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Summary. The goal is show that the reflection theorem holds.
The theorem is as usual in the Morse-Kelley theory of classes (MK). That
theory works with universal class which consists of all sets and every class
is a subclass of it. In this paper (and in another Mizar articles) we work in
Tarski-Grothendieck (TG) theory (see [16]) which ensures the existence of
sets that have properties like universal class (i.e. this theory is stronger
than MK). The sets are introduced in [14] and some concepts of MK
are modeled. The concepts are: the class On of all ordinal numbers
belonging to the universe, subclasses, transfinite sequences of non-empty
elements of universe, etc. The reflection theorem states that if Aξ is an
increasing and continuous transfinite sequence of non-empty sets and class
A =

⋃
ξ∈On

Aξ, then for every formula H there is a strictly increasing

continuous mapping F : On → On such that if 
 is a critical number of

F (i.e. F ( 
 ) = 
 > 0) and f ∈ AVAR� , then A, f |= H ≡ A � , f |= H .
The proof is based on [13]. Besides, in the article it is shown that every
universal class is a model of ZF set theory if ω (the first infinite ordinal
number) belongs to it. Some propositions concerning ordinal numbers
and sequences of them are also present.

MML Identifier: ZF REFLE.

The notation and terminology used in this paper have been introduced in the
following articles: [16], [15], [11], [12], [4], [5], [6], [10], [8], [1], [3], [9], [14], [2],
and [7]. In the sequel W is a universal class, H is a ZF-formula, x is arbitrary,
and X is a set. We now state several propositions:

(1) W |= the axiom of extensionality.

(2) W |= the axiom of pairs.

(3) W |= the axiom of unions.

(4) If ω ∈ W , then W |= the axiom of infinity.

(5) W |= the axiom of power sets.
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(6) For every H such that {x0, x1, x2} misses Free H holds
W |= the axiom of substitution for H.

(7) If ω ∈ W , then W is a model of ZF.

For simplicity we follow the rules: E denotes a non-empty family of sets, F
denotes a function, f denotes a function from VAR into E, A, B, C denote
ordinal numbers, a, b denote ordinals of W , p1 denotes a transfinite sequence of
ordinals of W , and H denotes a ZF-formula. Let us consider A, B. Let us note
that one can characterize the predicate A ⊆ B by the following (equivalent)
condition:

(Def.1) for every C such that C ∈ A holds C ∈ B.

In this article we present several logical schemes. The scheme ALFA deals
with a non-empty set A, and a binary predicate P, and states that:

there exists F such that dom F = A and for every element d of A there
exists A such that A = F (d) and P[d,A] and for every B such that P[d,B]
holds A ⊆ B
provided the parameters meet the following condition:

• for every element d of A there exists A such that P[d,A].
The scheme ALFA’Universe deals with a universal class A, a non-empty set

B, and a binary predicate P, and states that:
there exists F such that dom F = B and for every element d of B there exists

an ordinal a of A such that a = F (d) and P[d, a] and for every ordinal b of A
such that P[d, b] holds a ⊆ b
provided the following condition is met:

• for every element d of B there exists an ordinal a of A such that
P[d, a].

One can prove the following proposition

(8) x is an ordinal of W if and only if x ∈ On W .

In the sequel p2 is a sequence of ordinal numbers. Now we present three
schemes. The scheme OrdSeqOfUnivEx deals with a universal class A, and a
binary predicate P, and states that:

there exists a transfinite sequence p1 of ordinals of A such that for every
ordinal a of A holds P[a, p1(a)]
provided the following conditions are satisfied:

• for all ordinals a, b1, b2 of A such that P[a, b1] and P[a, b2] holds
b1 = b2,

• for every ordinal a of A there exists an ordinal b of A such that
P[a, b].

