Operations on Subspaces in Vector Space

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. Sum, direct sum and intersection of subspaces are introduced. We prove some theorems concerning those notions and the decomposition of vector onto two subspaces. Linear complement of a subspace is also defined. We prove theorem that belong rather to [3].

MML Identifier: VECTSP_5.

The papers [2], [8], [9], [5], [3], [4], [6], [1], and [7] provide the terminology and notation for this paper. For simplicity we adopt the following rules: G_{1} will denote a field, V will denote a vector space over $G_{1}, W, W_{1}, W_{2}, W_{3}$ will denote subspaces of $V, u, u_{1}, u_{2}, v, v_{1}, v_{2}$ will denote vectors of V, and x will be arbitrary. Let us consider G_{1}, V, W_{1}, W_{2}. The functor $W_{1}+W_{2}$ yields a subspace of V and is defined by:
(Def.1) the carrier of the carrier of $W_{1}+W_{2}=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$.
Let us consider G_{1}, V, W_{1}, W_{2}. The functor $W_{1} \cap W_{2}$ yields a subspace of V and is defined by:
(Def.2) the carrier of the carrier of $W_{1} \cap W_{2}=$ (the carrier of the carrier of $\left.W_{1}\right) \cap\left(\right.$ the carrier of the carrier of $\left.W_{2}\right)$.
We now state a number of propositions:
(1) The carrier of the carrier of $W_{1}+W_{2}=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$.
(2) If the carrier of the carrier of $W=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$, then $W=W_{1}+W_{2}$.
(3) The carrier of the carrier of $W_{1} \cap W_{2}=$ (the carrier of the carrier of $\left.W_{1}\right) \cap\left(\right.$ the carrier of the carrier of $\left.W_{2}\right)$.
(4) If the carrier of the carrier of $W=$ (the carrier of the carrier of $\left.W_{1}\right) \cap$ (the carrier of the carrier of W_{2}), then $W=W_{1} \cap W_{2}$.
(5) $\quad x \in W_{1}+W_{2}$ if and only if there exist v_{1}, v_{2} such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $x=v_{1}+v_{2}$.

