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Summary. Sum, direct sum and intersection of subspaces are
introduced. We prove some theorems concerning those notions and the
decomposition of vector onto two subspaces. Linear complement of a
subspace is also defined. We prove theorem that belong rather to [3].

MML Identifier: VECTSP 5.

The papers [2], [8], [9], [5], [3], [4], [6], [1], and [7] provide the terminology and
notation for this paper. For simplicity we adopt the following rules: G1 will
denote a field, V will denote a vector space over G1, W , W1, W2, W3 will
denote subspaces of V , u, u1, u2, v, v1, v2 will denote vectors of V , and x will
be arbitrary. Let us consider G1, V , W1, W2. The functor W1 + W2 yields a
subspace of V and is defined by:

(Def.1) the carrier of the carrier of W1 + W2 = {v + u : v ∈ W1 ∧ u ∈ W2}.

Let us consider G1, V , W1, W2. The functor W1 ∩ W2 yields a subspace of
V and is defined by:

(Def.2) the carrier of the carrier of W1 ∩ W2 = (the carrier of the carrier of
W1)∩ (the carrier of the carrier of W2).

We now state a number of propositions:

(1) The carrier of the carrier of W1 + W2 = {v + u : v ∈ W1 ∧ u ∈ W2}.

(2) If the carrier of the carrier of W = {v + u : v ∈ W1 ∧ u ∈ W2}, then
W = W1 + W2.

(3) The carrier of the carrier of W1 ∩ W2 = (the carrier of the carrier of
W1)∩ (the carrier of the carrier of W2).

(4) If the carrier of the carrier of W = (the carrier of the carrier of W1)∩
(the carrier of the carrier of W2), then W = W1 ∩ W2.

(5) x ∈ W1 + W2 if and only if there exist v1, v2 such that v1 ∈ W1 and
v2 ∈ W2 and x = v1 + v2.
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(6) If v ∈ W1 or v ∈ W2, then v ∈ W1 + W2.

(7) x ∈ W1 ∩ W2 if and only if x ∈ W1 and x ∈ W2.

(8) W + W = W .

(9) W1 + W2 = W2 + W1.

(10) W1 + (W2 + W3) = (W1 + W2) + W3.

(11) W1 is a subspace of W1 + W2 and W2 is a subspace of W1 + W2.

(12) W1 is a subspace of W2 if and only if W1 + W2 = W2.

(13) 0V + W = W and W + 0V = W .

(14) 0V + ΩV = V and ΩV + 0V = V .

(15) ΩV + W = V and W + ΩV = V .

(16) ΩV + ΩV = V .

(17) W ∩ W = W .

(18) W1 ∩ W2 = W2 ∩ W1.

(19) W1 ∩ (W2 ∩ W3) = (W1 ∩ W2) ∩ W3.

(20) W1 ∩ W2 is a subspace of W1 and W1 ∩ W2 is a subspace of W2.

(21) W1 is a subspace of W2 if and only if W1 ∩ W2 = W1.

(22) If W1 is a subspace of W2, then W1 ∩ W3 is a subspace of W2 ∩ W3.

(23) If W1 is a subspace of W3, then W1 ∩ W2 is a subspace of W3.

(24) If W1 is a subspace of W2 and W1 is a subspace of W3, then W1 is a
subspace of W2 ∩ W3.

(25) 0V ∩ W = 0V and W ∩ 0V = 0V .

(26) 0V ∩ ΩV = 0V and ΩV ∩ 0V = 0V .

(27) ΩV ∩ W = W and W ∩ ΩV = W .

(28) ΩV ∩ ΩV = V .

(29) W1 ∩ W2 is a subspace of W1 + W2.

(30) W1 ∩ W2 + W2 = W2.

(31) W1 ∩ (W1 + W2) = W1.

(32) W1 ∩ W2 + W2 ∩ W3 is a subspace of W2 ∩ (W1 + W3).

(33) If W1 is a subspace of W2, then W2 ∩ (W1 +W3) = W1∩W2 +W2 ∩W3.

(34) W2 + W1 ∩ W3 is a subspace of (W1 + W2) ∩ (W2 + W3).

(35) If W1 is a subspace of W2, then W2+W1∩W3 = (W1+W2)∩(W2+W3).

(36) If W1 is a subspace of W3, then W1 + W2 ∩ W3 = (W1 + W2) ∩ W3.

(37) W1 + W2 = W2 if and only if W1 ∩ W2 = W1.

(38) If W1 is a subspace of W2, then W1 + W3 is a subspace of W2 + W3.

(39) If W1 is a subspace of W2, then W1 is a subspace of W2 + W3.

(40) If W1 is a subspace of W3 and W2 is a subspace of W3, then W1 + W2

is a subspace of W3.
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(41) There exists W such that the carrier of the carrier of W = (the carrier
of the carrier of W1)∪ (the carrier of the carrier of W2) if and only if W1

is a subspace of W2 or W2 is a subspace of W1.

Let us consider G1, V . The functor Subspaces V yielding a non-empty set is
defined as follows:

(Def.3) for every x holds x ∈ Subspaces V if and only if x is a subspace of V .

In the sequel D denotes a non-empty set. The following three propositions
are true:

(42) If for every x holds x ∈ D if and only if x is a subspace of V , then
D = Subspaces V .