The scheme UOS Exist concerns a universal class A, an ordinal B of A, a
binary functor F yielding an ordinal of A, and a binary functor G yielding an
ordinal of A and states that:

there exists a transfinite sequence p1 of ordinals of A such that p1(0A) = B
and for all ordinals a, b of A such that b = p1(a) holds p1(succ a) = F(a, b) and
for every ordinal a of A and for every sequence p2 of ordinal numbers such that
a 6= 0A and a is a limit ordinal number and p2 = p1

�
a holds p1(a) = G(a, p2)
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for all values of the parameters.
The scheme Universe Ind concerns a universal class A, and a unary predicate

P, and states that:
for every ordinal a of A holds P[a]

provided the parameters have the following properties:
• P[0A],
• for every ordinal a of A such that P[a] holds P[succ a],
• for every ordinal a of A such that a 6= 0A and a is a limit ordinal

number and for every ordinal b of A such that b ∈ a holds P[b]
holds P[a].

Let f be a function, and let W be a universal class, and let a be an ordinal
of W . The functor

⋃
a f yields a set and is defined as follows:

(Def.2)
⋃

a f =
⋃

(W
�
(f

�
Ra)).

We now state several propositions:

(9)
⋃

a f =
⋃

(W
�
(f

�
Ra)).

(10) For every transfinite sequence L and for every A holds L
�
RA is a

transfinite sequence.

(11) For every sequence L of ordinal numbers and for every A holds L
�
RA

is a sequence of ordinal numbers.

(12)
⋃

p2 is an ordinal number.

(13)
⋃

(X
�
p2) is an ordinal number.

(14) OnRA = A.

(15) p2

�
RA = p2

�
A.

Let p1 be a sequence of ordinal numbers, and let W be a universal class, and
let a be an ordinal of W . Then

⋃
a p1 is an ordinal of W .

Next we state the proposition

(17)2 For every transfinite sequence p1 of ordinals of W holds
⋃

a p1 =
⋃

(p1

�
a) and

⋃
a(p1

�
a) =

⋃
(p1

�
a).

Let W be a universal class, and let a, b be ordinals of W . Then a ∪ b is an
ordinal of W .

Let us consider W . A non-empty family of sets is said to be a non-empty set
from W if:

(Def.3) it ∈ W .

Let us consider W . A non-empty family of sets is said to be a subclass of W
if:

(Def.4) it ⊆ W .

Let us consider W . A transfinite sequence of elements of W is called a
transfinite sequence of non-empty sets from W if:

(Def.5) dom it = On W and ∅ /∈ rng it.

2The proposition (16) became obvious.
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We now state four propositions:

(18) E is a non-empty set from W if and only if E ∈ W .

(19) E is a subclass of W if and only if E ⊆ W .

(20) For every transfinite sequence T of elements of W holds T is a transfinite
sequence of non-empty sets from W if and only if dom T = On W and
∅ /∈ rng T .

(21) For every non-empty set D from W holds D is a subclass of W .

Let us consider W , and let L be a transfinite sequence of non-empty sets
from W . Then

⋃
L is a subclass of W . Let us consider a. Then L(a) is a

non-empty set from W .

In the sequel L is a transfinite sequence of non-empty sets from W and f is
a function from VAR into L(a). Next we state several propositions:

(22) If X ∈ W , then X < W .

(23) a ∈ dom L.

(24) L(a) ⊆
⋃

L.

(25) � ≈ VAR and VAR = � .

(26)
⋃

(On X) is an ordinal number.

(27) sup X ⊆ succ(
⋃

(On X)).

(28) If X ∈ W , then sup X ∈ W .

The following proposition is true

(29) Suppose ω ∈ W and for all a, b such that a ∈ b holds L(a) ⊆ L(b)
and for every a such that a 6= 0 and a is a limit ordinal number holds
L(a) =

⋃
(L

�
a). Then for every H there exists p1 such that p1 is

increasing and p1 is continuous and for every a such that p1(a) = a and
0 6= a for every f holds

⋃
L,

⋃
L[f ] |= H if and only if L(a), f |= H.
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