

x,y(v) � �‖ u1, v1.

One can prove the following propositions:

(16) If x, y span the space, then if u, v � �‖ u1, v1, then ρE
x,y(u), ρE

x,y(v) � �‖
ρE
x,y(u1), ρE

x,y(v1).

(17) If x, y span the space, then if u, v � �‖ u1, v1, then ρM
x,y(u), ρM

x,y(v) � �‖
ρM
x,y(u1), ρM

x,y(v1).

(18) If x, y span the space, then if the segments u, u1 and v, v1 are E-
coherently orthogonal in the basis x, y, then the segments v, v1 and u1,
u are E-coherently orthogonal in the basis x, y.

(19) If x, y span the space, then if the segments u, u1 and v, v1 are M-
coherently orthogonal in the basis x, y, then the segments v, v1 and u, u1

are M-coherently orthogonal in the basis x, y.

(20) If x, y span the space, then the segments u, u and v, w are E-coherently
orthogonal in the basis x, y.

(21) If x, y span the space, then the segments u, u and v, w are M-coherently
orthogonal in the basis x, y.

(22) If x, y span the space, then the segments u, v and w, w are E-coherently
orthogonal in the basis x, y.

(23) If x, y span the space, then the segments u, v and w, w are M-coherently
orthogonal in the basis x, y.

(24) If x, y span the space, then u, v, ρE
x,y(u) and ρE

x,y(v) are orthogonal
w.r.t. x, y.

(25) If x, y span the space, then the segments u, v and ρE
x,y(u), ρE

x,y(v) are
E-coherently orthogonal in the basis x, y.

(26) If x, y span the space, then the segments u, v and ρM
x,y(u), ρM

x,y(v) are
M-coherently orthogonal in the basis x, y.
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(27) If x, y span the space, then u, v � �‖ u1, v1 if and only if there exist u2,
v2 such that u2 6= v2 and the segments u2, v2 and u, v are E-coherently
orthogonal in the basis x, y and the segments u2, v2 and u1, v1 are E-
coherently orthogonal in the basis x, y.

(28) If x, y span the space, then u, v � �‖ u1, v1 if and only if there exist u2,
v2 such that u2 6= v2 and the segments u2, v2 and u, v are M-coherently
orthogonal in the basis x, y and the segments u2, v2 and u1, v1 are M-
coherently orthogonal in the basis x, y.

(29) If x, y span the space, then u, v, u1 and v1 are orthogonal w.r.t. x, y
if and only if the segments u, v and u1, v1 are E-coherently orthogonal in
the basis x, y or the segments u, v and v1, u1 are E-coherently orthogonal
in the basis x, y.

(30) If x, y span the space and the segments u, v and u1, v1 are E-coherently
orthogonal in the basis x, y and the segments u, v and v1, u1 are E-
coherently orthogonal in the basis x, y, then u = v or u1 = v1.

(31) If x, y span the space and the segments u, v and u1, v1 are M-coherently
orthogonal in the basis x, y and the segments u, v and v1, u1 are M-
coherently orthogonal in the basis x, y, then u = v or u1 = v1.

(32) If x, y span the space and the segments u, v and u1, v1 are E-coherently
orthogonal in the basis x, y and the segments u, v and u1, w are E-
coherently orthogonal in the basis x, y, then the segments u, v and v1, w
are E-coherently orthogonal in the basis x, y or the segments u, v and w,
v1 are E-coherently orthogonal in the basis x, y.

(33) If x, y span the space and the segments u, v and u1, v1 are M-coherently
orthogonal in the basis x, y and the segments u, v and u1, w are M-
coherently orthogonal in the basis x, y, then the segments u, v and v1, w
are M-coherently orthogonal in the basis x, y or the segments u, v and w,
v1 are M-coherently orthogonal in the basis x, y.

(34) If x, y span the space and the segments u, v and u1, v1 are E-coherently
orthogonal in the basis x, y, then the segments v, u and v1, u1 are E-
coherently orthogonal in the basis x, y.

