Consequences of the Reflection Theorem

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Some consequences of the reflection theorem are discussed. To formulate them the notions of elementary equivalence and subsystems, and of models for a set of formulae are introduced. Besides, the concept of cofinality of a ordinal number with second one is used. The consequences of the reflection theorem (it is sometimes called the Scott-Scarpellini lemma) are: (i) If A_{ξ} is a transfinite sequence as in the reflection theorem (see [9]) and $A=\bigcup_{\xi \in O n} A_{\xi}$, then there is an increasing and continuous mapping ϕ from $O n$ into $O n$ such that for every critical number κ the set A_{κ} is an elementary subsystem of $A\left(A_{\kappa} \prec A\right)$. (ii) There is an increasing continuous mapping $\phi: O n \rightarrow O n$ such that $\mathbf{R}_{\kappa} \prec V$ for each of its critical numbers κ (V is the universal class and $O n$ is the class of all ordinals belonging to V). (iii) There are ordinal numbers α cofinal with ω for which \mathbf{R}_{α} are models of ZF set theory. (iv) For each set X from universe V there is a model of ZF M which belongs to V and has X as an element.

MML Identifier: ZFREFLE1.

The articles [18], [14], [15], [19], [17], [8], [13], [5], [6], [1], [11], [4], [2], [7], [12], [16], [3], [10], and [9] provide the terminology and notation for this paper. We follow a convention: H, S will be ZF-formulae, X, Y will be sets, and e, u will be arbitrary. Let M be a non-empty family of sets, and let F be a subset of WFF. The predicate $M \models F$ is defined by:
(Def.1) for every H such that $H \in F$ holds $M \models H$.
We now define two new predicates. Let M_{1}, M_{2} be non-empty families of sets. The predicate $M_{1} \equiv M_{2}$ is defined as follows:
(Def.2) for every H such that Free $H=\emptyset$ holds $M_{1} \models H$ if and only if $M_{2} \models H$.
Let us notice that this predicate is reflexive and symmetric. The predicate $M_{1} \prec M_{2}$ is defined as follows:

[^0](Def.3) $\quad M_{1} \subseteq M_{2}$ and for every H and for every function v from VAR into M_{1} holds $M_{1}, v \models H$ if and only if $M_{2}, M_{2}[v] \models H$.
Let us observe that the predicate introduced above is reflexive.
The set $\mathbf{A} \mathbf{x}_{\mathrm{ZF}}$ is defined by:
(Def.4) $\quad e \in \mathbf{A x}_{\mathrm{ZF}}$ if and only if $e \in \mathrm{WFF}$ but $e=$ the axiom of extensionality or $e=$ the axiom of pairs or $e=$ the axiom of unions or $e=$ the axiom of infinity or $e=$ the axiom of power sets or there exists H such that $\left\{x_{0}, x_{1}, x_{2}\right\}$ misses Free H and $e=$ the axiom of substitution for H.

Let us note that it makes sense to consider the following constant. Then $\mathbf{A x}_{\mathrm{ZF}}$ is a subset of WFF.

Let D be a non-empty set. Then \emptyset_{D} is a subset of D.
For simplicity we follow a convention: M, M_{1}, M_{2} will be non-empty families of sets, f will be a function, F, F_{1}, F_{2} will be subsets of WFF, W will be a universal class, a, b will be ordinals of W, A, B, C will be ordinal numbers, L will be a transfinite sequence of non-empty sets from W, and p_{1}, x_{1} will be transfinite sequences of ordinals of W. We now state a number of propositions:
(1) $M \models \emptyset_{\mathrm{WFF}}$.
(2) If $F_{1} \subseteq F_{2}$ and $M \models F_{2}$, then $M \models F_{1}$.
(3) If $M \models F_{1}$ and $M \models F_{2}$, then $M \models F_{1} \cup F_{2}$.
(4) If M is a model of ZF , then $M \models \mathbf{A} \mathbf{x}_{\mathrm{ZF}}$.
(5) If $M \models \mathbf{A} \mathbf{x}_{\mathrm{ZF}}$ and M is transitive, then M is a model of ZF.
(6) There exists S such that Free $S=\emptyset$ and for every M holds $M \models S$ if and only if $M \models H$.
(7) $\quad M_{1} \equiv M_{2}$ if and only if for every H holds $M_{1} \models H$ if and only if $M_{2} \models H$.
(8) $\quad M_{1} \equiv M_{2}$ if and only if for every F holds $M_{1} \models F$ if and only if $M_{2} \models F$.
(9) If $M_{1} \prec M_{2}$, then $M_{1} \equiv M_{2}$.
(10) If M_{1} is a model of ZF and $M_{1} \equiv M_{2}$ and M_{2} is transitive, then M_{2} is a model of ZF.
In this article we present several logical schemes. The scheme NonUniqBoundFunc deals with a set \mathcal{A}, a set \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
there exists a function f such that $\operatorname{dom} f=\mathcal{A}$ and $\operatorname{rng} f \subseteq \mathcal{B}$ and for every e such that $e \in \mathcal{A}$ holds $\mathcal{P}[e, f(e)]$
provided the following requirement is met:

