Replacing of Variables in Formulas of ZF Theory

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Part one is a supplement to papers [1], [2], and [3]. It deals with concepts of selector functions, atomic, negative, conjunctive formulas and etc., subformulas, free variables, satisfiability and models (it is shown that axioms of the predicate and the quantifier calculus are satisfied in an arbitrary set). In part two there are introduced notions of variables occurring in a formula and replacing of variables in a formula.

MML Identifier: ZF_LANG1.

The terminology and notation used in this paper have been introduced in the following articles: [9], [8], [5], [6], [4], [7], [1], and [2]. For simplicity we adopt the following rules: $p, p_{1}, p_{2}, q, r, F, G, G_{1}, G_{2}, H, H_{1}, H_{2}$ will be ZF-formulae, $x, x_{1}, x_{2}, y, y_{1}, y_{2}, z, z_{1}, z_{2}, s, t$ will be variables, a will be arbitrary, and X will be a set. Next we state a number of propositions:
(1) $\operatorname{Var}_{1}(x=y)=x$ and $\operatorname{Var}_{2}(x=y)=y$.
(2) $\operatorname{Var}_{1}(x \epsilon y)=x$ and $\operatorname{Var}_{2}(x \in y)=y$.
(3) $\operatorname{Arg}(\neg p)=p$.
(4) $\operatorname{Left} \operatorname{Arg}(p \wedge q)=p$ and $\operatorname{Right} \operatorname{Arg}(p \wedge q)=q$.
(5) $\operatorname{Left} \operatorname{Arg}(p \vee q)=p$ and $\operatorname{Right} \operatorname{Arg}(p \vee q)=q$.
(6) Antecedent $(p \Rightarrow q)=p$ and Consequent $(p \Rightarrow q)=q$.
(7) $\operatorname{LeftSide}(p \Leftrightarrow q)=p$ and $\operatorname{RightSide}(p \Leftrightarrow q)=q$.
(8) $\operatorname{Bound}\left(\forall_{x} p\right)=x$ and $\operatorname{Scope}\left(\forall_{x} p\right)=p$.
(9) $\operatorname{Bound}\left(\exists_{x} p\right)=x$ and $\operatorname{Scope}\left(\exists_{x} p\right)=p$.
(10) $p \vee q=\neg p \Rightarrow q$.
(11) If $\forall_{x, y} p=\forall_{z} q$, then $x=z$ and $\forall_{y} p=q$.