(35) If x, y span the space and the segments u, v and u1, v1 are M-coherently
orthogonal in the basis x, y, then the segments v, u and v1, u1 are M-
coherently orthogonal in the basis x, y.

(36) If x, y span the space and the segments u, v and u1, v1 are E-coherently
orthogonal in the basis x, y and the segments u, v and v1, w are E-
coherently orthogonal in the basis x, y, then the segments u, v and u1, w
are E-coherently orthogonal in the basis x, y.

(37) If x, y span the space and the segments u, v and u1, v1 are M-coherently
orthogonal in the basis x, y and the segments u, v and v1, w are M-
coherently orthogonal in the basis x, y, then the segments u, v and u1, w
are M-coherently orthogonal in the basis x, y.

(38) If x, y span the space, then for every u, v, w there exists u1 such that
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w 6= u1 and the segments w, u1 and u, v are E-coherently orthogonal in
the basis x, y.

(39) If x, y span the space, then for every u, v, w there exists u1 such that
w 6= u1 and the segments w, u1 and u, v are M-coherently orthogonal in
the basis x, y.

(40) If x, y span the space, then for every u, v, w there exists u1 such that
w 6= u1 and the segments u, v and w, u1 are E-coherently orthogonal in
the basis x, y.

(41) If x, y span the space, then for every u, v, w there exists u1 such that
w 6= u1 and the segments u, v and w, u1 are M-coherently orthogonal in
the basis x, y.

(42) If x, y span the space and the segments u, u1 and v, v1 are E-coherently
orthogonal in the basis x, y and the segments w, w1 and v, v1 are E-
coherently orthogonal in the basis x, y and the segments w, w1 and u2,
v2 are E-coherently orthogonal in the basis x, y, then w = w1 or v = v1

or the segments u, u1 and u2, v2 are E-coherently orthogonal in the basis
x, y.

(43) If x, y span the space and the segments u, u1 and v, v1 are M-coherently
orthogonal in the basis x, y and the segments w, w1 and v, v1 are M-
coherently orthogonal in the basis x, y and the segments w, w1 and u2,
v2 are M-coherently orthogonal in the basis x, y, then w = w1 or v = v1

or the segments u, u1 and u2, v2 are M-coherently orthogonal in the basis
x, y.

(44) If x, y span the space and the segments u, u1 and v, v1 are E-coherently
orthogonal in the basis x, y, then the segments v, v1 and u, u1 are E-
coherently orthogonal in the basis x, y or the segments v, v1 and u1, u
are E-coherently orthogonal in the basis x, y.

(45) If x, y span the space and the segments u, u1 and v, v1 are M-coherently
orthogonal in the basis x, y, then the segments v, v1 and u, u1 are M-
coherently orthogonal in the basis x, y or the segments v, v1 and u1, u
are M-coherently orthogonal in the basis x, y.

(46) If x, y span the space and the segments u, u1 and v, v1 are E-coherently
orthogonal in the basis x, y and the segments v, v1 and w, w1 are E-
coherently orthogonal in the basis x, y and the segments u2, v2 and w,
w1 are E-coherently orthogonal in the basis x, y, then the segments u,
u1 and u2, v2 are E-coherently orthogonal in the basis x, y or v = v1 or
w = w1.

Next we state several propositions:

(47) If x, y span the space and the segments u, u1 and v, v1 are M-coherently
orthogonal in the basis x, y and the segments v, v1 and w, w1 are M-
coherently orthogonal in the basis x, y and the segments u2, v2 and w,
w1 are M-coherently orthogonal in the basis x, y, then the segments u,
u1 and u2, v2 are M-coherently orthogonal in the basis x, y or v = v1 or



oriented metric-affine plane - part i 597

w = w1.

(48) If x, y span the space and the segments u, u1 and v, v1 are E-coherently
orthogonal in the basis x, y and the segments v, v1 and w, w1 are E-
coherently orthogonal in the basis x, y and the segments u, u1 and u2,
v2 are E-coherently orthogonal in the basis x, y, then the segments u2,
v2 and w, w1 are E-coherently orthogonal in the basis x, y or v = v1 or
u = u1.