- for every e such that $e \in \mathcal{A}$ there exists u such that $u \in \mathcal{B}$ and $\mathcal{P}[e, u]$.
The scheme NonUniqFuncEx deals with a set \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
there exists a function f such that $\operatorname{dom} f=\mathcal{A}$ and for every e such that $e \in \mathcal{A}$ holds $\mathcal{P}[e, f(e)]$
provided the following condition is met:
- for every e such that $e \in \mathcal{A}$ there exists u such that $\mathcal{P}[e, u]$.

The following propositions are true:
(11) If $X \subseteq W$ and $\overline{\bar{X}}<\overline{\bar{W}}$, then $X \in W$.
(12) If $\operatorname{dom} f \in W$ and $\operatorname{rng} f \subseteq W$, then $\operatorname{rng} f \in W$.
(13) If $X \approx Y$ or $\overline{\bar{X}}=\overline{\bar{Y}}$, then $2^{X} \approx 2^{Y}$ and $\overline{\overline{2^{X}}}=\overline{\overline{2^{Y}}}$.
(14) Let D be a non-empty set. Let P_{1} be a function from D into (On $\left.W\right)^{\mathrm{On} W}$. Suppose $\overline{\bar{D}}<\overline{\bar{W}}$ and for every x_{1} such that $x_{1} \in \operatorname{rng} P_{1}$ holds x_{1} is increasing and x_{1} is continuous. Then there exists p_{1} such that p_{1} is increasing and p_{1} is continuous and $p_{1}\left(\mathbf{0}_{W}\right)=\mathbf{0}_{W}$ and for every a holds $p_{1}(\operatorname{succ} a)=\sup \left(\left\{p_{1}(a)\right\} \cup\right.$ uncurry $\left.P_{1}{ }^{\circ}: D,\{\operatorname{succ} a\}!\right)$ and for every a such that $a \neq \mathbf{0}_{W}$ and a is a limit ordinal number holds $p_{1}(a)=\sup \left(p_{1} \upharpoonright a\right)$.
(15) For every sequence p_{1} of ordinal numbers such that p_{1} is increasing holds $C+p_{1}$ is increasing.
(16) For every sequence x_{1} of ordinal numbers holds $\left(C+x_{1}\right) \upharpoonright A=C+x_{1} \upharpoonright$ A.
(17) For every sequence p_{1} of ordinal numbers such that p_{1} is increasing and p_{1} is continuous holds $C+p_{1}$ is continuous.
Let A, B be ordinal numbers. We say that A is cofinal with B if and only if:
(Def.5) there exists a sequence x_{1} of ordinal numbers such that $\operatorname{dom} x_{1}=B$ and $\operatorname{rng} x_{1} \subseteq A$ and x_{1} is increasing and $A=\sup x_{1}$.
Let us notice that the predicate defined above is reflexive.
In the sequel p_{2} will be a sequence of ordinal numbers. We now state a number of propositions:
(18) If p_{2} is increasing and $A \subseteq B$ and $B \in \operatorname{dom} p_{2}$, then $p_{2}(A) \subseteq p_{2}(B)$.
(19) If $e \in \operatorname{rng} p_{2}$, then e is an ordinal number.
(20) $\quad \operatorname{rng} p_{2} \subseteq \sup p_{2}$.
(21) If A is cofinal with B and B is cofinal with C, then A is cofinal with C.
(22) If A is cofinal with B, then $B \subseteq A$.
(23) If A is cofinal with B and B is cofinal with A, then $A=B$.
(24) If $\operatorname{dom} p_{2} \neq \mathbf{0}$ and dom p_{2} is a limit ordinal number and p_{2} is increasing and A is the limit of p_{2}, then A is cofinal with $\operatorname{dom} p_{2}$.
(25) $\operatorname{succ} A$ is cofinal with $\mathbf{1}$.
(26) If A is cofinal with succ B, then there exists C such that $A=\operatorname{succ} C$.
(27) If A is cofinal with B, then A is a limit ordinal number if and only if B is a limit ordinal number.
(28) If A is cofinal with $\mathbf{0}$, then $A=\mathbf{0}$.
