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Summary. We introduce the notions of subspace of vector space
and coset of a subspace. We prove a number of theorems concerning those
notions. Some theorems that belong rather to [1] are proved.
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The articles [3], [5], [2], [1], and [4] provide the terminology and notation for
this paper. For simplicity we adopt the following rules: G1 will denote a field,
V , X, Y will denote vector spaces over G1, u, v, v1, v2 will denote vectors of
V , a, b, c will denote elements of G1, and x will be arbitrary. Let us consider
G1, V . A subset of V is a subset of the carrier of the carrier of V .

In the sequel V1, V2, V3 denote subsets of V . Let us consider G1, V , V1. We
say that V1 is linearly closed if and only if:

(Def.1) for all v, u such that v ∈ V1 and u ∈ V1 holds v + u ∈ V1 and for all a,
v such that v ∈ V1 holds a · v ∈ V1.

The following propositions are true:

(1) If for all v, u such that v ∈ V1 and u ∈ V1 holds v + u ∈ V1 and for all
a, v such that v ∈ V1 holds a · v ∈ V1, then V1 is linearly closed.

(2) If V1 is linearly closed, then for all v, u such that v ∈ V1 and u ∈ V1

holds v + u ∈ V1.

(3) If V1 is linearly closed, then for all a, v such that v ∈ V1 holds a ·v ∈ V1.

(4) If V1 6= ∅ and V1 is linearly closed, then ΘV ∈ V1.

(5) If V1 is linearly closed, then for every v such that v ∈ V1 holds −v ∈ V1.

(6) If V1 is linearly closed, then for all v, u such that v ∈ V1 and u ∈ V1

holds v − u ∈ V1.

(7) {ΘV } is linearly closed.
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(8) If the carrier of the carrier of V = V1, then V1 is linearly closed.

(9) If V1 is linearly closed and V2 is linearly closed and V3 = {v + u : v ∈
V1 ∧ u ∈ V2}, then V3 is linearly closed.

(10) If V1 is linearly closed and V2 is linearly closed, then V1 ∩ V2 is linearly
closed.

Let us consider G1, V . A vector space over G1 is said to be a subspace of V

if:

(Def.2) the carrier of the carrier of it ⊆ the carrier of the carrier of V and the
zero of the carrier of it = the zero of the carrier of V and the addition
of the carrier of it = (the addition of the carrier of V )

�
[: the carrier of

the carrier of it, the carrier of the carrier of it :] and the multiplication
of it = (the multiplication of V )

�
[: the carrier of G1, the carrier of the

carrier of it :].

Next we state the proposition

(11) If the carrier of the carrier of X ⊆ the carrier of the carrier of V

and the zero of the carrier of X = the zero of the carrier of V and
the addition of the carrier of X = (the addition of the carrier of V )

�
[:

the carrier of the carrier of X, the carrier of the carrier of X :] and the
multiplication of X = (the multiplication of V )

�
[: the carrier of G1, the

carrier of the carrier of X :], then X is a subspace of V .

We adopt the following convention: W , W1, W2 will be subspaces of V and
w, w1, w2 will be vectors of W . Next we state a number of propositions:

(12) The carrier of the carrier of W ⊆ the carrier of the carrier of V .

(13) The zero of the carrier of W = the zero of the carrier of V .

(14) The addition of the carrier of W = (the addition of the carrier of
V )

�
[: the carrier of the carrier of W, the carrier of the carrier of W :].

(15) The multiplication of W = (the multiplication of V )
�
[: the carrier of

G1, the carrier of the carrier of W :].

(16) If x ∈ W1 and W1 is a subspace of W2, then x ∈ W2.

(17) If x ∈ W , then x ∈ V .

(18) w is a vector of V .

(19) ΘW = ΘV .

(20) ΘW1
= ΘW2

.

(21) If w1 = v and w2 = u, then w1 + w2 = v + u.

(22) If w = v, then a · w = a · v.

(23) If w = v, then −v = −w.

(24) If w1 = v and w2 = u, then w1 − w2 = v − u.

(25) ΘV ∈ W .

(26) ΘW1
∈ W2.

(27) ΘW ∈ V .

(28) If u ∈ W and v ∈ W , then u + v ∈ W .
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(29) If v ∈ W , then a · v ∈ W .

(30) If v ∈ W , then −v ∈ W .

(31) If u ∈ W and v ∈ W , then u − v ∈ W .

(32) V is a subspace of V .

(33) If V is a subspace of X and X is a subspace of V , then V = X.

(34) If V is a subspace of X and X is a subspace of Y , then V is a subspace
of Y .

(35) If the carrier of the carrier of W1 ⊆ the carrier of the carrier of W2,
then W1 is a subspace of W2.

(36) If for every v such that v ∈ W1 holds v ∈ W2, then W1 is a subspace of
W2.

(37) If the carrier of the carrier of W1 = the carrier of the carrier of W2,
then W1 = W2.

(38) If for every v holds v ∈ W1 if and only if v ∈ W2, then W1 = W2.