(49) If x, y span the space and the segments u, u1 and v, v1 are M-coherently
orthogonal in the basis x, y and the segments v, v1 and w, w1 are M-
coherently orthogonal in the basis x, y and the segments u, u1 and u2,
v2 are M-coherently orthogonal in the basis x, y, then the segments u2,
v2 and w, w1 are M-coherently orthogonal in the basis x, y or v = v1 or
u = u1.

(50) Suppose x, y span the space. Given v, w, u1, v1, w1. Suppose the
segments v, v1 and w, u1 are not E-coherently orthogonal in the basis x,
y and the segments v, v1 and u1, w are not E-coherently orthogonal in the
basis x, y and the segments u1, w1 and u1, w are E-coherently orthogonal
in the basis x, y. Then there exists u2 such that the segments v, v1 and
v, u2 are E-coherently orthogonal in the basis x, y or the segments v, v1

and u2, v are E-coherently orthogonal in the basis x, y but the segments
u1, w1 and u1, u2 are E-coherently orthogonal in the basis x, y or the
segments u1, w1 and u2, u1 are E-coherently orthogonal in the basis x, y.

(51) If x, y span the space, then there exist u, v, w such that the segments
u, v and u, w are E-coherently orthogonal in the basis x, y and for all v1,
w1 such that the segments v1, w1 and u, v are E-coherently orthogonal
in the basis x, y holds the segments v1, w1 and u, w are not E-coherently
orthogonal in the basis x, y and the segments v1, w1 and w, u are not
E-coherently orthogonal in the basis x, y or v1 = w1.

(52) Suppose x, y span the space. Given v, w, u1, v1, w1. Suppose h the
segments v, v1 and w, u1 are not M-coherently orthogonal in the basis x, y
and h the segments v, v1 and u1, w are not M-coherently orthogonal in the
basis x, y and the segments u1, w1 and u1, w are M-coherently orthogonal
in the basis x, y. Then there exists u2 such that the segments v, v1 and
v, u2 are M-coherently orthogonal in the basis x, y or the segments v, v1

and u2, v are M-coherently orthogonal in the basis x, y but the segments
u1, w1 and u1, u2 are M-coherently orthogonal in the basis x, y or the
segments u1, w1 and u2, u1 are M-coherently orthogonal in the basis x,
y.

(53) If x, y span the space, then there exist u, v, w such that the segments
u, v and u, w are M-coherently orthogonal in the basis x, y and for all v1,
w1 such that the segments v1, w1 and u, v are M-coherently orthogonal in
the basis x, y holds h the segments v1, w1 and u, w are not M-coherently
orthogonal in the basis x, y and h the segments v1, w1 and w, u are not
M-coherently orthogonal in the basis x, y or v1 = w1.
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In the sequel u3, v3 will be arbitrary. Let us consider V , x, y. Let us assume
that x, y span the space. The Euclidean oriented orthogonality defined over
V ,x,y yielding a binary relation on [: the vectors of V, the vectors of V :] is
defined as follows:

(Def.5) 〈〈u3, v3〉〉 ∈the Euclidean oriented orthogonality defined over V ,x,y if and
only if there exist u1, u2, v1, v2 such that u3 = 〈〈u1, u2〉〉 and v3 = 〈〈v1,
v2〉〉 and the segments u1, u2 and v1, v2 are E-coherently orthogonal in the
basis x, y.

Let us consider V , x, y. Let us assume that x, y span the space. The
Minkowskian oriented orthogonality defined over V ,x,y yields a binary relation
on [: the vectors of V, the vectors of V :] and is defined by:

(Def.6) 〈〈u3, v3〉〉 ∈the Minkowskian oriented orthogonality defined over V ,x,y if
and only if there exist u1, u2, v1, v2 such that u3 = 〈〈u1, u2〉〉 and v3 = 〈〈v1,
v2〉〉 and the segments u1, u2 and v1, v2 are M-coherently orthogonal in
the basis x, y.

