Finite Sums of Vectors in Vector Space

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. We define the sum of finite sequences of vectors in vector space. Theorems concerning those sums are proved.

MML Identifier: VECTSP_3.

The terminology and notation used here have been introduced in the following papers: [7], [2], [3], [5], [6], [4], and [1]. Let F be a field. An element of F is an element of the carrier of F.

For simplicity we follow a convention: x will be arbitrary, G_{1} will denote a field, a will denote an element of G_{1}, V will denote a vector space over G_{1}, and v, v_{1}, v_{2}, w, u will denote vectors of V. Let us consider G_{1}, V, x. The predicate $x \in V$ is defined by:
(Def.1) $\quad x \in$ the carrier of the carrier of V.
Next we state two propositions:
(1) $x \in V$ if and only if $x \in$ the carrier of the carrier of V.
(2) $v \in V$.

We follow a convention: F, G, H will be finite sequences of elements of the carrier of the carrier of V, f will be a function from \mathbb{N} into the carrier of the carrier of V, and i, j, k, n will be natural numbers. Let us consider G_{1}, V, f, j. Then $f(j)$ is a vector of V.

Let us consider G_{1}, V, F. The functor $\sum F$ yielding a vector of V is defined as follows:
(Def.2) there exists f such that $\sum F=f(\operatorname{len} F)$ and $f(0)=\Theta_{V}$ and for all j, v such that $j<\operatorname{len} F$ and $v=F(j+1)$ holds $f(j+1)=f(j)+v$.
We now state a number of propositions:
(3) If there exists f such that $u=f(\operatorname{len} F)$ and $f(0)=\Theta_{V}$ and for all j, v such that $j<$ len F and $v=F(j+1)$ holds $f(j+1)=f(j)+v$, then $u=\sum F$.
(4) There exists f such that $\sum F=f($ len $F)$ and $f(0)=\Theta_{V}$ and for all j, v such that $j<$ len F and $v=F(j+1)$ holds $f(j+1)=f(j)+v$.
(5) If $k \in \operatorname{Seg} n$ and len $F=n$, then $F(k)$ is a vector of V.
(6) If len $F=\operatorname{len} G+1$ and $G=F \upharpoonright \operatorname{Seg}(\operatorname{len} G)$ and $v=F(\operatorname{len} F)$, then $\sum F=\sum G+v$.
(7) $\quad \sum\left(F^{\wedge} G\right)=\sum F+\sum G$.
(8) If $\operatorname{len} F=\operatorname{len} G$ and len $F=\operatorname{len} H$ and for every k such that $k \in$ $\operatorname{Seg}(\operatorname{len} F)$ holds $H(k)=\pi_{k} F+\pi_{k} G$, then $\sum H=\sum F+\sum G$.
(9) If len $F=\operatorname{len} G$ and for all k, v such that $k \in \operatorname{Seg}(\operatorname{len} F)$ and $v=G(k)$ holds $F(k)=a \cdot v$, then $\sum F=a \cdot \sum G$.
(10) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $G(k)=$ $a \cdot \pi_{k} F$, then $\sum G=a \cdot \sum F$.
(11) If len $F=\operatorname{len} G$ and for all k, v such that $k \in \operatorname{Seg}(\operatorname{len} F)$ and $v=G(k)$ holds $F(k)=-v$, then $\sum F=-\sum G$.
(12) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $G(k)=$ $-\pi_{k} F$, then $\sum G=-\sum F$.
(13) If len $F=\operatorname{len} G$ and len $F=\operatorname{len} H$ and for every k such that $k \in$ $\operatorname{Seg}(\operatorname{len} F)$ holds $H(k)=\pi_{k} F-\pi_{k} G$, then $\sum H=\sum F-\sum G$.
