The Reflection Theorem

Grzegorz Bancerek¹ Warsaw University Białystok

Summary. The goal is show that the reflection theorem holds. The theorem is as usual in the Morse-Kelley theory of classes (MK). That theory works with universal class which consists of all sets and every class is a subclass of it. In this paper (and in another Mizar articles) we work in Tarski-Grothendieck (TG) theory (see [16]) which ensures the existence of sets that have properties like universal class (i.e. this theory is stronger than MK). The sets are introduced in [14] and some concepts of MK are modeled. The concepts are: the class On of all ordinal numbers belonging to the universe, subclasses, transfinite sequences of non-empty elements of universe, etc. The reflection theorem states that if A_{ξ} is an increasing and continuous transfinite sequence of non-empty sets and class $A = \bigcup_{\xi \in On} A_{\xi}$, then for every formula H there is a strictly increasing continuous mapping $F : On \to On$ such that if \varkappa is a critical number of F (i.e. $F(\varkappa) = \varkappa > 0$) and $f \in A_{\varkappa}^{\mathbf{VAR}}$, then $A, f \models H \equiv A_{\varkappa}, f \models H$. The proof is based on [13]. Besides, in the article it is shown that every universal class is a model of ZF set theory if ω (the first infinite ordinal numbers and sequences of them are also present.

MML Identifier: ZF_REFLE.

The notation and terminology used in this paper have been introduced in the following articles: [16], [15], [11], [12], [4], [5], [6], [10], [8], [1], [3], [9], [14], [2], and [7]. In the sequel W is a universal class, H is a ZF-formula, x is arbitrary, and X is a set. We now state several propositions:

- (1) $W \models$ the axiom of extensionality.
- (2) $W \models$ the axiom of pairs.
- (3) $W \models$ the axiom of unions.
- (4) If $\omega \in W$, then $W \models$ the axiom of infinity.
- (5) $W \models$ the axiom of power sets.

¹Supported by RPBP III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (6) For every H such that $\{x_0, x_1, x_2\}$ misses Free H holds $W \models$ the axiom of substitution for H.
- (7) If $\omega \in W$, then W is a model of ZF.

For simplicity we follow the rules: E denotes a non-empty family of sets, F denotes a function, f denotes a function from VAR into E, A, B, C denote ordinal numbers, a, b denote ordinals of W, p_1 denotes a transfinite sequence of ordinals of W, and H denotes a ZF-formula. Let us consider A, B. Let us note that one can characterize the predicate $A \subseteq B$ by the following (equivalent) condition:

(Def.1) for every C such that $C \in A$ holds $C \in B$.

In this article we present several logical schemes. The scheme ALFA deals with a non-empty set \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists F such that dom $F = \mathcal{A}$ and for every element d of \mathcal{A} there exists A such that A = F(d) and $\mathcal{P}[d, A]$ and for every B such that $\mathcal{P}[d, B]$ holds $A \subseteq B$

provided the parameters meet the following condition:

• for every element d of \mathcal{A} there exists A such that $\mathcal{P}[d, A]$.

The scheme ALFA'Universe deals with a universal class \mathcal{A} , a non-empty set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

there exists F such that dom $F = \mathcal{B}$ and for every element d of \mathcal{B} there exists an ordinal a of \mathcal{A} such that a = F(d) and $\mathcal{P}[d, a]$ and for every ordinal b of \mathcal{A} such that $\mathcal{P}[d, b]$ holds $a \subseteq b$

provided the following condition is met:

• for every element d of \mathcal{B} there exists an ordinal a of \mathcal{A} such that $\mathcal{P}[d, a]$.

One can prove the following proposition

(8) x is an ordinal of W if and only if $x \in On W$.

In the sequel p_2 is a sequence of ordinal numbers. Now we present three schemes. The scheme OrdSeqOfUnivEx deals with a universal class \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists a transfinite sequence p_1 of ordinals of \mathcal{A} such that for every ordinal a of \mathcal{A} holds $\mathcal{P}[a, p_1(a)]$

provided the following conditions are satisfied:

- for all ordinals a, b_1, b_2 of \mathcal{A} such that $\mathcal{P}[a, b_1]$ and $\mathcal{P}[a, b_2]$ holds $b_1 = b_2$,
- for every ordinal a of \mathcal{A} there exists an ordinal b of \mathcal{A} such that $\mathcal{P}[a, b]$.

The scheme UOS_Exist concerns a universal class \mathcal{A} , an ordinal \mathcal{B} of \mathcal{A} , a binary functor \mathcal{F} yielding an ordinal of \mathcal{A} , and a binary functor \mathcal{G} yielding an ordinal of \mathcal{A} and states that:

there exists a transfinite sequence p_1 of ordinals of \mathcal{A} such that $p_1(\mathbf{0}_{\mathcal{A}}) = \mathcal{B}$ and for all ordinals a, b of \mathcal{A} such that $b = p_1(a)$ holds $p_1(\operatorname{succ} a) = \mathcal{F}(a, b)$ and for every ordinal a of \mathcal{A} and for every sequence p_2 of ordinal numbers such that $a \neq \mathbf{0}_{\mathcal{A}}$ and a is a limit ordinal number and $p_2 = p_1 \upharpoonright a$ holds $p_1(a) = \mathcal{G}(a, p_2)$ for all values of the parameters.

