Subspaces and Cosets of Subspaces in Vector Space

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. We introduce the notions of subspace of vector space and coset of a subspace. We prove a number of theorems concerning those notions. Some theorems that belong rather to [1] are proved.

MML Identifier: VECTSP_4.

The articles [3], [5], [2], [1], and [4] provide the terminology and notation for this paper. For simplicity we adopt the following rules: G_{1} will denote a field, V, X, Y will denote vector spaces over $G_{1}, u, v, v_{1}, v_{2}$ will denote vectors of V, a, b, c will denote elements of G_{1}, and x will be arbitrary. Let us consider G_{1}, V. A subset of V is a subset of the carrier of the carrier of V.

In the sequel V_{1}, V_{2}, V_{3} denote subsets of V. Let us consider G_{1}, V, V_{1}. We say that V_{1} is linearly closed if and only if:
(Def.1) for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$ and for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
The following propositions are true:
(1) If for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$ and for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$, then V_{1} is linearly closed.
(2) If V_{1} is linearly closed, then for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$.
(3) If V_{1} is linearly closed, then for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
(4) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then $\Theta_{V} \in V_{1}$.
(5) If V_{1} is linearly closed, then for every v such that $v \in V_{1}$ holds $-v \in V_{1}$.
(6) If V_{1} is linearly closed, then for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v-u \in V_{1}$.
(7) $\left\{\Theta_{V}\right\}$ is linearly closed.