[^0](6) If $v \in W_{1}$ or $v \in W_{2}$, then $v \in W_{1}+W_{2}$.
(7) $\quad x \in W_{1} \cap W_{2}$ if and only if $x \in W_{1}$ and $x \in W_{2}$.
(8) $W+W=W$.
(9) $W_{1}+W_{2}=W_{2}+W_{1}$.
(10) $W_{1}+\left(W_{2}+W_{3}\right)=\left(W_{1}+W_{2}\right)+W_{3}$.
(11) W_{1} is a subspace of $W_{1}+W_{2}$ and W_{2} is a subspace of $W_{1}+W_{2}$.
(12) $\quad W_{1}$ is a subspace of W_{2} if and only if $W_{1}+W_{2}=W_{2}$.
(13) $\mathbf{0}_{V}+W=W$ and $W+\mathbf{0}_{V}=W$.
(14) $\mathbf{0}_{V}+\Omega_{V}=V$ and $\Omega_{V}+\mathbf{0}_{V}=V$.
(15) $\Omega_{V}+W=V$ and $W+\Omega_{V}=V$.
(16) $\Omega_{V}+\Omega_{V}=V$.
(17) $W \cap W=W$.
(18) $W_{1} \cap W_{2}=W_{2} \cap W_{1}$.
(19) $\quad W_{1} \cap\left(W_{2} \cap W_{3}\right)=\left(W_{1} \cap W_{2}\right) \cap W_{3}$.
(20) $\quad W_{1} \cap W_{2}$ is a subspace of W_{1} and $W_{1} \cap W_{2}$ is a subspace of W_{2}.
(21) $\quad W_{1}$ is a subspace of W_{2} if and only if $W_{1} \cap W_{2}=W_{1}$.
(22) If W_{1} is a subspace of W_{2}, then $W_{1} \cap W_{3}$ is a subspace of $W_{2} \cap W_{3}$.
(23) If W_{1} is a subspace of W_{3}, then $W_{1} \cap W_{2}$ is a subspace of W_{3}.
(24) If W_{1} is a subspace of W_{2} and W_{1} is a subspace of W_{3}, then W_{1} is a subspace of $W_{2} \cap W_{3}$.
(25) $\mathbf{0}_{V} \cap W=\mathbf{0}_{V}$ and $W \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(26) $\quad \mathbf{0}_{V} \cap \Omega_{V}=\mathbf{0}_{V}$ and $\Omega_{V} \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(27) $\Omega_{V} \cap W=W$ and $W \cap \Omega_{V}=W$.
(28) $\Omega_{V} \cap \Omega_{V}=V$.
(29) $W_{1} \cap W_{2}$ is a subspace of $W_{1}+W_{2}$.
(30) $W_{1} \cap W_{2}+W_{2}=W_{2}$.
(31) $W_{1} \cap\left(W_{1}+W_{2}\right)=W_{1}$.
(32) $\quad W_{1} \cap W_{2}+W_{2} \cap W_{3}$ is a subspace of $W_{2} \cap\left(W_{1}+W_{3}\right)$.
(33) If W_{1} is a subspace of W_{2}, then $W_{2} \cap\left(W_{1}+W_{3}\right)=W_{1} \cap W_{2}+W_{2} \cap W_{3}$.
(34) $W_{2}+W_{1} \cap W_{3}$ is a subspace of $\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(35) If W_{1} is a subspace of W_{2}, then $W_{2}+W_{1} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(36) If W_{1} is a subspace of W_{3}, then $W_{1}+W_{2} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap W_{3}$.
(37) $W_{1}+W_{2}=W_{2}$ if and only if $W_{1} \cap W_{2}=W_{1}$.
(38) If W_{1} is a subspace of W_{2}, then $W_{1}+W_{3}$ is a subspace of $W_{2}+W_{3}$.
(39) If W_{1} is a subspace of W_{2}, then W_{1} is a subspace of $W_{2}+W_{3}$.
(40) If W_{1} is a subspace of W_{3} and W_{2} is a subspace of W_{3}, then $W_{1}+W_{2}$ is a subspace of W_{3}.
(41) There exists W such that the carrier of the carrier of $W=$ (the carrier of the carrier of $\left.W_{1}\right) \cup\left(\right.$ the carrier of the carrier of W_{2}) if and only if W_{1} is a subspace of W_{2} or W_{2} is a subspace of W_{1}.
Let us consider G_{1}, V. The functor Subspaces V yielding a non-empty set is defined as follows:
(Def.3) for every x holds $x \in$ Subspaces V if and only if x is a subspace of V.
In the sequel D denotes a non-empty set. The following three propositions are true:
(42) If for every x holds $x \in D$ if and only if x is a subspace of V, then $D=$ Subspaces V.
(43) $\quad x \in$ Subspaces V if and only if x is a subspace of V.
(44) $V \in$ Subspaces V.

Let us consider G_{1}, V, W_{1}, W_{2}. We say that V is the direct sum of W_{1} and W_{2} if and only if:
(Def.4) $\quad V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\mathbf{0}_{V}$.
Let us consider G_{1}, V, W. A subspace of V is said to be a linear complement of W if:
(Def.5) $\quad V$ is the direct sum of it and W.
We now state three propositions:
(45) $\quad V$ is the direct sum of W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\mathbf{0}_{V}$.
(46) If V is the direct sum of W_{1} and W_{2}, then W_{1} is a linear complement of W_{2}.
(47) If V is the direct sum of W_{1} and W_{2}, then W_{2} is a linear complement of W_{1}.
In the sequel L denotes a linear complement of W. The following propositions are true:
(48) $\quad V$ is the direct sum of L and W and V is the direct sum of W and L.
(49) $W+L=V$ and $L+W=V$.
(50) $W \cap L=\mathbf{0}_{V}$ and $L \cap W=\mathbf{0}_{V}$.
(51) If V is the direct sum of W_{1} and W_{2}, then V is the direct sum of W_{2} and W_{1}.
(52) V is the direct sum of $\mathbf{0}_{V}$ and Ω_{V} and V is the direct sum of Ω_{V} and $\mathbf{0}_{V}$.
(53) W is a linear complement of L.
(54) $\mathbf{0}_{V}$ is a linear complement of Ω_{V} and Ω_{V} is a linear complement of $\mathbf{0}_{V}$.