Let us consider V , x, y. Let us assume that x, y span the space. The functor
CESpace(V, x, y) yields an affine structure and is defined by:

(Def.7) CESpace(V, x, y) = 〈 the vectors of V,the Euclidean oriented orthogo-
nality defined over V ,x,y〉.

Let us consider V , x, y. Let us assume that x, y span the space. The functor
CMSpace(V, x, y) yielding an affine structure is defined by:

(Def.8) CMSpace(V, x, y) = 〈 the vectors of V,the Minkowskian oriented or-
thogonality defined over V ,x,y〉.

Let A1 be an affine structure, and let p, q, r, s be elements of the points of
A1. The predicate p, q>>r, s is defined as follows:

(Def.9) 〈〈〈〈p, q〉〉, 〈〈r, s〉〉〉〉 ∈ the congruence of A1.

One can prove the following propositions:

(54) If x, y span the space, then for every u3 holds u3 is an element of the
points of CESpace(V, x, y) if and only if u3 is a vector of V .

(55) If x, y span the space, then for every u3 holds u3 is an element of the
points of CMSpace(V, x, y) if and only if u3 is a vector of V .

In the sequel p, q, r, s are elements of the points of CESpace(V, x, y). Next
we state the proposition

(56) If x, y span the space and u = p and v = q and u1 = r and v1 = s, then
p, q>>r, s if and only if the segments u, v and u1, v1 are E-coherently
orthogonal in the basis x, y.

In the sequel p, q, r, s will be elements of the points of CMSpace(V, x, y).
We now state the proposition

(57) If x, y span the space and u = p and v = q and u1 = r and v1 = s, then
p, q>>r, s if and only if the segments u, v and u1, v1 are M-coherently
orthogonal in the basis x, y.
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The papers [14], [6], [9], [8], [12], [1], [5], [10], [3], [13], [4], [15], [16], [7], [11],
and [2] provide the notation and terminology for this paper. In the sequel k, n
denote natural numbers and r denotes a real number. Let us consider n. The
functor Rn yields a non-empty set of finite sequences of � and is defined as
follows:

(Def.1) Rn = � n .

In the sequel x will denote a finite sequence of elements of � . The function
| � | 
 from � into � is defined as follows:

(Def.2) for every r holds | � | 
 (r) = |r|.
Let us consider x. The functor |x| yields a finite sequence of elements of �

and is defined as follows:

(Def.3) |x| = | � | 
 · x.

Let us consider n. The functor 〈0, . . . , 0︸ ︷︷ ︸
n

〉 yields a finite sequence of elements

of � and is defined by:

(Def.4) 〈0, . . . , 0︸ ︷︷ ︸
n

〉 = n 7−→ 0 qua a real number .

Let us consider n. Then 〈0, . . . , 0︸ ︷︷ ︸
n

〉 is an element of Rn.

In the sequel x, x1, x2, y denote elements of Rn. One can prove the following
proposition

(1) x is an element of � n .

601
c© 1991 Fondation Philippe le Hodey

ISSN 0777–4028



602 agata darmochwa l

Let us consider n, x. Then −x is an element of Rn.

Let us consider n, x, y. Then x + y is an element of Rn. Then x − y is an
element of Rn.

Let us consider n, r, x. Then r · x is an element of Rn.

Let us consider n, x. Then |x| is an element of � n .

Let us consider n, x. Then 2x is an element of � n .

Let x be a finite sequence of elements of � . The functor |x| yielding a real
number is defined by:

(Def.5) |x| =
√∑

2|x|.
Next we state a number of propositions:

(2) lenx = n.

(3) domx = Segn.

(4) If k ∈ Seg n, then x(k) ∈ � .

(5) If for every k such that k ∈ Segn holds x1(k) = x2(k), then x1 = x2.

(6) If k ∈ Seg n and r = x(k), then |x|(k) = |r|.
(7) |〈0, . . . , 0︸ ︷︷ ︸

n

〉| = n 7−→ 0 qua a real number .

(8) |−x| = |x|.
(9) |r · x| = |r| · |x|.

(10) |〈0, . . . , 0︸ ︷︷ ︸
n

〉| = 0.

