Operations on Subspaces in Vector Space

Wojciech A. Trybulec¹ Warsaw University

Summary. Sum, direct sum and intersection of subspaces are introduced. We prove some theorems concerning those notions and the decomposition of vector onto two subspaces. Linear complement of a subspace is also defined. We prove theorem that belong rather to [3].

MML Identifier: VECTSP_5.

The papers [2], [8], [9], [5], [3], [4], [6], [1], and [7] provide the terminology and notation for this paper. For simplicity we adopt the following rules: G_1 will denote a field, V will denote a vector space over G_1 , W, W_1 , W_2 , W_3 will denote subspaces of V, u, u_1 , u_2 , v, v_1 , v_2 will denote vectors of V, and x will be arbitrary. Let us consider G_1 , V, W_1 , W_2 . The functor $W_1 + W_2$ yields a subspace of V and is defined by:

(Def.1) the carrier of the carrier of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}$.

Let us consider G_1 , V, W_1 , W_2 . The functor $W_1 \cap W_2$ yields a subspace of V and is defined by:

(Def.2) the carrier of the carrier of $W_1 \cap W_2 =$ (the carrier of the carrier of $W_1 \cap ($ the carrier of the carrier of W_2).

We now state a number of propositions:

- (1) The carrier of the carrier of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$
- (2) If the carrier of the carrier of $W = \{v + u : v \in W_1 \land u \in W_2\}$, then $W = W_1 + W_2$.
- (3) The carrier of the carrier of $W_1 \cap W_2 =$ (the carrier of the carrier of W_1) \cap (the carrier of the carrier of W_2).
- (4) If the carrier of the carrier of $W = (\text{the carrier of } W_1) \cap (\text{the carrier of the carrier of } W_2), \text{ then } W = W_1 \cap W_2.$
- (5) $x \in W_1 + W_2$ if and only if there exist v_1, v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$.

¹Supported by RPBP.III-24.C1

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (6) If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$.
- (7) $x \in W_1 \cap W_2$ if and only if $x \in W_1$ and $x \in W_2$.
- $(8) \quad W+W=W.$
- (9) $W_1 + W_2 = W_2 + W_1.$
- (10) $W_1 + (W_2 + W_3) = (W_1 + W_2) + W_3.$
- (11) W_1 is a subspace of $W_1 + W_2$ and W_2 is a subspace of $W_1 + W_2$.
- (12) W_1 is a subspace of W_2 if and only if $W_1 + W_2 = W_2$.
- (13) $\mathbf{0}_V + W = W$ and $W + \mathbf{0}_V = W$.
- (14) $\mathbf{0}_V + \Omega_V = V$ and $\Omega_V + \mathbf{0}_V = V$.
- (15) $\Omega_V + W = V$ and $W + \Omega_V = V$.
- (16) $\Omega_V + \Omega_V = V.$
- (17) $W \cap W = W.$
- (18) $W_1 \cap W_2 = W_2 \cap W_1.$
- (19) $W_1 \cap (W_2 \cap W_3) = (W_1 \cap W_2) \cap W_3.$
- (20) $W_1 \cap W_2$ is a subspace of W_1 and $W_1 \cap W_2$ is a subspace of W_2 .
- (21) W_1 is a subspace of W_2 if and only if $W_1 \cap W_2 = W_1$.
- (22) If W_1 is a subspace of W_2 , then $W_1 \cap W_3$ is a subspace of $W_2 \cap W_3$.
- (23) If W_1 is a subspace of W_3 , then $W_1 \cap W_2$ is a subspace of W_3 .
- (24) If W_1 is a subspace of W_2 and W_1 is a subspace of W_3 , then W_1 is a subspace of $W_2 \cap W_3$.
- (25) $\mathbf{0}_V \cap W = \mathbf{0}_V$ and $W \cap \mathbf{0}_V = \mathbf{0}_V$.
- (26) $\mathbf{0}_V \cap \Omega_V = \mathbf{0}_V$ and $\Omega_V \cap \mathbf{0}_V = \mathbf{0}_V$.
- (27) $\Omega_V \cap W = W$ and $W \cap \Omega_V = W$.
- (28) $\Omega_V \cap \Omega_V = V.$
- (29) $W_1 \cap W_2$ is a subspace of $W_1 + W_2$.
- $(30) \quad W_1 \cap W_2 + W_2 = W_2.$
- $(31) \quad W_1 \cap (W_1 + W_2) = W_1.$
- (32) $W_1 \cap W_2 + W_2 \cap W_3$ is a subspace of $W_2 \cap (W_1 + W_3)$.
- (33) If W_1 is a subspace of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (34) $W_2 + W_1 \cap W_3$ is a subspace of $(W_1 + W_2) \cap (W_2 + W_3)$.
- (35) If W_1 is a subspace of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (36) If W_1 is a subspace of W_3 , then $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$.
- (37) $W_1 + W_2 = W_2$ if and only if $W_1 \cap W_2 = W_1$.
- (38) If W_1 is a subspace of W_2 , then $W_1 + W_3$ is a subspace of $W_2 + W_3$.
- (39) If W_1 is a subspace of W_2 , then W_1 is a subspace of $W_2 + W_3$.
- (40) If W_1 is a subspace of W_3 and W_2 is a subspace of W_3 , then $W_1 + W_2$ is a subspace of W_3 .

