Consequences of the Reflection Theorem

Grzegorz Bancerek¹ Warsaw University Białystok

Summary. Some consequences of the reflection theorem are discussed. To formulate them the notions of elementary equivalence and subsystems, and of models for a set of formulae are introduced. Besides, the concept of cofinality of a ordinal number with second one is used. The consequences of the reflection theorem (it is sometimes called the Scott-Scarpellini lemma) are: (i) If A_{ξ} is a transfinite sequence as in the reflection theorem (see [9]) and $A = \bigcup_{\xi \in On} A_{\xi}$, then there is an increasing and continuous mapping ϕ from On into On such that for every critical number κ the set A_{κ} is an elementary subsystem of $A(A_{\kappa} \prec A)$. (ii) There is an increasing continuous mapping $\phi : On \to On$ such that $\mathbf{R}_{\kappa} \prec V$ for each of its critical numbers κ (V is the universal class and On is the class of all ordinals belonging to V). (iii) There are ordinal numbers α cofinal with ω for which \mathbf{R}_{α} are models of ZF set theory. (iv) For each set X from universe V there is a model of ZF M which belongs to V and has X as an element.

MML Identifier: ZFREFLE1.

The articles [18], [14], [15], [19], [17], [8], [13], [5], [6], [1], [11], [4], [2], [7], [12], [16], [3], [10], and [9] provide the terminology and notation for this paper. We follow a convention: H, S will be ZF-formulae, X, Y will be sets, and e, u will be arbitrary. Let M be a non-empty family of sets, and let F be a subset of WFF. The predicate $M \models F$ is defined by:

(Def.1) for every H such that $H \in F$ holds $M \models H$.

We now define two new predicates. Let M_1 , M_2 be non-empty families of sets. The predicate $M_1 \equiv M_2$ is defined as follows:

(Def.2) for every H such that Free $H = \emptyset$ holds $M_1 \models H$ if and only if $M_2 \models H$. Let us notice that this predicate is reflexive and symmetric. The predicate $M_1 \prec M_2$ is defined as follows:

989

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP III-24.C1.

(Def.3) $M_1 \subseteq M_2$ and for every H and for every function v from VAR into M_1 holds $M_1, v \models H$ if and only if $M_2, M_2[v] \models H$.

Let us observe that the predicate introduced above is reflexive.

The set $\mathbf{A}\mathbf{x}_{\mathrm{ZF}}$ is defined by:

(Def.4) $e \in \mathbf{A}\mathbf{x}_{ZF}$ if and only if $e \in WFF$ but e = the axiom of extensionality or e = the axiom of pairs or e = the axiom of unions or e = the axiom of infinity or e = the axiom of power sets or there exists H such that $\{x_0, x_1, x_2\}$ misses Free H and e = the axiom of substitution for H.

Let us note that it makes sense to consider the following constant. Then $\mathbf{A}\mathbf{x}_{\mathrm{ZF}}$ is a subset of WFF.

Let D be a non-empty set. Then \emptyset_D is a subset of D.

For simplicity we follow a convention: M, M_1, M_2 will be non-empty families of sets, f will be a function, F, F_1, F_2 will be subsets of WFF, W will be a universal class, a, b will be ordinals of W, A, B, C will be ordinal numbers, L will be a transfinite sequence of non-empty sets from W, and p_1, x_1 will be transfinite sequences of ordinals of W. We now state a number of propositions:

- (1) $M \models \emptyset_{\text{WFF}}.$
- (2) If $F_1 \subseteq F_2$ and $M \models F_2$, then $M \models F_1$.
- (3) If $M \models F_1$ and $M \models F_2$, then $M \models F_1 \cup F_2$.
- (4) If M is a model of ZF, then $M \models \mathbf{A}\mathbf{x}_{\text{ZF}}$.
- (5) If $M \models \mathbf{A}\mathbf{x}_{ZF}$ and M is transitive, then M is a model of ZF.
- (6) There exists S such that Free $S = \emptyset$ and for every M holds $M \models S$ if and only if $M \models H$.
- (7) $M_1 \equiv M_2$ if and only if for every H holds $M_1 \models H$ if and only if $M_2 \models H$.
- (8) $M_1 \equiv M_2$ if and only if for every F holds $M_1 \models F$ if and only if $M_2 \models F$.
- (9) If $M_1 \prec M_2$, then $M_1 \equiv M_2$.
- (10) If M_1 is a model of ZF and $M_1 \equiv M_2$ and M_2 is transitive, then M_2 is a model of ZF.