(11) If |x| = 0, then x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(12) |x| ≥ 0.

(13) |−x| = |x|.
(14) |r · x| = |r| · |x|.
(15) |x1 + x2| ≤ |x1|+ |x2|.
(16) |x1 − x2| ≤ |x1|+ |x2|.
(17) |x1| − |x2| ≤ |x1 + x2|.
(18) |x1| − |x2| ≤ |x1 − x2|.
(19) |x1 − x2| = 0 if and only if x1 = x2.

(20) If x1 6= x2, then |x1 − x2| > 0.

(21) |x1 − x2| = |x2 − x1|.
(22) |x1 − x2| ≤ |x1 − x|+ |x− x2|.

Let us consider n. The functor ρn yields a function from [:Rn, Rn :] into �
and is defined by:

(Def.6) for all elements x, y of Rn holds ρn(x, y) = |x− y|.
Next we state two propositions:

(23) 2(x− y) = 2(y − x).
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(24) ρn is a metric of Rn.

Let us consider n. The functor En yields a metric space and is defined by:

(Def.7) En = 〈Rn, ρn〉.
Let us consider n. The functor EnT yielding a topological space is defined by:

(Def.8) EnT = Entop.

We adopt the following rules: p, p1, p2, p3 will denote points of EnT and x,
x1, x2, y, y1, y2 will denote real numbers. One can prove the following four
propositions:

(25) The carrier of EnT = Rn.

(26) p is a function from Seg n into � .

(27) p is a finite sequence of elements of � .

(28) For every finite sequence f such that f = p holds len f = n.

Let us consider n. The functor 0EnT yielding a point of EnT is defined by:

(Def.9) 0EnT = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

Let us consider n, p1, p2. The functor p1 + p2 yields a point of EnT and is
defined as follows:

(Def.10) for all elements p′1, p′2 of Rn such that p′1 = p1 and p′2 = p2 holds
p1 + p2 = p′1 + p′2.

One can prove the following propositions:

(29) p1 + p2 = p2 + p1.

(30) p1 + p2 + p3 = p1 + (p2 + p3).

(31) 0En
T

+ p = p and p+ 0En
T

= p.

Let us consider x, n, p. The functor x · p yields a point of EnT and is defined
as follows:

(Def.11) for every element p′ of Rn such that p′ = p holds x · p = x · p′.
Next we state several propositions:

(32) x · 0EnT = 0EnT .

(33) 1 · p = p and 0 · p = 0En
T

.

(34) x · y · p = x · (y · p).
(35) If x · p = 0EnT , then x = 0 or p = 0EnT .

(36) x · (p1 + p2) = x · p1 + x · p2.

(37) (x+ y) · p = x · p+ y · p.
(38) If x · p1 = x · p2, then x = 0 or p1 = p2.

Let us consider n, p. The functor −p yields a point of EnT and is defined as
follows:

(Def.12) for every element p′ of Rn such that p′ = p holds −p = −p′.
We now state several propositions:

(39) −−p = p.



604 agata darmochwa l

(40) p+−p = 0En
T

and −p+ p = 0En
T

.

(41) If p1 + p2 = 0EnT , then p1 = −p2 and p2 = −p1.

(42) −(p1 + p2) = −p1 +−p2.

(43) −p = (−1) · p.
(44) −x · p = (−x) · p and −x · p = x · −p.

Let us consider n, p1, p2. The functor p1 − p2 yields a point of EnT and is
defined by:

(Def.13) for all elements p′1, p′2 of Rn such that p′1 = p1 and p′2 = p2 holds
p1 − p2 = p′1 − p′2.

One can prove the following propositions:

(45) p1 − p2 = p1 +−p2.

(46) p− p = 0En
T

.

(47) If p1 − p2 = 0EnT , then p1 = p2.

(48) −(p1 − p2) = p2 − p1 and −(p1 − p2) = −p1 + p2.

(49) p1 + (p2 − p3) = (p1 + p2)− p3.

(50) p1 − (p2 + p3) = p1 − p2 − p3.