The scheme *Universe_Ind* concerns a universal class \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

for every ordinal a of \mathcal{A} holds $\mathcal{P}[a]$

provided the parameters have the following properties:

- $\mathcal{P}[\mathbf{0}_{\mathcal{A}}],$
- for every ordinal a of \mathcal{A} such that $\mathcal{P}[a]$ holds $\mathcal{P}[\operatorname{succ} a]$,
- for every ordinal a of \mathcal{A} such that $a \neq \mathbf{0}_{\mathcal{A}}$ and a is a limit ordinal number and for every ordinal b of \mathcal{A} such that $b \in a$ holds $\mathcal{P}[b]$ holds $\mathcal{P}[a]$.

Let f be a function, and let W be a universal class, and let a be an ordinal of W. The functor $\bigcup_a f$ yields a set and is defined as follows:

(Def.2) $\bigcup_a f = \bigcup (W \upharpoonright (f \upharpoonright \mathbf{R}_a)).$

We now state several propositions:

- (9) $\bigcup_a f = \bigcup (W \upharpoonright (f \upharpoonright \mathbf{R}_a)).$
- (10) For every transfinite sequence L and for every A holds $L \upharpoonright \mathbf{R}_A$ is a transfinite sequence.
- (11) For every sequence L of ordinal numbers and for every A holds $L \upharpoonright \mathbf{R}_A$ is a sequence of ordinal numbers.
- (12) $\bigcup p_2$ is an ordinal number.
- (13) $\bigcup (X \upharpoonright p_2)$ is an ordinal number.
- (14) $\operatorname{On} \mathbf{R}_A = A.$

(15) $p_2 \upharpoonright \mathbf{R}_A = p_2 \upharpoonright A.$

Let p_1 be a sequence of ordinal numbers, and let W be a universal class, and let a be an ordinal of W. Then $\bigcup_a p_1$ is an ordinal of W.

Next we state the proposition

(17)² For every transfinite sequence p_1 of ordinals of W holds $\bigcup_a p_1 = \bigcup(p_1 \upharpoonright a)$ and $\bigcup_a (p_1 \upharpoonright a) = \bigcup(p_1 \upharpoonright a)$.

Let W be a universal class, and let a, b be ordinals of W. Then $a \cup b$ is an ordinal of W.

Let us consider W. A non-empty family of sets is said to be a non-empty set from W if:

(Def.3) it $\in W$.

Let us consider W. A non-empty family of sets is said to be a subclass of W if:

(Def.4) it $\subseteq W$.

Let us consider W. A transfinite sequence of elements of W is called a transfinite sequence of non-empty sets from W if:

(Def.5) dom it = On W and $\emptyset \notin \text{rng it}$.

²The proposition (16) became obvious.

We now state four propositions:

- (18) E is a non-empty set from W if and only if $E \in W$.
- (19) E is a subclass of W if and only if $E \subseteq W$.
- (20) For every transfinite sequence T of elements of W holds T is a transfinite sequence of non-empty sets from W if and only if dom $T = \operatorname{On} W$ and $\emptyset \notin \operatorname{rng} T$.
- (21) For every non-empty set D from W holds D is a subclass of W.

Let us consider W, and let L be a transfinite sequence of non-empty sets from W. Then $\bigcup L$ is a subclass of W. Let us consider a. Then L(a) is a non-empty set from W.

In the sequel L is a transfinite sequence of non-empty sets from W and f is a function from VAR into L(a). Next we state several propositions:

- (22) If $X \in W$, then $\overline{X} < \overline{W}$.
- (23) $a \in \operatorname{dom} L.$
- (24) $L(a) \subseteq \bigcup L.$
- (25) $\mathbb{N} \approx \text{VAR} \text{ and } \overline{\text{VAR}} = \overline{\mathbb{N}}.$
- (26) \bigcup (On X) is an ordinal number.
- (27) $\sup X \subseteq \operatorname{succ}(\bigcup(\operatorname{On} X)).$
- (28) If $X \in W$, then $\sup X \in W$.

The following proposition is true

(29) Suppose $\omega \in W$ and for all a, b such that $a \in b$ holds $L(a) \subseteq L(b)$ and for every a such that $a \neq \mathbf{0}$ and a is a limit ordinal number holds $L(a) = \bigcup (L \upharpoonright a)$. Then for every H there exists p_1 such that p_1 is increasing and p_1 is continuous and for every a such that $p_1(a) = a$ and $\mathbf{0} \neq a$ for every f holds $\bigcup L, \bigcup L[f] \models H$ if and only if $L(a), f \models H$.

References

- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711–714, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589– 593, 1990.
- [4] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131–145, 1990.
- [5] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191–199, 1990.

- [6] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91–96, 1990.
- [7] Grzegorz Bancerek. Replacing of variables in formulas of ZF theory. Formalized Mathematics, 1(5):963-972, 1990.
- [8] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–290, 1990.
- [9] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
- [10] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265–267, 1990.
- [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [13] Andrzej Mostowski. Constructible Sets with Applications. North Holland, 1969.
- [14] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595–600, 1990.
- [15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received August 10, 1990