(14) If $\operatorname{rng} F=\operatorname{rng} G$ and F is one-to-one and G is one-to-one, then $\sum F=$ $\sum G$.
(15) For all F, G and for every permutation f of $\operatorname{dom} F$ such that len $F=$ len G and for every i such that $i \in \operatorname{dom} G$ holds $G(i)=F(f(i))$ holds $\sum F=\sum G$.
(16) For every permutation f of dom F such that $G=F \cdot f$ holds $\sum F=\sum G$.
(17) $\sum \varepsilon_{\text {the carrier of the carrier of } V}=\Theta_{V}$.
(18) $\quad \sum\langle v\rangle=v$.
(19) $\quad \sum\langle v, u\rangle=v+u$.
(20) $\quad \sum\langle v, u, w\rangle=(v+u)+w$.
(21) $a \cdot \sum \varepsilon_{\text {the carrier of the carrier of } V}=\Theta_{V}$.
(22) $a \cdot \sum\langle v\rangle=a \cdot v$.
(23) $a \cdot \sum\langle v, u\rangle=a \cdot v+a \cdot u$.
(24) $a \cdot \sum\langle v, u, w\rangle=(a \cdot v+a \cdot u)+a \cdot w$.
(25) $-\sum \varepsilon_{\text {the carrier of the carrier of } V}=\Theta_{V}$.
(26) $-\sum\langle v\rangle=-v$.
(27) $-\sum\langle v, u\rangle=(-v)-u$.
(28) $-\sum\langle v, u, w\rangle=((-v)-u)-w$.
(29) $\quad \sum\langle v, w\rangle=\sum\langle w, v\rangle$.
(30) $\quad \sum\langle v, w\rangle=\sum\langle v\rangle+\sum\langle w\rangle$.
(31) $\quad \sum\left\langle\Theta_{V}, \Theta_{V}\right\rangle=\Theta_{V}$.
$\sum\left\langle\Theta_{V}, v\right\rangle=v$ and $\sum\left\langle v, \Theta_{V}\right\rangle=v$.
(36) $\quad \sum\langle u, v, w\rangle=\left(\sum\langle u\rangle+\sum\langle v\rangle\right)+\sum\langle w\rangle$.
(37) $\quad \sum\langle u, v, w\rangle=\sum\langle u, v\rangle+w$.
(38) $\sum\langle u, v, w\rangle=\sum\langle v, w\rangle+u$.
(39) $\sum\langle u, v, w\rangle=\sum\langle u, w\rangle+v$.
(40) $\quad \sum\langle u, v, w\rangle=\sum\langle u, w, v\rangle$.
(41) $\sum\langle u, v, w\rangle=\sum\langle v, u, w\rangle$.
(42) $\quad \sum\langle u, v, w\rangle=\sum\langle v, w, u\rangle$.
(43) $\quad \sum\langle u, v, w\rangle=\sum\langle w, u, v\rangle$.
(44) $\sum\langle u, v, w\rangle=\sum\langle w, v, u\rangle$.
(45) $\sum\left\langle\Theta_{V}, \Theta_{V}, \Theta_{V}\right\rangle=\Theta_{V}$.
(46) $\sum\left\langle\Theta_{V}, \Theta_{V}, v\right\rangle=v$ and $\sum\left\langle\Theta_{V}, v, \Theta_{V}\right\rangle=v$ and $\sum\left\langle v, \Theta_{V}, \Theta_{V}\right\rangle=v$.
(47) $\sum\left\langle\Theta_{V}, u, v\right\rangle=u+v$ and $\sum\left\langle u, v, \Theta_{V}\right\rangle=u+v$ and $\sum\left\langle u, \Theta_{V}, v\right\rangle=u+v$.
(48) If len $F=0$, then $\sum F=\Theta_{V}$.
(49) If len $F=1$, then $\sum F=F(1)$.
(50) If len $F=2$ and $v_{1}=F(1)$ and $v_{2}=F(2)$, then $\sum F=v_{1}+v_{2}$.
(51) If len $F=3$ and $v_{1}=F(1)$ and $v_{2}=F(2)$ and $v=F(3)$, then $\sum F=$ $\left(v_{1}+v_{2}\right)+v$.
(52) $\quad v-v=\Theta_{V}$.
(53) $\quad-(v+w)=(-v)+(-w)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, $1(\mathbf{1}): 153-164,1990$.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[6] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, $1(\mathbf{3}): 575-579,1990$.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 12, 1990