(51) p1 − (p2 − p3) = (p1 − p2) + p3.

(52) p = (p+ p1)− p1 and p = (p− p1) + p1.

(53) x · (p1 − p2) = x · p1 − x · p2.

(54) (x− y) · p = x · p− y · p.
In the sequel p, p1, p2 will be points of E2

T. Next we state the proposition

(55) There exist x, y such that p = 〈x, y〉.
We now define two new functors. Let us consider p. The functor p1 yields a

real number and is defined by:

(Def.14) for every finite sequence f such that p = f holds p1 = f(1).

The functor p2 yielding a real number is defined by:

(Def.15) for every finite sequence f such that p = f holds p2 = f(2).

Let us consider x, y. The functor [x, y] yields a point of E 2
T and is defined as

follows:

(Def.16) [x, y] = 〈x, y〉.
The following propositions are true:

(56) [x, y]1 = x and [x, y]2 = y.

(57) p = [p1, p2].

(58) 0E2
T

= [0, 0].

(59) p1 + p2 = [p11 + p21, p12 + p22].

(60) [x1, y1] + [x2, y2] = [x1 + x2, y1 + y2].

(61) x · p = [x · p1, x · p2].

(62) x · [x1, y1] = [x · x1, x · y1].

(63) −p = [−p1,−p2].
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(64) −[x1, y1] = [−x1,−y1].

(65) p1 − p2 = [p11 − p21, p12 − p22].

(66) [x1, y1]− [x2, y2] = [x1 − x2, y1 − y2].
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Summary. Some notions connected with metric spaces and the
relationship between metric spaces and topological spaces. Compactness
of topological spaces is transferred for the case of metric spaces [13]. Some
basic theorems about translations of topological notions for metric spaces

are proved. One-dimensional topological space � 1 is introduced, too.

MML Identifier: TOPMETR.

The papers [21], [11], [1], [22], [20], [4], [5], [6], [12], [10], [3], [14], [16], [23], [9],
[7], [2], [15], [18], [17], [19], and [8] provide the notation and terminology for this
paper. For simplicity we follow a convention: a, b, r will denote real numbers,
n will denote a natural number, T will denote a topological space, and F will
denote a family of subsets of T . One can prove the following proposition

(1) F is a cover of T if and only if the carrier of T ⊆ ⋃F .

In the sequel A will be a subspace of T . Next we state three propositions:

(2) For every point p of A holds p is a point of T .

(3) If T is a T2 space, then A is a T2 space.

(4) For all subspaces A, B of T such that the carrier of A ⊆ the carrier of
B holds A is a subspace of B.

In the sequel P , Q denote subsets of T and p denotes a point of T . We now
state several propositions:

(5) If P 6= ∅T , then T � P is a subspace of T � P ∪Q qua a subset of T but
if Q 6= ∅T , then T � Q is a subspace of T � P ∪Q qua a subset of T .

(6) If P 6= ∅ and p ∈ P , then for every neighborhood Q of p and for every
point p′ of T � P and for every subset Q′ of T � P such that Q′ = Q ∩ P
and p′ = p holds Q′ is a neighborhood of p′.

1The article was written during my work at Shinshu University, 1991.
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(7) For all topological spaces A, B, C and for every map f from A into C
such that f is continuous and C is a subspace of B for every map h from
A into B such that h = f holds h is continuous.

(8) For all topological spaces A, B and for every map f from A into B
and for every subspace C of B such that f is continuous and rng f ⊆ the
carrier of C for every map h from A into C such that h = f holds h is
continuous.

(9) For all topological spaces A, B and for every map f from A into B and
for every subset C of B such that f is continuous and rng f ⊆ C and
C 6= ∅ for every map h from A into B � C such that h = f holds h is
continuous.

(10) For all topological spaces T , S and for every map f from T into S such
that f is continuous for every subset P of T and for every map h from
T � P into S such that P 6= ∅T and h = f � P holds h is continuous.

In the sequel M will denote a metric space and p will denote a point of M .
One can prove the following proposition

(11) If r > 0, then p ∈ Ball(p, r).