[^0](8) If the carrier of the carrier of $V=V_{1}$, then V_{1} is linearly closed.
(9) If V_{1} is linearly closed and V_{2} is linearly closed and $V_{3}=\{v+u: v \in$ $\left.V_{1} \wedge u \in V_{2}\right\}$, then V_{3} is linearly closed.
(10) If V_{1} is linearly closed and V_{2} is linearly closed, then $V_{1} \cap V_{2}$ is linearly closed.
Let us consider G_{1}, V. A vector space over G_{1} is said to be a subspace of V if:
(Def.2) the carrier of the carrier of it \subseteq the carrier of the carrier of V and the zero of the carrier of it $=$ the zero of the carrier of V and the addition of the carrier of it $=($ the addition of the carrier of $V)$ i: the carrier of the carrier of it, the carrier of the carrier of it:] and the multiplication of it $=($ the multiplication of $V) \upharpoonright$: the carrier of G_{1}, the carrier of the carrier of it :].
Next we state the proposition
(11) If the carrier of the carrier of $X \subseteq$ the carrier of the carrier of V and the zero of the carrier of $X=$ the zero of the carrier of V and the addition of the carrier of $X=($ the addition of the carrier of $V)$ 「: the carrier of the carrier of X, the carrier of the carrier of $X:$ and the multiplication of $X=($ the multiplication of $V) \upharpoonright$: the carrier of G_{1}, the carrier of the carrier of $X:$, then X is a subspace of V.
We adopt the following convention: W, W_{1}, W_{2} will be subspaces of V and w, w_{1}, w_{2} will be vectors of W. Next we state a number of propositions:
(12) The carrier of the carrier of $W \subseteq$ the carrier of the carrier of V.
(13) The zero of the carrier of $W=$ the zero of the carrier of V.
(14) The addition of the carrier of $W=$ (the addition of the carrier of $V) \upharpoonright$: the carrier of the carrier of W, the carrier of the carrier of W : .
(15) The multiplication of $W=$ (the multiplication of V) 「: the carrier of G_{1}, the carrier of the carrier of W :].
(16) If $x \in W_{1}$ and W_{1} is a subspace of W_{2}, then $x \in W_{2}$.
(17) If $x \in W$, then $x \in V$.
(18) w is a vector of V.
(19) $\Theta_{W}=\Theta_{V}$.
(20) $\Theta_{W_{1}}=\Theta_{W_{2}}$.
(22) If $w=v$, then $a \cdot w=a \cdot v$.
(23) If $w=v$, then $-v=-w$.
(24) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}-w_{2}=v-u$.
(25) $\Theta_{V} \in W$.
(26) $\Theta_{W_{1}} \in W_{2}$.
(27) $\Theta_{W} \in V$.
(28) If $u \in W$ and $v \in W$, then $u+v \in W$.
(29) If $v \in W$, then $a \cdot v \in W$.
(30) If $v \in W$, then $-v \in W$.
(31) If $u \in W$ and $v \in W$, then $u-v \in W$.
(32) $\quad V$ is a subspace of V.
(33) If V is a subspace of X and X is a subspace of V, then $V=X$.
(34) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
(35) If the carrier of the carrier of $W_{1} \subseteq$ the carrier of the carrier of W_{2}, then W_{1} is a subspace of W_{2}.
(36) If for every v such that $v \in W_{1}$ holds $v \in W_{2}$, then W_{1} is a subspace of W_{2}.
(37) If the carrier of the carrier of $W_{1}=$ the carrier of the carrier of W_{2}, then $W_{1}=W_{2}$.
(38) If for every v holds $v \in W_{1}$ if and only if $v \in W_{2}$, then $W_{1}=W_{2}$.
(39) If the carrier of the carrier of $W=$ the carrier of the carrier of V, then $W=V$.
(40) If for every v holds $v \in W$, then $W=V$.
(41) If the carrier of the carrier of $W=V_{1}$, then V_{1} is linearly closed.
(42) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then there exists W such that $V_{1}=$ the carrier of the carrier of W.
Let us consider G_{1}, V. The functor $\mathbf{0}_{V}$ yielding a subspace of V is defined by:
(Def.3) the carrier of the carrier of $\mathbf{0}_{V}=\left\{\Theta_{V}\right\}$.
Let us consider G_{1}, V. The functor Ω_{V} yields a subspace of V and is defined by:
(Def.4) $\quad \Omega_{V}=V$.
The following propositions are true:
(43) The carrier of the carrier of $\mathbf{0}_{V}=\left\{\Theta_{V}\right\}$.
(44) If the carrier of the carrier of $W=\left\{\Theta_{V}\right\}$, then $W=\mathbf{0}_{V}$.
(45) $\quad \Omega_{V}=V$.
(46) $\quad x \in \mathbf{0}_{V}$ if and only if $x=\Theta_{V}$.
(47) $\quad \mathbf{0}_{W}=\mathbf{0}_{V}$.
(48) $\quad \mathbf{0}_{W_{1}}=\mathbf{0}_{W_{2}}$.
(49) $\quad \mathbf{0}_{W}$ is a subspace of V.
(50) $\quad \mathbf{0}_{V}$ is a subspace of W.
(51) $\quad \mathbf{0}_{W_{1}}$ is a subspace of W_{2}.
(52) $\quad W$ is a subspace of Ω_{V}.
(53) $\quad V$ is a subspace of Ω_{V}.

Let us consider G_{1}, V, v, W. The functor $v+W$ yielding a subset of V is defined by:
(Def.5)