[^0]If $\exists_{x, y} p=\exists_{z} q$, then $x=z$ and $\exists_{y} p=q$.
$\forall_{x, y} p$ is universal and $\operatorname{Bound}\left(\forall_{x, y} p\right)=x$ and $\operatorname{Scope}\left(\forall_{x, y} p\right)=\forall_{y} p$.
$\exists_{x, y} p$ is existential and $\operatorname{Bound}\left(\exists_{x, y} p\right)=x$ and $\operatorname{Scope}\left(\exists_{x, y} p\right)=\exists_{y} p$.
$\forall_{x, y, z} p=\forall_{x}\left(\forall_{y}\left(\forall_{z} p\right)\right)$ and $\forall_{x, y, z} p=\forall_{x, y}\left(\forall_{z} p\right)$.
If $\forall_{x_{1}, y_{1}} p_{1}=\forall_{x_{2}, y_{2}} p_{2}$, then $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and $p_{1}=p_{2}$.
If $\forall_{x_{1}, y_{1}, z_{1}} p_{1}=\forall_{x_{2}, y_{2}, z_{2}} p_{2}$, then $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and $z_{1}=z_{2}$ and $p_{1}=p_{2}$.
(18) If $\forall_{x, y, z} p=\forall_{t} q$, then $x=t$ and $\forall_{y, z} p=q$. $p_{1}=p_{2}$.
(23) If $\exists_{x, y, z} p=\exists_{t} q$, then $x=t$ and $\exists_{y, z} p=q$.
(32) If H is biconditional, then $\operatorname{RightSide}(H)=$ Consequent $(\operatorname{Left} \operatorname{Arg}(H))$ and $\operatorname{RightSide}(H)=\operatorname{Antecedent}(\operatorname{Right} \operatorname{Arg}(H))$.
(33) If H is existential, then $\operatorname{Bound}(H)=\operatorname{Bound}(\operatorname{Arg}(H))$ and $\operatorname{Scope}(H)=$ $\operatorname{Arg}(\operatorname{Scope}(\operatorname{Arg}(H)))$.
(34) $\operatorname{Arg}(F \vee G)=\neg F \wedge \neg G$ and Antecedent $(F \vee G)=\neg F$ and Consequent $(F \vee$ $G)=G$.
(38) If H is disjunctive, then H is conditional and H is negative and $\operatorname{Arg}(H)$ is conjunctive and $\operatorname{Left} \operatorname{Arg}(\operatorname{Arg}(H))$ is negative and $\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H))$ is negative.
(39) If H is conditional, then H is negative and $\operatorname{Arg}(H)$ is conjunctive and $\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H))$ is negative.
(40) If H is biconditional, then H is conjunctive and $\operatorname{Left} \operatorname{Arg}(H)$ is conditional and $\operatorname{Right} \operatorname{Arg}(H)$ is conditional.
(41) If H is existential, then H is negative and $\operatorname{Arg}(H)$ is universal and Scope $(\operatorname{Arg}(H))$ is negative.
(42) It is not true that: H is an equality and H is a membership or H is negative or H is conjunctive or H is universal and it is not true that: H is a membership and H is negative or H is conjunctive or H is universal and it is not true that: H is negative and H is conjunctive or H is universal and it is not true that: H is conjunctive and H is universal.
(43) If F is a subformula of G, then len $F \leq \operatorname{len} G$.
(44) Suppose F is a proper subformula of G and G is a subformula of H or F is a subformula of G and G is a proper subformula of H or F is a subformula of G and G is an immediate constituent of H or F is an immediate constituent of G and G is a subformula of H or F is a proper subformula of G and G is an immediate constituent of H or F is an immediate constituent of G and G is a proper subformula of H. Then F is a proper subformula of H.
(45) H is not a proper subformula of H.
(46) H is not an immediate constituent of H.
(47) It is not true that: G is a proper subformula of H and H is a subformula of G.
(48) It is not true that: G is a proper subformula of H and H is a proper subformula of G.
(49) It is not true that: G is a subformula of H and H is an immediate constituent of G.
(50) It is not true that: G is a proper subformula of H and H is an immediate constituent of G.
(51) If $\neg F$ is a subformula of H, then F is a proper subformula of H.
(52) If $F \wedge G$ is a subformula of H, then F is a proper subformula of H and G is a proper subformula of H.
(53) If $\forall_{x} H$ is a subformula of F, then H is a proper subformula of F.
(54) $\quad F \wedge \neg G$ is a proper subformula of $F \Rightarrow G$ and F is a proper subformula of $F \Rightarrow G$ and $\neg G$ is a proper subformula of $F \Rightarrow G$ and G is a proper subformula of $F \Rightarrow G$.
(55) $\neg F \wedge \neg G$ is a proper subformula of $F \vee G$ and $\neg F$ is a proper subformula of $F \vee G$ and $\neg G$ is a proper subformula of $F \vee G$ and F is a proper subformula of $F \vee G$ and G is a proper subformula of $F \vee G$.
(56) $\forall x \neg H$ is a proper subformula of $\exists_{x} H$ and $\neg H$ is a proper subformula of $\exists_{x} H$.
(57) $\quad G$ is a subformula of H if and only if $G \in$ Subformulae H.
(58) If $G \in$ Subformulae H, then Subformulae $G \subseteq$ Subformulae H.
(59) $H \in$ Subformulae H.
(60) Subformulae $F \Rightarrow G=$ (Subformulae $F \cup$ Subformulae $G) \cup\{\neg G, F \wedge$ $\neg G, F \Rightarrow G\}$.