We now define two new modes. Let us consider M . A subset of M is sets of
points of M .

A family of subsets of M is a family of subsets of the carrier of M .

Let us consider M . A metric space is said to be a subspace of M if:

(Def.1) the carrier of it ⊆ the carrier of M and for all points x, y of it holds
(the distance of it)(x, y) = (the distance of M)(x, y).

In the sequel A will be a subspace of M . One can prove the following propo-
sitions:

(12) For every point p of A holds p is a point of M .

(13) For every point x of M and for every point x′ of A such that x = x′

holds Ball(x′, r) = Ball(x, r)∩ the carrier of A.

Let M be a metric space, and let A be a non-empty subset of M . The functor
M � A yielding a subspace of M is defined as follows:

(Def.2) the carrier of M � A = A.

Let us consider a, b. Let us assume that a ≤ b. The functor [a, b]M yields a
subspace of the metric space of real numbers and is defined by:

(Def.3) for every non-empty subset P of the metric space of real numbers such
that P = [a, b] holds [a, b]M = (the metric space of real numbers) � P .

We now state the proposition

(14) If a ≤ b, then the carrier of [a, b]M = [a, b].

In the sequel F , G will be families of subsets of M . We now define two new
predicates. Let us consider M , F . We say that F is a family of balls if and only
if:
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(Def.4) for an arbitrary P such that P ∈ F there exist p, r such that P =
Ball(p, r).

We say that F is a cover of M if and only if:

(Def.5) the carrier of M ⊆ ⋃F .

The following propositions are true:

(15) For all points p, q of the metric space of real numbers and for all real
numbers x, y such that x = p and y = q holds ρ(p, q) = |x− y|.

(16) The carrier of M = the carrier of Mtop and the topology of Mtop = the
open set family of M .

(17) For every family F of subsets of M holds F is a family of subsets of
Mtop.

(18) For every family F of subsets of Mtop holds F is a family of subsets of
M .

(19) Atop is a subspace of Mtop.

(20) For every subset P of EnT and for every non-empty subset Q of En such
that P = Q holds (EnT) � P = (En � Q)top.

(21) For every subset P of Mtop such that P = Ball(p, r) holds P is open.

(22) For every subset P of Mtop holds P is open if and only if for every point
p of M such that p ∈ P there exists r such that r > 0 and Ball(p, r) ⊆ P .

Let us consider M . We say that M is compact if and only if:

(Def.6) Mtop is compact.

We now state the proposition

(23) M is compact if and only if for every F such that F is a family of balls
and F is a cover of M there exists G such that G ⊆ F and G is a cover
of M and G is finite.

The topological space � 1 is defined as follows:

(Def.7) � 1 = (the metric space of real numbers)top.

One can prove the following proposition

(24) The carrier of � 1 = � .

Let us consider a, b. Let us assume that a ≤ b. The functor [a, b]T yields a
subspace of � 1 and is defined by:

(Def.8) [a, b]T = ([a, b]M)top.

We now state three propositions:

(25) If a ≤ b, then the carrier of [a, b]T = [a, b].

(26) If a ≤ b, then for every subset P of � 1 such that P = [a, b] holds
[a, b]T = � 1 � P .

(27) [0, 1]T = � .
Let us note that it makes sense to consider the following constant. Then � is

a subspace of � 1 .

The following proposition is true
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(28) For every map f from � 1 into � 1 such that there exist real numbers
a, b such that for every real number x holds f(x) = a · x + b holds f is
continuous.
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Summary. Heine–Borel’s covering theorem, also known as Borel–
Lebesgue theorem [3], is proved. Some useful theorems on real inequali-
ties, intervals, sequences and notion of power sequence which are neces-
sary for the theorem are also proved.

MML Identifier: HEINE.

The terminology and notation used in this paper have been introduced in the
following articles: [23], [11], [1], [5], [6], [12], [9], [4], [24], [18], [19], [8], [7], [2],
[20], [16], [13], [15], [14], [21], [22], [17], and [10]. We follow a convention: a, b,
x, y, z denote real numbers and k, n denote natural numbers. We now state
several propositions:

(1) For every subspace A of the metric space of real numbers and for all
points p, q of A and for all x, y such that x = p and y = q holds
ρ(p, q) = |x− y|.