(29) On W is not cofinal with a.
(30) If $\omega \in W$ and p_{1} is increasing and p_{1} is continuous, then there exists b such that $a \in b$ and $p_{1}(b)=b$.
(31) If $\omega \in W$ and p_{1} is increasing and p_{1} is continuous, then there exists a such that $b \in a$ and $p_{1}(a)=a$ and a is cofinal with ω.
(32) Suppose $\omega \in W$ and for all a, b such that $a \in b$ holds $L(a) \subseteq L(b)$ and for every a such that $a \neq \mathbf{0}$ and a is a limit ordinal number holds $L(a)=\bigcup(L \upharpoonright a)$. Then there exists p_{1} such that p_{1} is increasing and p_{1} is continuous and for every a such that $p_{1}(a)=a$ and $\mathbf{0} \neq a$ holds $L(a) \prec \bigcup L$.
(34) If $a \neq \mathbf{0}$, then \mathbf{R}_{a} is a non-empty set from W.
(35) If $\omega \in W$, then there exists p_{1} such that p_{1} is increasing and p_{1} is continuous and for all a, M such that $p_{1}(a)=a$ and $\mathbf{0} \neq a$ and $M=\mathbf{R}_{a}$ holds $M \prec W$.
(36) If $\omega \in W$, then there exist b, M such that $a \in b$ and $M=\mathbf{R}_{b}$ and $M \prec W$.
(37) If $\omega \in W$, then there exist a, M such that a is cofinal with ω and $M=\mathbf{R}_{a}$ and $M \prec W$.
(38) Suppose $\omega \in W$ and for all a, b such that $a \in b$ holds $L(a) \subseteq L(b)$ and for every a such that $a \neq \mathbf{0}$ and a is a limit ordinal number holds $L(a)=\bigcup(L \upharpoonright a)$. Then there exists p_{1} such that p_{1} is increasing and p_{1} is continuous and for every a such that $p_{1}(a)=a$ and $\mathbf{0} \neq a$ holds $L(a) \equiv \bigcup L$.
(39) If $\omega \in W$, then there exists p_{1} such that p_{1} is increasing and p_{1} is continuous and for all a, M such that $p_{1}(a)=a$ and $\mathbf{0} \neq a$ and $M=\mathbf{R}_{a}$ holds $M \equiv W$.
(40) If $\omega \in W$, then there exist b, M such that $a \in b$ and $M=\mathbf{R}_{b}$ and $M \equiv W$.
(41) If $\omega \in W$, then there exist a, M such that a is cofinal with ω and $M=\mathbf{R}_{a}$ and $M \equiv W$.
(42) If $\omega \in W$, then there exist a, M such that a is cofinal with ω and $M=\mathbf{R}_{a}$ and M is a model of ZF.
(43) If $\omega \in W$ and $X \in W$, then there exists M such that $X \in M$ and $M \in W$ and M is a model of ZF.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
[4] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589593, 1990.
[5] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.
[6] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.
[7] Grzegorz Bancerek. Ordinal arithmetics. Formalized Mathematics, 1(3):515-519, 1990.
[8] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[9] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973-977, 1990.
[10] Grzegorz Bancerek. Replacing of variables in formulas of ZF theory. Formalized Mathematics, 1(5):963-972, 1990.
[11] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[12] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[13] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[14] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[15] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[16] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595-600, 1990.
[17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[^0]: ${ }^{1}$ Supported by RPBP III-24.C1.