Subformulae $F \vee G=($ Subformulae $F \cup$ Subformulae $G) \cup\{\neg G, \neg F, \neg F \wedge$ $\neg G, F \vee G\}$.
(62) Subformulae $F \Leftrightarrow G=$ (Subformulae $F \cup$ Subformulae G) $\cup\{\neg G, F \wedge$ $\neg G, F \Rightarrow G, \neg F, G \wedge \neg F, G \Rightarrow F, F \Leftrightarrow G\}$.
(63) $\operatorname{Free}(x=y)=\{x, y\}$.
(64) $\operatorname{Free}(x \in y)=\{x, y\}$.
(65) Free $(\neg p)=$ Free p.
(66) $\operatorname{Free}(p \wedge q)=$ Free $p \cup$ Free q.
(67) Free $\left(\forall_{x} p\right)=$ Free $p \backslash\{x\}$.
(68) $\operatorname{Free}(p \vee q)=$ Free $p \cup$ Free q.
(69) \quad Free $(p \Rightarrow q)=$ Free $p \cup$ Free q.
(70) $\quad \operatorname{Free}(p \Leftrightarrow q)=$ Free $p \cup$ Free q.
(71) $\operatorname{Free}\left(\exists_{x} p\right)=$ Free $p \backslash\{x\}$.
(72) \quad Free $\left(\forall_{x, y} p\right)=$ Free $p \backslash\{x, y\}$.
(73) \quad Free $\left(\forall_{x, y, z} p\right)=$ Free $p \backslash\{x, y, z\}$.
(74) \quad Free $\left(\exists_{x, y} p\right)=$ Free $p \backslash\{x, y\}$.
(75) \quad Free $\left(\exists_{x, y, z} p\right)=$ Free $p \backslash\{x, y, z\}$.

The scheme $Z F_{-}$Induction deals with a unary predicate \mathcal{P}, and states that: for every H holds $\mathcal{P}[H]$ provided the parameter satisfies the following conditions:

- for all x_{1}, x_{2} holds $\mathcal{P}\left[x_{1}=x_{2}\right]$ and $\mathcal{P}\left[x_{1} \epsilon x_{2}\right]$,
- for every H such that $\mathcal{P}[H]$ holds $\mathcal{P}[\neg H]$,
- for all H_{1}, H_{2} such that $\mathcal{P}\left[H_{1}\right]$ and $\mathcal{P}\left[H_{2}\right]$ holds $\mathcal{P}\left[H_{1} \wedge H_{2}\right]$,
- for all H, x such that $\mathcal{P}[H]$ holds $\mathcal{P}\left[\forall_{x} H\right]$.

For simplicity we adopt the following rules: M, E will denote non-empty families of sets, e will denote an element of E, m, m^{\prime} will denote elements of M, f, g will denote functions from VAR into E, and v, v^{\prime} will denote functions from VAR into M. Let us consider E, f, x, e. The functor $f\left(\frac{x}{e}\right)$ yields a function from VAR into E and is defined by:
(Def.1) $\quad\left(f\left(\frac{x}{e}\right)\right)(x)=e$ and for every y such that $\left(f\left(\frac{x}{e}\right)\right)(y) \neq f(y)$ holds $x=y$.
The following proposition is true
(76) $g=f\left(\frac{x}{e}\right)$ if and only if $g(x)=e$ and for every y such that $g(y) \neq f(y)$ holds $x=y$.
Let D, D_{1}, D_{2} be non-empty sets, and let f be a function from D into D_{1}. Let us assume that $D_{1} \subseteq D_{2}$. The functor $D_{2}[f]$ yields a function from D into D_{2} and is defined as follows:

$$
\begin{equation*}
D_{2}[f]=f \tag{Def.2}
\end{equation*}
$$

Next we state several propositions:
(77) For all non-empty sets D, D_{1}, D_{2} and for every function f from D into D_{1} such that $D_{1} \subseteq D_{2}$ holds $D_{2}[f]=f$.

$$
\begin{equation*}
\left(v\left(\frac{x}{m^{\prime}}\right)\right)\left(\frac{x}{m}\right)=v\left(\frac{x}{m}\right) \text { and } v\left(\frac{x}{v(x)}\right)=v . \tag{78}
\end{equation*}
$$

(80) $M, v \models \forall_{x} H$ if and only if for every m holds $M, v\left(\frac{x}{m}\right) \models H$.
(81) $M, v \models \forall_{x} H$ if and only if $M, v\left(\frac{x}{m}\right) \models \forall_{x} H$.
(82) $M, v \models \exists_{x} H$ if and only if there exists m such that $M, v\left(\frac{x}{m}\right) \models H$.
(83) $M, v \models \exists_{x} H$ if and only if $M, v\left(\frac{x}{m}\right) \models \exists_{x} H$.
(84) For all v, v^{\prime} such that for every x such that $x \in$ Free H holds $v^{\prime}(x)=$ $v(x)$ holds if $M, v \models H$, then $M, v^{\prime} \models H$.
(85) Free H is finite.