In the sequel C_{1} is a coset of W_{1} and C_{2} is a coset of W_{2}. We now state several propositions:
(55) If $C_{1} \cap C_{2} \neq \emptyset$, then $C_{1} \cap C_{2}$ is a coset of $W_{1} \cap W_{2}$.
(56) $\quad V$ is the direct sum of W_{1} and W_{2} if and only if for every C_{1}, C_{2} there exists v such that $C_{1} \cap C_{2}=\{v\}$.
(57) $\quad W_{1}+W_{2}=V$ if and only if for every v there exist v_{1}, v_{2} such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $v=v_{1}+v_{2}$.
(58) If V is the direct sum of W_{1} and W_{2} and $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$, then $v_{1}=u_{1}$ and $v_{2}=u_{2}$.
(59) Suppose $V=W_{1}+W_{2}$ and there exists v such that for all v_{1}, v_{2}, u_{1}, u_{2} such that $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$ holds $v_{1}=u_{1}$ and $v_{2}=u_{2}$. Then V is the direct sum of W_{1} and W_{2}.
In the sequel t will denote an element of : the carrier of the carrier of V, the carrier of the carrier of V :]. Let us consider G_{1}, V, t. Then t_{1} is a vector of V. Then t_{2} is a vector of V.

Let us consider $G_{1}, V, v, W_{1}, W_{2}$. Let us assume that V is the direct sum of W_{1} and W_{2}. The functor $v \triangleleft\left(W_{1}, W_{2}\right)$ yielding an element of : the carrier of the carrier of V, the carrier of the carrier of V : is defined by:
(Def.6) $\quad v=\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{1}}+\left(v \triangleleft\left(W_{1}, W_{2}\right)_{\mathbf{2}}\right.$ and $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{1}} \in W_{1}$ and $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}} \in W_{2}$.
Next we state a number of propositions:
(60) If V is the direct sum of W_{1} and W_{2} and $t_{\mathbf{1}}+t_{\mathbf{2}}=v$ and $t_{\mathbf{1}} \in W_{1}$ and $t_{\mathbf{2}} \in W_{2}$, then $t=v \triangleleft\left(W_{1}, W_{2}\right)$.
(61) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{1}+(v \triangleleft$ $\left.\left(W_{1}, W_{2}\right)\right)_{2}=v$.
(62) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)_{\mathbf{1}} \in W_{1}\right.$.
(63) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)_{\mathbf{2}} \in W_{2}\right.$.
(64) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{1}=(v \triangleleft$ $\left.\left(W_{2}, W_{1}\right)\right)_{\mathbf{2}}$.
(65) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{2}=(v \triangleleft$ $\left.\left(W_{2}, W_{1}\right)\right)_{1}$.
(66) If $t_{\mathbf{1}}+t_{\mathbf{2}}=v$ and $t_{\mathbf{1}} \in W$ and $t_{\mathbf{2}} \in L$, then $t=v \triangleleft(W, L)$.

$$
\begin{align*}
& (v \triangleleft(W, L))_{\mathbf{1}}+(v \triangleleft(W, L))_{\mathbf{2}}=v . \tag{67}\\
& (v \triangleleft(W, L))_{\mathbf{1}} \in W \text { and }(v \triangleleft(W, L))_{\mathbf{2}} \in L . \tag{68}\\
& (v \triangleleft(W, L))_{\mathbf{1}}=(v \triangleleft(L, W))_{\mathbf{2}} . \tag{69}\\
& (v \triangleleft(W, L))_{\mathbf{2}}=(v \triangleleft(L, W))_{\mathbf{1}} . \tag{70}
\end{align*}
$$

In the sequel A_{1}, A_{2} will be elements of Subspaces V. Let us consider G_{1}, V. The functor SubJoin V yields a binary operation on Subspaces V and is defined by:
(Def.7) for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubJoin $V)\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.

Let us consider G_{1}, V. The functor SubMeet V yielding a binary operation on Subspaces V is defined by:
(Def.8) for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubMeet $V)\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.
In the sequel o denotes a binary operation on Subspaces V. One can prove the following propositions:
(71) If $A_{1}=W_{1}$ and $A_{2}=W_{2}$, then SubJoin $V\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.
(72) If for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $o\left(A_{1}\right.$, $\left.A_{2}\right)=W_{1}+W_{2}$, then $o=$ SubJoin V.
(73) If $A_{1}=W_{1}$ and $A_{2}=W_{2}$, then SubMeet $V\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.
(74) If for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $o\left(A_{1}\right.$, $\left.A_{2}\right)=W_{1} \cap W_{2}$, then $o=$ SubMeet V.
\langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a lattice.
\langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a lower bound lattice.
\langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is an upper bound lattice.
\langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a bound lattice.
\langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a modular lattice.
\langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a complemented lattice.
$v=v_{1}+v_{2}$ if and only if $v_{1}=v-v_{2}$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[5] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[6] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, 1(5):851-854, 1990.
[7] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[8] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[9] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990.

Received July 27, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

