Basis of Real Linear Space

Wojciech A. Trybulec Warsaw University

Summary. Notions of linear independence and dependence of set of vectors, the subspace generated by a set of vectors and basis of real linear space are introduced. Some theorems concerning those notion, are proved.

MML Identifier: RLVECT_3.

The papers [6], [2], [1], [3], [11], [4], [10], [9], [5], [8], and [7] provide the notation and terminology for this paper. For simplicity we follow a convention: x is arbitrary, a, b are real numbers, V is a real linear space, W, W_1, W_2, W_3 are subspaces of V, v, v_1, v_2 are vectors of V, A, B are subsets of the vectors of V, L, L_1, L_2 are linear combinations of V, l is a linear combination of A, F,G are finite sequences of elements of the vectors of V, f is a function from the vectors of V into \mathbb{R}, X, Y, Z are sets, M is a non-empty family of sets, and C_1 is a choice function of M. One can prove the following four propositions:

- (1) $\sum (L_1 + L_2) = \sum L_1 + \sum L_2.$
- (2) $\sum (a \cdot L) = a \cdot \sum L.$
- (3) $\sum (-L) = -\sum L.$
- (4) $\sum (L_1 L_2) = \sum L_1 \sum L_2.$

We now define two new predicates. Let us consider V, A. We say that A is linearly independent if and only if:

(Def.1) for every l such that $\sum l = 0_V$ holds support $l = \emptyset$.

We say that A is linearly dependent if and only if A is not linearly independent. One can prove the following propositions:

- (5) A is linearly independent if and only if for every l such that $\sum l = 0_V$ holds support $l = \emptyset$.
- (6) If $A \subseteq B$ and B is linearly independent, then A is linearly independent.

847

- (7) If A is linearly independent, then $0_V \notin A$.
- (8) $\emptyset_{\text{the vectors of }V}$ is linearly independent.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (9) $\{v\}$ is linearly independent if and only if $v \neq 0_V$.
- (10) $\{0_V\}$ is linearly dependent.
- (11) If $\{v_1, v_2\}$ is linearly independent, then $v_1 \neq 0_V$ and $v_2 \neq 0_V$.
- (12) $\{v, 0_V\}$ is linearly dependent and $\{0_V, v\}$ is linearly dependent.
- (13) $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent if and only if $v_2 \neq 0_V$ and for every *a* holds $v_1 \neq a \cdot v_2$.
- (14) $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent if and only if for all a, b such that $a \cdot v_1 + b \cdot v_2 = 0_V$ holds a = 0 and b = 0.

Let us consider V, A. The functor Lin(A) yields a subspace of V and is defined by:

(Def.2) the vectors of $\operatorname{Lin}(A) = \{\sum l\}.$

We now state four propositions:

- (15) If the vectors of $W = \{\sum l\}$, then W = Lin(A).
- (16) The vectors of $\operatorname{Lin}(A) = \{\sum l\}.$
- (17) $x \in \text{Lin}(A)$ if and only if there exists l such that $x = \sum l$.
- (18) If $x \in A$, then $x \in Lin(A)$.

The following propositions are true:

- (19) $\operatorname{Lin}(\emptyset_{\text{the vectors of }V}) = \mathbf{0}_V.$
- (20) If $\operatorname{Lin}(A) = \mathbf{0}_V$, then $A = \emptyset$ or $A = \{0_V\}$.
- (21) If A = the vectors of W, then Lin(A) = W.
- (22) If A = the vectors of V, then Lin(A) = V.
- (23) If $A \subseteq B$, then $\operatorname{Lin}(A)$ is a subspace of $\operatorname{Lin}(B)$.
- (24) If $\operatorname{Lin}(A) = V$ and $A \subseteq B$, then $\operatorname{Lin}(B) = V$.
- (25) $\operatorname{Lin}(A \cup B) = \operatorname{Lin}(A) + \operatorname{Lin}(B).$
- (26) $\operatorname{Lin}(A \cap B)$ is a subspace of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
- (27) If A is linearly independent, then there exists B such that $A \subseteq B$ and B is linearly independent and $\operatorname{Lin}(B) = V$.
- (28) If $\operatorname{Lin}(A) = V$, then there exists B such that $B \subseteq A$ and B is linearly independent and $\operatorname{Lin}(B) = V$.

Let us consider V. A subset of the vectors of V is called a basis of V if:

(Def.3) it is linearly independent and Lin(it) = V.

The following proposition is true

- (29) If A is linearly independent and Lin(A) = V, then A is a basis of V. In the sequel I is a basis of V. Next we state a number of propositions:
- (30) I is linearly independent.
- $(31) \quad \operatorname{Lin}(I) = V.$
- (32) If A is linearly independent, then there exists I such that $A \subseteq I$.
- (33) If $\operatorname{Lin}(A) = V$, then there exists I such that $I \subseteq A$.

- (34) If $Z \neq \emptyset$ and Z is finite and for all X, Y such that $X \in Z$ and $Y \in Z$ holds $X \subseteq Y$ or $Y \subseteq X$, then $\bigcup Z \in Z$.
- (35) If $\emptyset \notin M$, then dom $C_1 = M$ and rng $C_1 \subseteq \bigcup M$.
- (36) $x \in \mathbf{0}_V$ if and only if $x = 0_V$.
- (37) If W_1 is a subspace of W_3 , then $W_1 \cap W_2$ is a subspace of W_3 .
- (38) If W_1 is a subspace of W_2 and W_1 is a subspace of W_3 , then W_1 is a subspace of $W_2 \cap W_3$.
- (39) If W_1 is a subspace of W_3 and W_2 is a subspace of W_3 , then $W_1 + W_2$ is a subspace of W_3 .
- (40) If W_1 is a subspace of W_2 , then W_1 is a subspace of $W_2 + W_3$.
- (41) $f \cdot (F \cap G) = (f \cdot F) \cap (f \cdot G).$

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [5] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [7] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
- [8] Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathematics, 1(2):395–399, 1990.
- [9] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- [10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297–301, 1990.

[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.

Received July 10, 1990