(43) x ∈ Subspaces V if and only if x is a subspace of V .

(44) V ∈ Subspaces V .

Let us consider G1, V , W1, W2. We say that V is the direct sum of W1 and
W2 if and only if:

(Def.4) V = W1 + W2 and W1 ∩ W2 = 0V .

Let us consider G1, V , W . A subspace of V is said to be a linear complement
of W if:

(Def.5) V is the direct sum of it and W .

We now state three propositions:

(45) V is the direct sum of W1 and W2 if and only if V = W1 + W2 and
W1 ∩ W2 = 0V .

(46) If V is the direct sum of W1 and W2, then W1 is a linear complement
of W2.

(47) If V is the direct sum of W1 and W2, then W2 is a linear complement
of W1.

In the sequel L denotes a linear complement of W . The following propositions
are true:

(48) V is the direct sum of L and W and V is the direct sum of W and L.

(49) W + L = V and L + W = V .

(50) W ∩ L = 0V and L ∩ W = 0V .

(51) If V is the direct sum of W1 and W2, then V is the direct sum of W2

and W1.

(52) V is the direct sum of 0V and ΩV and V is the direct sum of ΩV and
0V .

(53) W is a linear complement of L.

(54) 0V is a linear complement of ΩV and ΩV is a linear complement of 0V .

In the sequel C1 is a coset of W1 and C2 is a coset of W2. We now state
several propositions:

(55) If C1 ∩ C2 6= ∅, then C1 ∩ C2 is a coset of W1 ∩ W2.
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(56) V is the direct sum of W1 and W2 if and only if for every C1, C2 there
exists v such that C1 ∩ C2 = {v}.

(57) W1 + W2 = V if and only if for every v there exist v1, v2 such that
v1 ∈ W1 and v2 ∈ W2 and v = v1 + v2.

(58) If V is the direct sum of W1 and W2 and v = v1 + v2 and v = u1 + u2

and v1 ∈ W1 and u1 ∈ W1 and v2 ∈ W2 and u2 ∈ W2, then v1 = u1 and
v2 = u2.

(59) Suppose V = W1 + W2 and there exists v such that for all v1, v2, u1,
u2 such that v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and
v2 ∈ W2 and u2 ∈ W2 holds v1 = u1 and v2 = u2. Then V is the direct
sum of W1 and W2.

In the sequel t will denote an element of [: the carrier of the carrier of V,

the carrier of the carrier of V :]. Let us consider G1, V , t. Then t1 is a vector
of V . Then t2 is a vector of V .

Let us consider G1, V , v, W1, W2. Let us assume that V is the direct sum
of W1 and W2. The functor v < (W1,W2) yielding an element of [: the carrier
of the carrier of V, the carrier of the carrier of V :] is defined by:

(Def.6) v = (v < (W1,W2))1 + (v < (W1,W2))2 and (v < (W1,W2))1 ∈ W1 and
(v < (W1,W2))2 ∈ W2.

Next we state a number of propositions:

(60) If V is the direct sum of W1 and W2 and t1 + t2 = v and t1 ∈ W1 and
t2 ∈ W2, then t = v < (W1,W2).

(61) If V is the direct sum of W1 and W2, then (v < (W1,W2))1 + (v <

(W1,W2))2 = v.

(62) If V is the direct sum of W1 and W2, then (v < (W1,W2))1 ∈ W1.

(63) If V is the direct sum of W1 and W2, then (v < (W1,W2))2 ∈ W2.

(64) If V is the direct sum of W1 and W2, then (v < (W1,W2))1 = (v <

(W2,W1))2.

(65) If V is the direct sum of W1 and W2, then (v < (W1,W2))2 = (v <

(W2,W1))1.

(66) If t1 + t2 = v and t1 ∈ W and t2 ∈ L, then t = v < (W,L).

(67) (v < (W,L))1 + (v < (W,L))2 = v.

(68) (v < (W,L))1 ∈ W and (v < (W,L))2 ∈ L.

(69) (v < (W,L))1 = (v < (L,W ))2.

(70) (v < (W,L))2 = (v < (L,W ))1.

In the sequel A1, A2 will be elements of Subspaces V . Let us consider G1, V .
The functor SubJoinV yields a binary operation on SubspacesV and is defined
by:

(Def.7) for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubJoin V )(A1, A2) = W1 + W2.
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Let us consider G1, V . The functor SubMeet V yielding a binary operation
on Subspaces V is defined by:

(Def.8) for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubMeet V )(A1, A2) = W1 ∩ W2.

In the sequel o denotes a binary operation on SubspacesV . One can prove
the following propositions:

(71) If A1 = W1 and A2 = W2, then SubJoinV (A1, A2) = W1 + W2.

(72) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds o(A1,

A2) = W1 + W2, then o = SubJoinV .

(73) If A1 = W1 and A2 = W2, then SubMeet V (A1, A2) = W1 ∩ W2.

(74) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds o(A1,

A2) = W1 ∩ W2, then o = SubMeet V .

(75) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a lattice.

(76) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a lower bound lattice.

(77) 〈Subspaces V, SubJoin V, SubMeet V 〉 is an upper bound lattice.

(78) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a bound lattice.

(79) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a modular lattice.

(80) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a complemented lattice.

(81) v = v1 + v2 if and only if v1 = v − v2.
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