In the sequel i, j will denote natural numbers. The following propositions are true:
(86) If $x_{i}=x_{j}$, then $i=j$.
(87) There exists i such that $x=x_{i}$.
(88) $\quad x$ is a natural number and $x \in \mathbb{N}$.
(89) $\quad M, v \models x=x$.
(90) $\quad M \models x=x$.
(91) $M, v \not \vDash x \in x$.
(92) $M \not \models x \epsilon x$ and $M \models \neg x \epsilon x$.
(93) $\quad M \models x=y$ if and only if $x=y$ or there exists a such that $\{a\}=M$.
(94) $\quad M \models \neg x \in y$ if and only if $x=y$ or for every X such that $X \in M$ holds $X \cap M=\emptyset$.
(95) If H is an equality, then $M, v \models H$ if and only if $v\left(\operatorname{Var}_{1}(H)\right)=$ $v\left(\operatorname{Var}_{2}(H)\right)$.
(96) If H is a membership, then $M, v \models H$ if and only if $v\left(\operatorname{Var}_{1}(H)\right) \in$ $v\left(\operatorname{Var}_{2}(H)\right)$.
(97) If H is negative, then $M, v \models H$ if and only if $M, v \not \models \operatorname{Arg}(H)$.
(98) If H is conjunctive, then $M, v \models H$ if and only if $M, v \models \operatorname{Left} \operatorname{Arg}(H)$ and $M, v \models \operatorname{Right} \operatorname{Arg}(H)$.
(99) If H is universal, then $M, v \models H$ if and only if for every m holds $M, v\left(\frac{\operatorname{Bound}(H)}{m}\right) \models \operatorname{Scope}(H)$.
(100) If H is disjunctive, then $M, v \models H$ if and only if $M, v \models \operatorname{Left} \operatorname{Arg}(H)$ or $M, v \models \operatorname{Right} \operatorname{Arg}(H)$.
(101) If H is conditional, then $M, v \models H$ if and only if if $M, v \models \operatorname{Antecedent}(H)$, then $M, v \models$ Consequent (H).
(102) If H is biconditional, then $M, v \models H$ if and only if $M, v \models \operatorname{LeftSide}(H)$ if and only if $M, v \models \operatorname{RightSide}(H)$.
(103) If H is existential, then $M, v \models H$ if and only if there exists m such that $M, v\left(\frac{\operatorname{Bound}(H)}{m}\right) \models \operatorname{Scope}(H)$.
(104) $M \models \exists_{x} H$ if and only if for every v there exists m such that $M, v\left(\frac{x}{m}\right) \models$ H.
(105) If $M \models H$, then $M \models \exists_{x} H$.
(106) $\quad M \models H$ if and only if $M \models \forall_{x, y} H$.
(107) If $M \models H$, then $M \models \exists_{x, y} H$.
(108) $\quad M \models H$ if and only if $M \models \forall_{x, y, z} H$.
(109) If $M \models H$, then $M \models \exists_{x, y, z} H$.
(110) $M, v \models(p \Leftrightarrow q) \Rightarrow(p \Rightarrow q)$ and $M \models(p \Leftrightarrow q) \Rightarrow(p \Rightarrow q)$.
(111) $M, v \models(p \Leftrightarrow q) \Rightarrow(q \Rightarrow p)$ and $M \models(p \Leftrightarrow q) \Rightarrow(q \Rightarrow p)$.
(112) $\quad M \models(p \Rightarrow q) \Rightarrow((q \Rightarrow r) \Rightarrow(p \Rightarrow r))$.
(113) If $M, v \models p \Rightarrow q$ and $M, v \models q \Rightarrow r$, then $M, v \models p \Rightarrow r$.
(114) If $M \models p \Rightarrow q$ and $M \models q \Rightarrow r$, then $M \models p \Rightarrow r$.
(115) $M, v \models(p \Rightarrow q) \wedge(q \Rightarrow r) \Rightarrow(p \Rightarrow r)$ and $M \models(p \Rightarrow q) \wedge(q \Rightarrow r) \Rightarrow$ ($p \Rightarrow r$).
(116) $\quad M, v \models p \Rightarrow(q \Rightarrow p)$ and $M \models p \Rightarrow(q \Rightarrow p)$.