(41) There exists W such that the carrier of the carrier of W = (the carrier of the carrier of W_1) \cup (the carrier of the carrier of W_2) if and only if W_1 is a subspace of W_2 or W_2 is a subspace of W_1 .

Let us consider G_1 , V. The functor Subspaces V yielding a non-empty set is defined as follows:

(Def.3) for every x holds $x \in \text{Subspaces } V$ if and only if x is a subspace of V.

In the sequel D denotes a non-empty set. The following three propositions are true:

- (42) If for every x holds $x \in D$ if and only if x is a subspace of V, then D = Subspaces V.
- (43) $x \in \text{Subspaces } V \text{ if and only if } x \text{ is a subspace of } V.$
- (44) $V \in \text{Subspaces } V.$

Let us consider G_1 , V, W_1 , W_2 . We say that V is the direct sum of W_1 and W_2 if and only if:

(Def.4) $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.

Let us consider G_1 , V, W. A subspace of V is said to be a linear complement of W if:

(Def.5) V is the direct sum of it and W.

We now state three propositions:

- (45) V is the direct sum of W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.
- (46) If V is the direct sum of W_1 and W_2 , then W_1 is a linear complement of W_2 .
- (47) If V is the direct sum of W_1 and W_2 , then W_2 is a linear complement of W_1 .

In the sequel L denotes a linear complement of W. The following propositions are true:

- (48) V is the direct sum of L and W and V is the direct sum of W and L.
- (49) W + L = V and L + W = V.
- (50) $W \cap L = \mathbf{0}_V$ and $L \cap W = \mathbf{0}_V$.
- (51) If V is the direct sum of W_1 and W_2 , then V is the direct sum of W_2 and W_1 .
- (52) V is the direct sum of $\mathbf{0}_V$ and Ω_V and V is the direct sum of Ω_V and $\mathbf{0}_V$.
- (53) W is a linear complement of L.

(54) $\mathbf{0}_V$ is a linear complement of Ω_V and Ω_V is a linear complement of $\mathbf{0}_V$.

In the sequel C_1 is a coset of W_1 and C_2 is a coset of W_2 . We now state several propositions:

(55) If $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$.

- (56) V is the direct sum of W_1 and W_2 if and only if for every C_1, C_2 there exists v such that $C_1 \cap C_2 = \{v\}$.
- (57) $W_1 + W_2 = V$ if and only if for every v there exist v_1 , v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$.
- (58) If V is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$, then $v_1 = u_1$ and $v_2 = u_2$.
- (59) Suppose $V = W_1 + W_2$ and there exists v such that for all v_1, v_2, u_1, u_2 such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then V is the direct sum of W_1 and W_2 .