(39) If the carrier of the carrier of W = the carrier of the carrier of V ,
then W = V .

(40) If for every v holds v ∈ W , then W = V .

(41) If the carrier of the carrier of W = V1, then V1 is linearly closed.

(42) If V1 6= ∅ and V1 is linearly closed, then there exists W such that V1 =
the carrier of the carrier of W .

Let us consider G1, V . The functor 0V yielding a subspace of V is defined
by:

(Def.3) the carrier of the carrier of 0V = {ΘV }.

Let us consider G1, V . The functor ΩV yields a subspace of V and is defined
by:

(Def.4) ΩV = V .

The following propositions are true:

(43) The carrier of the carrier of 0V = {ΘV }.

(44) If the carrier of the carrier of W = {ΘV }, then W = 0V .

(45) ΩV = V .

(46) x ∈ 0V if and only if x = ΘV .

(47) 0W = 0V .

(48) 0W1
= 0W2

.

(49) 0W is a subspace of V .

(50) 0V is a subspace of W .

(51) 0W1
is a subspace of W2.

(52) W is a subspace of ΩV .

(53) V is a subspace of ΩV .

Let us consider G1, V , v, W . The functor v + W yielding a subset of V is
defined by:
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(Def.5) v + W = {v + u : u ∈ W}.

Let us consider G1, V , W . A subset of V is said to be a coset of W if:

(Def.6) there exists v such that it = v + W .

In the sequel B, C will denote cosets of W . The following propositions are
true:

(54) v + W = {v + u : u ∈ W}.

(55) There exists v such that C = v + W .

(56) If V1 = v + W , then V1 is a coset of W .

(57) x ∈ v + W if and only if there exists u such that u ∈ W and x = v + u.

(58) ΘV ∈ v + W if and only if v ∈ W .

(59) v ∈ v + W .

(60) ΘV + W = the carrier of the carrier of W .

(61) v + 0V = {v}.

(62) v + ΩV = the carrier of the carrier of V .

(63) ΘV ∈ v + W if and only if v + W = the carrier of the carrier of W .

(64) v ∈ W if and only if v + W = the carrier of the carrier of W .

(65) If v ∈ W , then a · v + W = the carrier of the carrier of W .

(66) If a 6= 0G1
and a · v + W = the carrier of the carrier of W , then v ∈ W .

(67) v ∈ W if and only if (−v) + W = the carrier of the carrier of W .

(68) u ∈ W if and only if v + W = (v + u) + W .

(69) u ∈ W if and only if v + W = (v − u) + W .

(70) v ∈ u + W if and only if u + W = v + W .

(71) If u ∈ v1 + W and u ∈ v2 + W , then v1 + W = v2 + W .

(72) If a 6= 1G1
and a · v ∈ v + W , then v ∈ W .

(73) If v ∈ W , then a · v ∈ v + W .

(74) If v ∈ W , then −v ∈ v + W .

(75) u + v ∈ v + W if and only if u ∈ W .

(76) v − u ∈ v + W if and only if u ∈ W .

(77) u ∈ v+W if and only if there exists v1 such that v1 ∈ W and u = v+v1.

(78) u ∈ v+W if and only if there exists v1 such that v1 ∈ W and u = v−v1.

(79) There exists v such that v1 ∈ v + W and v2 ∈ v + W if and only if
v1 − v2 ∈ W .

(80) If v+W = u+W , then there exists v1 such that v1 ∈ W and v+v1 = u.

(81) If v+W = u+W , then there exists v1 such that v1 ∈ W and v−v1 = u.

(82) v + W1 = v + W2 if and only if W1 = W2.

(83) If v + W1 = u + W2, then W1 = W2.

In the sequel C1 denotes a coset of W1 and C2 denotes a coset of W2. One
can prove the following propositions:

(84) There exists C such that v ∈ C.
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(85) C is linearly closed if and only if C = the carrier of the carrier of W .

(86) If C1 = C2, then W1 = W2.

(87) {v} is a coset of 0V .

(88) If V1 is a coset of 0V , then there exists v such that V1 = {v}.

(89) The carrier of the carrier of W is a coset of W .

(90) The carrier of the carrier of V is a coset of ΩV .

(91) If V1 is a coset of ΩV , then V1 = the carrier of the carrier of V .

(92) ΘV ∈ C if and only if C = the carrier of the carrier of W .

(93) u ∈ C if and only if C = u + W .

(94) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈ W and u+v1 = v.

(95) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈ W and u−v1 = v.

(96) There exists C such that v1 ∈ C and v2 ∈ C if and only if v1 − v2 ∈ W .

(97) If u ∈ B and u ∈ C, then B = C.

In the sequel w will denote a vector of V . One can prove the following
propositions:

(99)2 (u + v) − w = u + (v − w).

(100) −(−v) = v.

(101) v − (u − w) = (v − u) + w.

(102) If v + u = v or u + v = v, then u = ΘV .

(103) (a − b) · v = a · v − b · v.

(104) a − 0G1
= a.

(105) a − a = 0G1
.

(106) a − (b − c) = (a − b) + c.
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