$$
\begin{equation*}
r)) \Rightarrow((p \Rightarrow q) \Rightarrow(p \Rightarrow r)) \tag{117}
\end{equation*}
$$

(118) $M, v \models p \wedge q \Rightarrow p$ and $M \models p \wedge q \Rightarrow p$.
(119) $\quad M, v \models p \wedge q \Rightarrow q$ and $M \models p \wedge q \Rightarrow q$.
(120) $\quad M, v \models p \wedge q \Rightarrow q \wedge p$ and $M \models p \wedge q \Rightarrow q \wedge p$.
(121) $\quad M, v \models p \Rightarrow p \wedge p$ and $M \models p \Rightarrow p \wedge p$.
(122) $\quad M, v \models(p \Rightarrow q) \Rightarrow((p \Rightarrow r) \Rightarrow(p \Rightarrow q \wedge r))$ and $M \models(p \Rightarrow q) \Rightarrow((p \Rightarrow$ $r) \Rightarrow(p \Rightarrow q \wedge r))$.
(123) $M, v \models p \Rightarrow p \vee q$ and $M \models p \Rightarrow p \vee q$.
(124) $\quad M, v \models q \Rightarrow p \vee q$ and $M \models q \Rightarrow p \vee q$.
(125) $\quad M, v \models p \vee q \Rightarrow q \vee p$ and $M \models p \vee q \Rightarrow q \vee p$.
(126) $\quad M, v \models p \Rightarrow p \vee p$ and $M \models p \Rightarrow p \vee p$.
(127) $M, v \models(p \Rightarrow r) \Rightarrow((q \Rightarrow r) \Rightarrow(p \vee q \Rightarrow r))$ and $M \models(p \Rightarrow r) \Rightarrow((q \Rightarrow$ $r) \Rightarrow(p \vee q \Rightarrow r))$.
(128) $\quad M, v \models(p \Rightarrow r) \wedge(q \Rightarrow r) \Rightarrow(p \vee q \Rightarrow r)$ and $M \models(p \Rightarrow r) \wedge(q \Rightarrow r) \Rightarrow$ $(p \vee q \Rightarrow r)$.
(133) If $M \models p \Rightarrow q$ and $M \models p$, then $M \models q$.
(134) $\quad M, v \models \neg(p \wedge q) \Rightarrow \neg p \vee \neg q$ and $M \models \neg(p \wedge q) \Rightarrow \neg p \vee \neg q$.
(135) $\quad M, v \models \neg p \vee \neg q \Rightarrow \neg(p \wedge q)$ and $M \models \neg p \vee \neg q \Rightarrow \neg(p \wedge q)$.
$M, v \models(p \Rightarrow \neg q) \Rightarrow(q \Rightarrow \neg p)$ and $M \models(p \Rightarrow \neg q) \Rightarrow(q \Rightarrow \neg p)$.
$M, v \models \neg p \Rightarrow(p \Rightarrow q)$ and $M \models \neg p \Rightarrow(p \Rightarrow q)$.
$M, v \models(p \Rightarrow q) \wedge(p \Rightarrow \neg q) \Rightarrow \neg p$ and $M \models(p \Rightarrow q) \wedge(p \Rightarrow \neg q) \Rightarrow \neg p$.
If $M, v \models p \Rightarrow q$ and $M, v \models p$, then $M, v \models q$.
$M, v \models \neg(p \vee q) \Rightarrow \neg p \wedge \neg q$ and $M \models \neg(p \vee q) \Rightarrow \neg p \wedge \neg q$.
$M, v \models \neg p \wedge \neg q \Rightarrow \neg(p \vee q)$ and $M \models \neg p \wedge \neg q \Rightarrow \neg(p \vee q)$.
$M \models\left(\forall_{x} H\right) \Rightarrow H$.
(140) If $x \notin$ Free H_{1}, then $M \models\left(\forall_{x} H_{1} \Rightarrow H_{2}\right) \Rightarrow\left(H_{1} \Rightarrow\left(\forall_{x} H_{2}\right)\right)$.
(141) If $x \notin$ Free H_{1} and $M \models H_{1} \Rightarrow H_{2}$, then $M \models H_{1} \Rightarrow\left(\forall_{x} H_{2}\right)$.
(142) If $x \notin$ Free H_{2}, then $M \models\left(\forall_{x} H_{1} \Rightarrow H_{2}\right) \Rightarrow\left(\left(\exists_{x} H_{1}\right) \Rightarrow H_{2}\right)$.
(143) If $x \notin$ Free H_{2} and $M \models H_{1} \Rightarrow H_{2}$, then $M \models\left(\exists_{x} H_{1}\right) \Rightarrow H_{2}$.
(144) If $M \models H_{1} \Rightarrow\left(\forall_{x} H_{2}\right)$, then $M \models H_{1} \Rightarrow H_{2}$.
(145) If $M \models\left(\exists_{x} H_{1}\right) \Rightarrow H_{2}$, then $M \models H_{1} \Rightarrow H_{2}$.
(146) $\quad \mathrm{WFF} \subseteq 2^{〔 N, N:}$.