In the sequel t will denote an element of [: the carrier of the carrier of V, the carrier of the carrier of V]. Let us consider G_1 , V, t. Then t_1 is a vector of V. Then t_2 is a vector of V.

Let us consider G_1 , V, v, W_1 , W_2 . Let us assume that V is the direct sum of W_1 and W_2 . The functor $v \triangleleft (W_1, W_2)$ yielding an element of [: the carrier of the carrier of V, the carrier of the carrier of V] is defined by:

(Def.6)
$$v = (v \triangleleft (W_1, W_2))_1 + (v \triangleleft (W_1, W_2))_2$$
 and $(v \triangleleft (W_1, W_2))_1 \in W_1$ and $(v \triangleleft (W_1, W_2))_2 \in W_2$.

Next we state a number of propositions:

- (60) If V is the direct sum of W_1 and W_2 and $t_1 + t_2 = v$ and $t_1 \in W_1$ and $t_2 \in W_2$, then $t = v \triangleleft (W_1, W_2)$.
- (61) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_1 + (v \triangleleft (W_1, W_2))_2 = v$.
- (62) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_1 \in W_1$.
- (63) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_2 \in W_2$.
- (64) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_1 = (v \triangleleft (W_2, W_1))_2$.
- (65) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_2 = (v \triangleleft (W_2, W_1))_1$.
- (66) If $t_1 + t_2 = v$ and $t_1 \in W$ and $t_2 \in L$, then $t = v \triangleleft (W, L)$.
- (67) $(v \triangleleft (W,L))_{\mathbf{1}} + (v \triangleleft (W,L))_{\mathbf{2}} = v.$
- (68) $(v \triangleleft (W, L))_{\mathbf{1}} \in W$ and $(v \triangleleft (W, L))_{\mathbf{2}} \in L$.
- (69) $(v \triangleleft (W,L))_{\mathbf{1}} = (v \triangleleft (L,W))_{\mathbf{2}}.$
- (70) $(v \triangleleft (W,L))_{\mathbf{2}} = (v \triangleleft (L,W))_{\mathbf{1}}.$

In the sequel A_1 , A_2 will be elements of Subspaces V. Let us consider G_1 , V. The functor SubJoin V yields a binary operation on Subspaces V and is defined by:

(Def.7) for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubJoin V) $(A_1, A_2) = W_1 + W_2$. Let us consider G_1 , V. The functor SubMeet V yielding a binary operation on Subspaces V is defined by:

(Def.8) for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeet V) $(A_1, A_2) = W_1 \cap W_2$.

In the sequel o denotes a binary operation on Subspaces V. One can prove the following propositions:

- (71) If $A_1 = W_1$ and $A_2 = W_2$, then SubJoin $V(A_1, A_2) = W_1 + W_2$.
- (72) If for all A_1, A_2, W_1, W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds $o(A_1, A_2) = W_1 + W_2$, then o = SubJoin V.
- (73) If $A_1 = W_1$ and $A_2 = W_2$, then SubMeet $V(A_1, A_2) = W_1 \cap W_2$.
- (74) If for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds $o(A_1, A_2) = W_1 \cap W_2$, then o = SubMeet V.
- (75) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a lattice.
- (76) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a lower bound lattice.
- (77) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is an upper bound lattice.
- (78) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a bound lattice.
- (79) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a modular lattice.
- (80) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a complemented lattice.
- (81) $v = v_1 + v_2$ if and only if $v_1 = v v_2$.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [5] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [6] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, 1(5):851–854, 1990.
- [7] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.

- [8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [9] Stanisław Żukowski. Introduction to lattice theory. *Formalized Mathematics*, 1(1):215–222, 1990.

Received July 27, 1990