Basis of Vector Space

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. We prove the existence of a basis of a vector space, i.e., a set of vectors that generates the vector space and is linearly independent. We also introduce the notion of a subspace generated by a set of vectors and linear independence of set of vectors.

MML Identifier: VECTSP_7.

The terminology and notation used in this paper are introduced in the following papers: [5], [2], [9], [4], [3], [6], [1], [10], [8], and [7]. For simplicity we follow the rules: x will be arbitrary, G_{1} will denote a field, a, b will denote elements of G_{1}, V will denote a vector space over G_{1}, W will denote a subspace of V, v, v_{1}, v_{2} will denote vectors of V, A, B will denote subsets of V, and l will denote a linear combination of A. We now define two new predicates. Let us consider G_{1}, V, A. We say that A is linearly independent if and only if:
(Def.1) for every l such that $\sum l=\Theta_{V}$ holds support $l=\emptyset$.
We say that A is linearly dependent if A is not linearly independent.
One can prove the following propositions:
(1) $\quad A$ is linearly independent if and only if for every l such that $\sum l=\Theta_{V}$ holds support $l=\emptyset$.
(2) If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
(3) If A is linearly independent, then $\Theta_{V} \notin A$.
(4) $\emptyset_{\text {the carrier of the carrier of } V}$ is linearly independent.
(5) $\{v\}$ is linearly independent if and only if $v \neq \Theta_{V}$.
(6) If $\left\{v_{1}, v_{2}\right\}$ is linearly independent, then $v_{1} \neq \Theta_{V}$ and $v_{2} \neq \Theta_{V}$.
(7) $\left\{v, \Theta_{V}\right\}$ is linearly dependent and $\left\{\Theta_{V}, v\right\}$ is linearly dependent.
(8) $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if $v_{2} \neq \Theta_{V}$ and for every a holds $v_{1} \neq a \cdot v_{2}$.

[^0](9) $\quad v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if for all a, b such that $a \cdot v_{1}+b \cdot v_{2}=\Theta_{V}$ holds $a=0_{G_{1}}$ and $b=0_{G_{1}}$.
Let us consider G_{1}, V, A. The functor $\operatorname{Lin}(A)$ yields a subspace of V and is defined by:
(Def.2) the carrier of the carrier of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
The following propositions are true:
(10) If the carrier of the carrier of $W=\left\{\sum l\right\}$, then $W=\operatorname{Lin}(A)$.
(11) The carrier of the carrier of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
(12) $x \in \operatorname{Lin}(A)$ if and only if there exists l such that $x=\sum l$.
(13) If $x \in A$, then $x \in \operatorname{Lin}(A)$.

The following propositions are true:
(14) $\operatorname{Lin}\left(\emptyset_{\text {the }}\right.$ carrier of the carrier of $\left.V\right)=\mathbf{0}_{V}$.
(15) If $\operatorname{Lin}(A)=\mathbf{0}_{V}$, then $A=\emptyset$ or $A=\left\{\Theta_{V}\right\}$.
(16) If $A=$ the carrier of the carrier of W, then $\operatorname{Lin}(A)=W$.
(17) If $A=$ the carrier of the carrier of V, then $\operatorname{Lin}(A)=V$.
(18) If $A \subseteq B$, then $\operatorname{Lin}(A)$ is a subspace of $\operatorname{Lin}(B)$.
(19) If $\operatorname{Lin}(A)=V$ and $A \subseteq B$, then $\operatorname{Lin}(B)=V$.
(20) $\operatorname{Lin}(A \cup B)=\operatorname{Lin}(A)+\operatorname{Lin}(B)$.
(21) $\quad \operatorname{Lin}(A \cap B)$ is a subspace of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
(22) If A is linearly independent, then there exists B such that $A \subseteq B$ and B is linearly independent and $\operatorname{Lin}(B)=V$.
(23) If $\operatorname{Lin}(A)=V$, then there exists B such that $B \subseteq A$ and B is linearly independent and $\operatorname{Lin}(B)=V$.
Let us consider G_{1}, V. A subset of V is called a basis of V if:
(Def.3) it is linearly independent and $\operatorname{Lin}($ it $)=V$.
We now state the proposition
(24) If A is linearly independent and $\operatorname{Lin}(A)=V$, then A is a basis of V.

In the sequel I will denote a basis of V. We now state four propositions:
(25) I is linearly independent.
(26) $\operatorname{Lin}(I)=V$.
(27) If A is linearly independent, then there exists I such that $A \subseteq I$.
(28) If $\operatorname{Lin}(A)=V$, then there exists I such that $I \subseteq A$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, 1(5):851-854, 1990.
[7] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[8] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[9] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.

Received July 27, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