Let us consider H. The functor Var_{H} yields a set and is defined by:
(Def.3) $\quad \operatorname{Var}_{H}=\operatorname{rng} H \backslash\{0,1,2,3,4\}$.
We now state a number of propositions:
(147) $\quad \operatorname{Var}_{H}=\operatorname{rng} H \backslash\{0,1,2,3,4\}$.
(148) $\quad x \neq 0$ and $x \neq 1$ and $x \neq 2$ and $x \neq 3$ and $x \neq 4$.
(149) $x \notin\{0,1,2,3,4\}$.
(150) If $a \in \operatorname{Var}_{H}$, then $a \neq 0$ and $a \neq 1$ and $a \neq 2$ and $a \neq 3$ and $a \neq 4$.
(151) $\operatorname{Var}_{x=y}=\{x, y\}$.
(152) $\operatorname{Var}_{x \epsilon y}=\{x, y\}$.
(153) $\operatorname{Var}_{\neg H}=\operatorname{Var}_{H}$.
(154) $\operatorname{Var}_{H_{1} \wedge H_{2}}=\operatorname{Var}_{H_{1}} \cup \operatorname{Var}_{H_{2}}$.
(155) $) \operatorname{Var}_{\forall_{x} H}=\operatorname{Var}_{H} \cup\{x\}$.
(156) $\operatorname{Var}_{H_{1} \vee H_{2}}=\operatorname{Var}_{H_{1}} \cup \operatorname{Var}_{H_{2}}$.
(157) $\operatorname{Var}_{H_{1} \Rightarrow H_{2}}=\operatorname{Var}_{H_{1}} \cup \operatorname{Var}_{H_{2}}$.
(158) $\operatorname{Var}_{H_{1} \Leftrightarrow H_{2}}=\operatorname{Var}_{H_{1}} \cup \operatorname{Var}_{H_{2}}$.
(159) $\operatorname{Var}_{\exists_{x} H}=\operatorname{Var}_{H} \cup\{x\}$.
(160) $) \operatorname{Var}_{\forall_{x, y} H}=\operatorname{Var}_{H} \cup\{x, y\}$.
(161) $\operatorname{Var}_{\exists_{x, y} H}=\operatorname{Var}_{H} \cup\{x, y\}$.
(162) $\operatorname{Var}_{\forall_{x, y, z} H}=\operatorname{Var}_{H} \cup\{x, y, z\}$.
(163) $\operatorname{Var}_{\exists_{x, y, z} H}=\operatorname{Var}_{H} \cup\{x, y, z\}$.
(164) Free $H \subseteq \operatorname{Var}_{H}$.

