Basis of Real Linear Space

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. Notions of linear independence and dependence of set of vectors, the subspace generated by a set of vectors and basis of real linear space are introduced. Some theorems concerning those notion, are proved.

MML Identifier: RLVECT_3.

The papers [6], [2], [1], [3], [11], [4], [10], [9], [5], [8], and [7] provide the notation and terminology for this paper. For simplicity we follow a convention: x is arbitrary, a, b are real numbers, V is a real linear space, W, W_{1}, W_{2}, W_{3} are subspaces of V, v, v_{1}, v_{2} are vectors of V, A, B are subsets of the vectors of V, L, L_{1}, L_{2} are linear combinations of V, l is a linear combination of A, F, G are finite sequences of elements of the vectors of V, f is a function from the vectors of V into \mathbb{R}, X, Y, Z are sets, M is a non-empty family of sets, and C_{1} is a choice function of M. One can prove the following four propositions:
(1) $\sum\left(L_{1}+L_{2}\right)=\sum L_{1}+\sum L_{2}$.
(2) $\sum(a \cdot L)=a \cdot \sum L$.
(3) $\sum(-L)=-\sum L$.
(4) $\sum\left(L_{1}-L_{2}\right)=\sum L_{1}-\sum L_{2}$.

We now define two new predicates. Let us consider V, A. We say that A is linearly independent if and only if:
(Def.1) for every l such that $\sum l=0_{V}$ holds support $l=\emptyset$.
We say that A is linearly dependent if and only if A is not linearly independent.
One can prove the following propositions:
(5) $\quad A$ is linearly independent if and only if for every l such that $\sum l=0_{V}$ holds support $l=\emptyset$.
(6) If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
(7) If A is linearly independent, then $0_{V} \notin A$.
(8) $\emptyset_{\text {the }}$ vectors of V is linearly independent.
(9) $\quad\{v\}$ is linearly independent if and only if $v \neq 0_{V}$.
(10) $\left\{0_{V}\right\}$ is linearly dependent.
(11) If $\left\{v_{1}, v_{2}\right\}$ is linearly independent, then $v_{1} \neq 0_{V}$ and $v_{2} \neq 0_{V}$.
(12) $\left\{v, 0_{V}\right\}$ is linearly dependent and $\left\{0_{V}, v\right\}$ is linearly dependent.
(13) $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if $v_{2} \neq 0_{V}$ and for every a holds $v_{1} \neq a \cdot v_{2}$.
(14) $\quad v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if for all a, b such that $a \cdot v_{1}+b \cdot v_{2}=0_{V}$ holds $a=0$ and $b=0$.
Let us consider V, A. The functor $\operatorname{Lin}(A)$ yields a subspace of V and is defined by:
(Def.2) the vectors of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
We now state four propositions:
(15) If the vectors of $W=\left\{\sum l\right\}$, then $W=\operatorname{Lin}(A)$.
(16) The vectors of $\operatorname{Lin}(A)=\left\{\sum l\right\}$.
(17) $\quad x \in \operatorname{Lin}(A)$ if and only if there exists l such that $x=\sum l$.
(18) If $x \in A$, then $x \in \operatorname{Lin}(A)$.

The following propositions are true:
(19) $\operatorname{Lin}\left(\emptyset_{\text {the }}\right.$ vectors of $\left.V\right)=\mathbf{0}_{V}$.
(20) If $\operatorname{Lin}(A)=\mathbf{0}_{V}$, then $A=\emptyset$ or $A=\left\{0_{V}\right\}$.
(21) If $A=$ the vectors of W, then $\operatorname{Lin}(A)=W$.
(22) If $A=$ the vectors of V, then $\operatorname{Lin}(A)=V$.
(23) If $A \subseteq B$, then $\operatorname{Lin}(A)$ is a subspace of $\operatorname{Lin}(B)$.
(24) If $\operatorname{Lin}(A)=V$ and $A \subseteq B$, then $\operatorname{Lin}(B)=V$.
(25) $\operatorname{Lin}(A \cup B)=\operatorname{Lin}(A)+\operatorname{Lin}(B)$.
(26) $\quad \operatorname{Lin}(A \cap B)$ is a subspace of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
(27) If A is linearly independent, then there exists B such that $A \subseteq B$ and B is linearly independent and $\operatorname{Lin}(B)=V$.
(28) If $\operatorname{Lin}(A)=V$, then there exists B such that $B \subseteq A$ and B is linearly independent and $\operatorname{Lin}(B)=V$.
Let us consider V. A subset of the vectors of V is called a basis of V if:
(Def.3) it is linearly independent and $\operatorname{Lin}($ it $)=V$.
The following proposition is true
(29) If A is linearly independent and $\operatorname{Lin}(A)=V$, then A is a basis of V.

In the sequel I is a basis of V. Next we state a number of propositions:
(30) I is linearly independent.
(31) $\quad \operatorname{Lin}(I)=V$.
(32) If A is linearly independent, then there exists I such that $A \subseteq I$.
(33) If $\operatorname{Lin}(A)=V$, then there exists I such that $I \subseteq A$.
(34) If $Z \neq \emptyset$ and Z is finite and for all X, Y such that $X \in Z$ and $Y \in Z$ holds $X \subseteq Y$ or $Y \subseteq X$, then $\cup Z \in Z$.
(35) If $\emptyset \notin M$, then $\operatorname{dom} C_{1}=M$ and $\operatorname{rng} C_{1} \subseteq \cup M$.
(36) $\quad x \in \mathbf{0}_{V}$ if and only if $x=0_{V}$.
(37) If W_{1} is a subspace of W_{3}, then $W_{1} \cap W_{2}$ is a subspace of W_{3}.
(38) If W_{1} is a subspace of W_{2} and W_{1} is a subspace of W_{3}, then W_{1} is a subspace of $W_{2} \cap W_{3}$.
(39) If W_{1} is a subspace of W_{3} and W_{2} is a subspace of W_{3}, then $W_{1}+W_{2}$ is a subspace of W_{3}.
(40) If W_{1} is a subspace of W_{2}, then W_{1} is a subspace of $W_{2}+W_{3}$.
(41) $\quad f \cdot(F \frown G)=(f \cdot F)^{\wedge}(f \cdot G)$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[5] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[8] Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathematics, 1(2):395-399, 1990.
[9] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Received July 10, 1990