(2) If x ≤ y and y ≤ z, then [x, y] ∪ [y, z] = [x, z].

(3) If x ≥ 0 and a+ x ≤ b, then a ≤ b.
(4) If x ≥ 0 and a− x ≥ b, then a ≥ b.
(5) If x > 0, then xk > 0.

In the sequel s1 will be a sequence of real numbers. Next we state the
proposition

(6) If s1 is increasing and rng s1 ⊆ � , then n ≤ s1(n).

Let us consider s1, k. The functor ks1 yielding a sequence of real numbers is
defined by:

(Def.1) for every n holds ks1(n) = ks1(n).

We now state several propositions:

1The article was written during my work at Shinshu University, 1991.
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(7) 2n ≥ n+ 1.

(8) 2n > n.

(9) If s1 is divergent to +∞, then 2s1 is divergent to +∞.

(10) For every topological space T such that the carrier of T is finite holds
T is compact.

(11) If a ≤ b, then [a, b]T is compact.
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Summary. Proofs of two theorems connected with the union of
any two functions and the proofs of two theorems on the continuity of
the union of two continuous functions between topological spaces. The
theorem stating that the union of two subsets of R2, which are homeo-
morphic to unit interval and have only one terminal joined point, is also
homeomorphic to unit interval is proved, too.

MML Identifier: TOPMETR2.

The notation and terminology used in this paper have been introduced in the
following papers: [14], [9], [15], [13], [2], [3], [4], [11], [7], [5], [12], [10], [1], [6],
and [8]. In the sequel x, y, z are real numbers. Next we state the proposition

(1) If x ≤ y and y ≤ z, then [x, y] ∩ [y, z] = {y}.
In the sequel f , g will be functions and x1, x2 will be arbitrary. Next we

state two propositions:

(2) If f is one-to-one and g is one-to-one and for all x1, x2 such that x1 ∈
dom g and x2 ∈ dom f \ dom g holds g(x1) 6= f(x2), then f +· g is one-to-
one.

(3) If f ◦ (dom f ∩ dom g) ⊆ rng g, then rng f ∪ rng g = rng(f +· g).
We follow the rules: T , T1, T2, S will be topological spaces and p, p1, p2 will

be points of T . Next we state two propositions:

(4) Let T1, T2 be subspaces of T . Let f be a map from T1 into S. Let g be
a map from T2 into S. Suppose ΩT1 ∪ΩT2 = ΩT and ΩT1 ∩ΩT2 = {p} and
T1 is compact and T2 is compact and T is a T2 space and f is continuous
and g is continuous and f(p) = g(p). Then there exists a map h from T
into S such that h = f +· g and h is continuous.

1The article was written during my work at Shinshu University, 1991.
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(5) Let f be a map from T1 into S. Let g be a map from T2 into S. Suppose
that

(i) T1 is a subspace of T ,
(ii) T2 is a subspace of T ,
(iii) ΩT1 ∪ΩT2 = ΩT ,
(iv) ΩT1 ∩ΩT2 = {p1, p2},
(v) T1 is compact,
(vi) T2 is compact,

(vii) T is a T2 space,
(viii) f is continuous,

(ix) g is continuous,
(x) f(p1) = g(p1),
(xi) f(p2) = g(p2).

Then there exists a map h from T into S such that h = f +· g and h is
continuous.

In the sequel P , Q denote subsets of E 2
T. One can prove the following propo-

sition

(6) Let f be a map from � into (E2
T) � P . Let g be a map from � into (E2

T) � Q.
Suppose P ∩ Q = {p} and f is a homeomorphism and f(1) = p and g
is a homeomorphism and g(0) = p. Then there exists a map h from �
into (E2

T) � P ∪Qqua a subset of E2
T such that h is a homeomorphism and

h(0) = f(0) and h(1) = g(1).
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