$$
v+W=\{v+u: u \in W\} .
$$

Let us consider G_{1}, V, W. A subset of V is said to be a coset of W if:
(Def.6) there exists v such that it $=v+W$.
In the sequel B, C will denote cosets of W. The following propositions are true:
(54) $v+W=\{v+u: u \in W\}$.
(55) There exists v such that $C=v+W$.
(56) If $V_{1}=v+W$, then V_{1} is a coset of W.
(57) $\quad x \in v+W$ if and only if there exists u such that $u \in W$ and $x=v+u$.
(58) $\quad \Theta_{V} \in v+W$ if and only if $v \in W$.
(59) $v \in v+W$.
(60) $\Theta_{V}+W=$ the carrier of the carrier of W.
(61) $v+\mathbf{0}_{V}=\{v\}$.
(62) $v+\Omega_{V}=$ the carrier of the carrier of V.
(63) $\Theta_{V} \in v+W$ if and only if $v+W=$ the carrier of the carrier of W.
(64) $v \in W$ if and only if $v+W=$ the carrier of the carrier of W.
(65) If $v \in W$, then $a \cdot v+W=$ the carrier of the carrier of W.
(66) If $a \neq 0_{G_{1}}$ and $a \cdot v+W=$ the carrier of the carrier of W, then $v \in W$.
(67) $\quad v \in W$ if and only if $(-v)+W=$ the carrier of the carrier of W.
(68) $\quad u \in W$ if and only if $v+W=(v+u)+W$.
(69) $u \in W$ if and only if $v+W=(v-u)+W$.
(70) $v \in u+W$ if and only if $u+W=v+W$.
(71) If $u \in v_{1}+W$ and $u \in v_{2}+W$, then $v_{1}+W=v_{2}+W$.
(72) If $a \neq 1_{G_{1}}$ and $a \cdot v \in v+W$, then $v \in W$.
(73) If $v \in W$, then $a \cdot v \in v+W$.
(74) If $v \in W$, then $-v \in v+W$.
(75) $u+v \in v+W$ if and only if $u \in W$.
(76) $v-u \in v+W$ if and only if $u \in W$.
(77) $u \in v+W$ if and only if there exists v_{1} such that $v_{1} \in W$ and $u=v+v_{1}$.
(78) $u \in v+W$ if and only if there exists v_{1} such that $v_{1} \in W$ and $u=v-v_{1}$.
(79) There exists v such that $v_{1} \in v+W$ and $v_{2} \in v+W$ if and only if $v_{1}-v_{2} \in W$.
(80) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v+v_{1}=u$.
(81) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v-v_{1}=u$.
(82) $v+W_{1}=v+W_{2}$ if and only if $W_{1}=W_{2}$.
(83) If $v+W_{1}=u+W_{2}$, then $W_{1}=W_{2}$.

In the sequel C_{1} denotes a coset of W_{1} and C_{2} denotes a coset of W_{2}. One can prove the following propositions:
(84) There exists C such that $v \in C$.
(85) C is linearly closed if and only if $C=$ the carrier of the carrier of W.
(86) If $C_{1}=C_{2}$, then $W_{1}=W_{2}$.
(87) $\{v\}$ is a coset of $\mathbf{0}_{V}$.
(88) If V_{1} is a coset of $\mathbf{0}_{V}$, then there exists v such that $V_{1}=\{v\}$.
(89) The carrier of the carrier of W is a coset of W.
(90) The carrier of the carrier of V is a coset of Ω_{V}.
(91) If V_{1} is a coset of Ω_{V}, then $V_{1}=$ the carrier of the carrier of V.
(92) $\Theta_{V} \in C$ if and only if $C=$ the carrier of the carrier of W.
(93) $u \in C$ if and only if $C=u+W$.
(94) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u+v_{1}=v$.
(95) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u-v_{1}=v$.
(96) There exists C such that $v_{1} \in C$ and $v_{2} \in C$ if and only if $v_{1}-v_{2} \in W$.
(97) If $u \in B$ and $u \in C$, then $B=C$.

In the sequel w will denote a vector of V. One can prove the following propositions:
$(99)^{2} \quad(u+v)-w=u+(v-w)$.
(100) $-(-v)=v$.
(101) $v-(u-w)=(v-u)+w$.
(102) If $v+u=v$ or $u+v=v$, then $u=\Theta_{V}$.
(103) $(a-b) \cdot v=a \cdot v-b \cdot v$.
(104) $a-0_{G_{1}}=a$.
(105) $a-a=0_{G_{1}}$.
(106) $a-(b-c)=(a-b)+c$.

References

[1] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[4] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, 1(5):851-854, 1990.

[^1][5] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 27, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

[^1]: ${ }^{2}$ The proposition (98) became obvious.