In this article we present several logical schemes. The scheme NonUniqBound-Func deals with a set \mathcal{A} , a set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

there exists a function f such that dom $f = \mathcal{A}$ and rng $f \subseteq \mathcal{B}$ and for every e such that $e \in \mathcal{A}$ holds $\mathcal{P}[e, f(e)]$

provided the following requirement is met:

• for every e such that $e \in \mathcal{A}$ there exists u such that $u \in \mathcal{B}$ and $\mathcal{P}[e, u]$.

The scheme *NonUniqFuncEx* deals with a set \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists a function f such that dom $f = \mathcal{A}$ and for every e such that $e \in \mathcal{A}$ holds $\mathcal{P}[e, f(e)]$

provided the following condition is met:

• for every e such that $e \in \mathcal{A}$ there exists u such that $\mathcal{P}[e, u]$.

The following propositions are true:

- (11) If $X \subseteq W$ and $\overline{X} < \overline{W}$, then $X \in W$.
- (12) If dom $f \in W$ and rng $f \subseteq W$, then rng $f \in W$.
- (13) If $X \approx Y$ or $\overline{\overline{X}} = \overline{\overline{Y}}$, then $2^X \approx 2^Y$ and $\overline{\overline{2^X}} = \overline{\overline{2^Y}}$.
- (14) Let D be a non-empty set. Let P_1 be a function from D into $(On W)^{On W}$. Suppose $\overline{D} < \overline{W}$ and for every x_1 such that $x_1 \in \operatorname{rng} P_1$ holds x_1 is increasing and x_1 is continuous. Then there exists p_1 such that p_1 is increasing and p_1 is continuous and $p_1(\mathbf{0}_W) = \mathbf{0}_W$ and for every a holds $p_1(\operatorname{succ} a) = \sup(\{p_1(a)\} \cup \operatorname{uncurry} P_1^{\circ}[D, \{\operatorname{succ} a\}\})$ and for every a such that $a \neq \mathbf{0}_W$ and a is a limit ordinal number holds $p_1(a) = \sup(p_1^{\circ} \upharpoonright a)$.
- (15) For every sequence p_1 of ordinal numbers such that p_1 is increasing holds $C + p_1$ is increasing.
- (16) For every sequence x_1 of ordinal numbers holds $(C+x_1) \upharpoonright A = C+x_1 \upharpoonright A$.
- (17) For every sequence p_1 of ordinal numbers such that p_1 is increasing and p_1 is continuous holds $C + p_1$ is continuous.
 - Let A, B be ordinal numbers. We say that A is cofinal with B if and only if:
- (Def.5) there exists a sequence x_1 of ordinal numbers such that dom $x_1 = B$ and $\operatorname{rng} x_1 \subseteq A$ and x_1 is increasing and $A = \sup x_1$.

Let us notice that the predicate defined above is reflexive.

In the sequel p_2 will be a sequence of ordinal numbers. We now state a number of propositions:

- (18) If p_2 is increasing and $A \subseteq B$ and $B \in \text{dom } p_2$, then $p_2(A) \subseteq p_2(B)$.
- (19) If $e \in \operatorname{rng} p_2$, then e is an ordinal number.
- (20) $\operatorname{rng} p_2 \subseteq \sup p_2.$
- (21) If A is cofinal with B and B is cofinal with C, then A is cofinal with C.
- (22) If A is cofinal with B, then $B \subseteq A$.
- (23) If A is cofinal with B and B is cofinal with A, then A = B.
- (24) If dom $p_2 \neq \mathbf{0}$ and dom p_2 is a limit ordinal number and p_2 is increasing and A is the limit of p_2 , then A is cofinal with dom p_2 .
- (25) succ A is cofinal with **1**.
- (26) If A is cofinal with succ B, then there exists C such that $A = \operatorname{succ} C$.
- (27) If A is cofinal with B, then A is a limit ordinal number if and only if B is a limit ordinal number.
- (28) If A is cofinal with $\mathbf{0}$, then $A = \mathbf{0}$.
- (29) On W is not cofinal with a.
- (30) If $\omega \in W$ and p_1 is increasing and p_1 is continuous, then there exists b such that $a \in b$ and $p_1(b) = b$.
- (31) If $\omega \in W$ and p_1 is increasing and p_1 is continuous, then there exists a such that $b \in a$ and $p_1(a) = a$ and a is cofinal with ω .

- (32) Suppose $\omega \in W$ and for all a, b such that $a \in b$ holds $L(a) \subseteq L(b)$ and for every a such that $a \neq \mathbf{0}$ and a is a limit ordinal number holds $L(a) = \bigcup (L \upharpoonright a)$. Then there exists p_1 such that p_1 is increasing and p_1 is continuous and for every a such that $p_1(a) = a$ and $\mathbf{0} \neq a$ holds $L(a) \prec \bigcup L$.
- (33) $\mathbf{R}_a \in W.$
- (34) If $a \neq \mathbf{0}$, then \mathbf{R}_a is a non-empty set from W.
- (35) If $\omega \in W$, then there exists p_1 such that p_1 is increasing and p_1 is continuous and for all a, M such that $p_1(a) = a$ and $\mathbf{0} \neq a$ and $M = \mathbf{R}_a$ holds $M \prec W$.
- (36) If $\omega \in W$, then there exist b, M such that $a \in b$ and $M = \mathbf{R}_b$ and $M \prec W$.
- (37) If $\omega \in W$, then there exist a, M such that a is cofinal with ω and $M = \mathbf{R}_a$ and $M \prec W$.
- (38) Suppose $\omega \in W$ and for all a, b such that $a \in b$ holds $L(a) \subseteq L(b)$ and for every a such that $a \neq \mathbf{0}$ and a is a limit ordinal number holds $L(a) = \bigcup (L \upharpoonright a)$. Then there exists p_1 such that p_1 is increasing and p_1 is continuous and for every a such that $p_1(a) = a$ and $\mathbf{0} \neq a$ holds $L(a) \equiv \bigcup L$.
- (39) If $\omega \in W$, then there exists p_1 such that p_1 is increasing and p_1 is continuous and for all a, M such that $p_1(a) = a$ and $\mathbf{0} \neq a$ and $M = \mathbf{R}_a$ holds $M \equiv W$.
- (40) If $\omega \in W$, then there exist b, M such that $a \in b$ and $M = \mathbf{R}_b$ and $M \equiv W$.
- (41) If $\omega \in W$, then there exist a, M such that a is cofinal with ω and $M = \mathbf{R}_a$ and $M \equiv W$.
- (42) If $\omega \in W$, then there exist a, M such that a is cofinal with ω and $M = \mathbf{R}_a$ and M is a model of ZF.
- (43) If $\omega \in W$ and $X \in W$, then there exists M such that $X \in M$ and $M \in W$ and M is a model of ZF.

References

- [1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
- [3] Grzegorz Bancerek. Increasing and continuous ordinal sequences. *Formalized Mathematics*, 1(4):711–714, 1990.
- [4] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589– 593, 1990.

- [5] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131–145, 1990.
- [6] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.
- [7] Grzegorz Bancerek. Ordinal arithmetics. Formalized Mathematics, 1(3):515-519, 1990.
- [8] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91–96, 1990.
- [9] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973-977, 1990.
- [10] Grzegorz Bancerek. Replacing of variables in formulas of ZF theory. Formalized Mathematics, 1(5):963–972, 1990.
- [11] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–290, 1990.
- [12] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
- [13] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [14] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [15] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [16] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595–600, 1990.
- [17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received August 13, 1990