Let us consider H. Then Var_{H} is a non-empty subset of VAR.
Let us consider H, x, y. The functor $H\left(\frac{x}{y}\right)$ yields a function and is defined by:
(Def.4) $\operatorname{dom}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{dom} H$ and for every a such that $a \in \operatorname{dom} H$ holds if $H(a)=x$, then $\left(H\left(\frac{x}{y}\right)\right)(a)=y$ but if $H(a) \neq x$, then $\left(H\left(\frac{x}{y}\right)\right)(a)=H(a)$.
One can prove the following propositions:
(165) For every function f holds $f=H\left(\frac{x}{y}\right)$ if and only if $\operatorname{dom} f=\operatorname{dom} H$ and for every a such that $a \in \operatorname{dom} H$ holds if $H(a)=x$, then $f(a)=y$ but if $H(a) \neq x$, then $f(a)=H(a)$.
$x_{1}=x_{2}\left(\frac{y_{1}}{y_{2}}\right)=z_{1}=z_{2}$ if and only if $x_{1} \neq y_{1}$ and $x_{2} \neq y_{1}$ and $z_{1}=x_{1}$ and $z_{2}=x_{2}$ or $x_{1}=y_{1}$ and $x_{2} \neq y_{1}$ and $z_{1}=y_{2}$ and $z_{2}=x_{2}$ or $x_{1} \neq y_{1}$ and $x_{2}=y_{1}$ and $z_{1}=x_{1}$ and $z_{2}=y_{2}$ or $x_{1}=y_{1}$ and $x_{2}=y_{1}$ and $z_{1}=y_{2}$ and $z_{2}=y_{2}$.

There exist z_{1}, z_{2} such that $x_{1}=x_{2}\left(\frac{y_{1}}{y_{2}}\right)=z_{1}=z_{2}$.
$x_{1} \epsilon x_{2}\left(\frac{y_{1}}{y_{2}}\right)=z_{1} \epsilon z_{2}$ if and only if $x_{1} \neq y_{1}$ and $x_{2} \neq y_{1}$ and $z_{1}=x_{1}$ and $z_{2}=x_{2}$ or $x_{1}=y_{1}$ and $x_{2} \neq y_{1}$ and $z_{1}=y_{2}$ and $z_{2}=x_{2}$ or $x_{1} \neq y_{1}$ and $x_{2}=y_{1}$ and $z_{1}=x_{1}$ and $z_{2}=y_{2}$ or $x_{1}=y_{1}$ and $x_{2}=y_{1}$ and $z_{1}=y_{2}$ and $z_{2}=y_{2}$.
(169) There exist z_{1}, z_{2} such that $x_{1} \epsilon x_{2}\left(\frac{y_{1}}{y_{2}}\right)=z_{1} \epsilon z_{2}$.
$\neg F=(\neg H)\left(\frac{x}{y}\right)$ if and only if $F=H\left(\frac{x}{y}\right)$.
$H\left(\frac{x}{y}\right) \in \mathrm{WFF}$.
Let us consider H, x, y. Then $H\left(\frac{x}{y}\right)$ is a ZF-formula.
The following propositions are true:
$G_{1} \wedge G_{2}=\left(H_{1} \wedge H_{2}\right)\left(\frac{x}{y}\right)$ if and only if $G_{1}=H_{1}\left(\frac{x}{y}\right)$ and $G_{2}=H_{2}\left(\frac{x}{y}\right)$.
If $z \neq x$, then $\forall_{z} G=\left(\forall_{z} H\right)\left(\frac{x}{y}\right)$ if and only if $G=H\left(\frac{x}{y}\right)$.
$\forall_{y} G=\left(\forall_{x} H\right)\left(\frac{x}{y}\right)$ if and only if $G=H\left(\frac{x}{y}\right)$.
$G_{1} \vee G_{2}=\left(H_{1} \vee H_{2}\right)\left(\frac{x}{y}\right)$ if and only if $G_{1}=H_{1}\left(\frac{x}{y}\right)$ and $G_{2}=H_{2}\left(\frac{x}{y}\right)$.
$G_{1} \Rightarrow G_{2}=\left(H_{1} \Rightarrow H_{2}\right)\left(\frac{x}{y}\right)$ if and only if $G_{1}=H_{1}\left(\frac{x}{y}\right)$ and $G_{2}=H_{2}\left(\frac{x}{y}\right)$.
$G_{1} \Leftrightarrow G_{2}=\left(H_{1} \Leftrightarrow H_{2}\right)\left(\frac{x}{y}\right)$ if and only if $G_{1}=H_{1}\left(\frac{x}{y}\right)$ and $G_{2}=H_{2}\left(\frac{x}{y}\right)$.
If $z \neq x$, then $\exists_{z} G=\left(\exists_{z} H\right)\left(\frac{x}{y}\right)$ if and only if $G=H\left(\frac{x}{y}\right)$.
$\exists_{y} G=\left(\exists_{x} H\right)\left(\frac{x}{y}\right)$ if and only if $G=H\left(\frac{x}{y}\right)$.
H is an equality if and only if $H\left(\frac{x}{y}\right)$ is an equality.
H is a membership if and only if $H\left(\frac{x}{y}\right)$ is a membership.
H is negative if and only if $H\left(\frac{x}{y}\right)$ is negative.
H is conjunctive if and only if $H\left(\frac{x}{y}\right)$ is conjunctive.
H is universal if and only if $H\left(\frac{x}{y}\right)$ is universal.
If H is negative, then $\operatorname{Arg}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{Arg}(H)\left(\frac{x}{y}\right)$.
If H is conjunctive, then $\operatorname{Left} \operatorname{Arg}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{Left} \operatorname{Arg}(H)\left(\frac{x}{y}\right)$ and $\operatorname{RightArg}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{RightArg}(H)\left(\frac{x}{y}\right)$.
(187) If H is universal, then $\operatorname{Scope}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{Scope}(H)\left(\frac{x}{y}\right)$ but if $\operatorname{Bound}(H)=$ x, then $\operatorname{Bound}\left(H\left(\frac{x}{y}\right)\right)=y$ but if $\operatorname{Bound}(H) \neq x$, then $\operatorname{Bound}\left(H\left(\frac{x}{y}\right)\right)=$ $\operatorname{Bound}(H)$.
(188) $\quad H$ is disjunctive if and only if $H\left(\frac{x}{y}\right)$ is disjunctive.
(189) H is conditional if and only if $H\left(\frac{x}{y}\right)$ is conditional.

