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Summary. We prove the existence of a basis of a vector space,
i.e., a set of vectors that generates the vector space and is linearly inde-
pendent. We also introduce the notion of a subspace generated by a set
of vectors and linear independence of set of vectors.

MML Identifier: VECTSP 7.

The terminology and notation used in this paper are introduced in the following
papers: [5], [2], [9], [4], [3], [6], [1], [10], [8], and [7]. For simplicity we follow the
rules: x will be arbitrary, G1 will denote a field, a, b will denote elements of
G1, V will denote a vector space over G1, W will denote a subspace of V , v,
v1, v2 will denote vectors of V , A, B will denote subsets of V , and l will denote
a linear combination of A. We now define two new predicates. Let us consider
G1, V , A. We say that A is linearly independent if and only if:

(Def.1) for every l such that
∑

l = ΘV holds support l = ∅.

We say that A is linearly dependent if A is not linearly independent.

One can prove the following propositions:

(1) A is linearly independent if and only if for every l such that
∑

l = ΘV

holds support l = ∅.

(2) If A ⊆ B and B is linearly independent, then A is linearly independent.

(3) If A is linearly independent, then ΘV /∈ A.

(4) ∅the carrier of the carrier of V is linearly independent.

(5) {v} is linearly independent if and only if v 6= ΘV .

(6) If {v1, v2} is linearly independent, then v1 6= ΘV and v2 6= ΘV .

(7) {v, ΘV } is linearly dependent and {ΘV , v} is linearly dependent.

(8) v1 6= v2 and {v1, v2} is linearly independent if and only if v2 6= ΘV and
for every a holds v1 6= a · v2.
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(9) v1 6= v2 and {v1, v2} is linearly independent if and only if for all a, b
such that a · v1 + b · v2 = ΘV holds a = 0G1

and b = 0G1
.

Let us consider G1, V , A. The functor Lin(A) yields a subspace of V and is
defined by:

(Def.2) the carrier of the carrier of Lin(A) = {
∑

l}.

The following propositions are true:

(10) If the carrier of the carrier of W = {
∑

l}, then W = Lin(A).

(11) The carrier of the carrier of Lin(A) = {
∑

l}.

(12) x ∈ Lin(A) if and only if there exists l such that x =
∑

l.

(13) If x ∈ A, then x ∈ Lin(A).

The following propositions are true:

(14) Lin(∅the carrier of the carrier of V ) = 0V .

(15) If Lin(A) = 0V , then A = ∅ or A = {ΘV }.

(16) If A = the carrier of the carrier of W , then Lin(A) = W .

(17) If A = the carrier of the carrier of V , then Lin(A) = V .

(18) If A ⊆ B, then Lin(A) is a subspace of Lin(B).

(19) If Lin(A) = V and A ⊆ B, then Lin(B) = V .

(20) Lin(A ∪ B) = Lin(A) + Lin(B).

(21) Lin(A ∩ B) is a subspace of Lin(A) ∩ Lin(B).

(22) If A is linearly independent, then there exists B such that A ⊆ B and
B is linearly independent and Lin(B) = V .

(23) If Lin(A) = V , then there exists B such that B ⊆ A and B is linearly
independent and Lin(B) = V .

Let us consider G1, V . A subset of V is called a basis of V if:

(Def.3) it is linearly independent and Lin(it) = V .

We now state the proposition

(24) If A is linearly independent and Lin(A) = V , then A is a basis of V .

In the sequel I will denote a basis of V . We now state four propositions:

(25) I is linearly independent.

(26) Lin(I) = V .

(27) If A is linearly independent, then there exists I such that A ⊆ I.

(28) If Lin(A) = V , then there exists I such that I ⊆ A.
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