If H is biconditional, then $H\left(\frac{x}{y}\right)$ is biconditional.
H is existential if and only if $H\left(\frac{x}{y}\right)$ is existential.
(193) If H is conditional, then Antecedent $\left(H\left(\frac{x}{y}\right)\right)=\operatorname{Antecedent}(H)\left(\frac{x}{y}\right)$ and Consequent $\left(H\left(\frac{x}{y}\right)\right)=$ Consequent $(H)\left(\frac{x}{y}\right)$.
(194) If H is biconditional, then $\operatorname{LeftSide}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{LeftSide}(H)\left(\frac{x}{y}\right)$ and $\operatorname{RightSide}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{RightSide}(H)\left(\frac{x}{y}\right)$.
(195) If H is existential, then $\operatorname{Scope}\left(H\left(\frac{x}{y}\right)\right)=\operatorname{Scope}(H)\left(\frac{x}{y}\right)$ but if $\operatorname{Bound}(H)=$ x, then $\operatorname{Bound}\left(H\left(\frac{x}{y}\right)\right)=y$ but if $\operatorname{Bound}(H) \neq x$, then $\operatorname{Bound}\left(H\left(\frac{x}{y}\right)\right)=$ Bound (H).
(196) If $x \notin \operatorname{Var}_{H}$, then $H\left(\frac{x}{y}\right)=H$.
(197) $H\left(\frac{x}{x}\right)=H$.
(198) If $x \neq y$, then $x \notin \operatorname{Var}_{H\left(\frac{x}{y}\right)}$.
(199) If $x \in \operatorname{Var}_{H}$, then $y \in \operatorname{Var}_{H\left(\frac{x}{y}\right)}$.
(200) If $x \neq y$, then $\left(H\left(\frac{x}{y}\right)\right)\left(\frac{x}{z}\right)=H\left(\frac{x}{y}\right)$.
(201) $\operatorname{Var}_{H\left(\frac{x}{y}\right)} \subseteq\left(\operatorname{Var}_{H} \backslash\{x\}\right) \cup\{y\}$.

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.
[2] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.
[3] Grzegorz Bancerek. Properties of zf models. Formalized Mathematics, 1(2):277-280, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received August 10, 1990

[^0]: ${ }^{1}$ Supported by RPBP III-24.C1.

