Properties of Fields

Józef Białas ${ }^{1}$
University of Łódź

Abstract

Summary. The second part of considerations concerning groups and fields. It includes a definition and properties of commutative field F as a structure defined by: the set, a support of F, containing two different elements, by two binary operations $+_{F},{ }^{\prime}{ }_{F}$ on this set, called addition and multiplication, and by two elements from the support of F, $\mathbf{0}_{F}$ being neutral for addition and $\mathbf{1}_{F}$ being neutral for multiplication. This structure is named a field if $\left\langle\right.$ the support of $\left.F,+_{F}, \mathbf{0}_{F}\right\rangle$ and \langle the support of $\left.F, \cdot_{F}, \mathbf{1}_{F}\right\rangle$ are commutative groups and multiplication has the property of left-hand and right-hand distributivity with respect to addition. It is demonstrated that the field F satisfies the definition of a field in the axiomatic approach.

MML Identifier: REALSET2.

The articles [4], [2], [3], and [1] provide the notation and terminology for this paper. A field structure is said to be a field if:
(Def.1) there exists an at least 2-elements set A and there exists a binary operation o_{1} of A and there exists an element n_{1} of A and there exists a binary operation o_{2} of A preserving $A \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of $A \backslash \operatorname{single}\left(n_{1}\right)$ such that it $=\operatorname{field}\left(A, o_{1}, o_{2}, n_{1}, n_{2}\right)$ and $\operatorname{group}\left(A, o_{1}\right.$, n_{1}) is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B=A \backslash \operatorname{single}\left(n_{1}\right)$ and $e=n_{2}$ and $P=o_{2} \upharpoonright_{n_{1}} A$ holds group (B, P, e) is a group and for all elements x, y, z of A holds $o_{2}\left(\left\langle x, o_{1}(\langle y, z\rangle)\right\rangle\right)=o_{1}\left(\left\langle o_{2}(\langle x, y\rangle), o_{2}(\langle x, z\rangle)\right\rangle\right)$ and $o_{2}\left(\left\langle o_{1}(\langle x, y\rangle), z\right\rangle\right)=o_{1}\left(\left\langle o_{2}(\langle x, z\rangle), o_{2}(\langle y, z\rangle)\right\rangle\right)$.
Next we state the proposition
(1) Let F be a field structure. Then F is a field if and only if there exists an at least 2 -elements set A and there exists a binary operation o_{1} of A and there exists an element n_{1} of A and there exists a binary operation o_{2} of A preserving $A \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of $A \backslash \operatorname{single}\left(n_{1}\right)$ such

[^0]that $F=\operatorname{field}\left(A, o_{1}, o_{2}, n_{1}, n_{2}\right)$ and $\operatorname{group}\left(A, o_{1}, n_{1}\right)$ is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B=A \backslash \operatorname{single}\left(n_{1}\right)$ and $e=n_{2}$ and $P=o_{2} \upharpoonright_{n_{1}} A$ holds $\operatorname{group}(B, P, e)$ is a group and for all elements x, y, z of A holds $o_{2}\left(\left\langle x, o_{1}(\langle y, z\rangle)\right\rangle\right)=o_{1}\left(\left\langle o_{2}(\langle x, y\rangle), o_{2}(\langle x, z\rangle)\right\rangle\right)$ and $o_{2}\left(\left\langle o_{1}(\langle x, y\rangle), z\right\rangle\right)=$ $o_{1}\left(\left\langle o_{2}(\langle x, z\rangle), o_{2}(\langle y, z\rangle)\right\rangle\right)$.
Let F be a field. The support of F yielding an at least 2-elements set is defined by:
(Def.2) there exists a binary operation o_{1} of the support of F and there exists an element n_{1} of the support of F and there exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of (the support of $\left.F\right) \backslash \operatorname{single}\left(n_{1}\right)$ such that $F=$ field(the support of $\left.F, o_{1}, o_{2}, n_{1}, n_{2}\right)$.
The following proposition is true
(2) For every field F and for every at least 2-elements set A holds $A=$ the support of F if and only if there exists a binary operation o_{1} of A and there exists an element n_{1} of A and there exists a binary operation o_{2} of A preserving $A \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of $A \backslash \operatorname{single}\left(n_{1}\right)$ such that $F=$ field $\left(A, o_{1}, o_{2}, n_{1}, n_{2}\right)$.
Let F be a field. The functor $+_{F}$ yielding a binary operation of the support of F
is defined as follows:
(Def.3) there exists an element n_{1} of the support of F and there exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of the support of $F \backslash \operatorname{single}\left(n_{1}\right)$ such that $F=$ field(the support of $\left.F,+F, o_{2}, n_{1}, n_{2}\right)$.

Next we state the proposition
(3) For every field F and for every binary operation o_{1} of the support of F holds $o_{1}=+_{F}$ if and only if there exists an element n_{1} of the support of F and there exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of the support of $F \backslash$ $\operatorname{single}\left(n_{1}\right)$ such that $F=$ field(the support of $\left.F, o_{1}, o_{2}, n_{1}, n_{2}\right)$.
Let F be a field. The functor $\mathbf{0}_{F}$ yielding an element of the support of F is defined by:
(Def.4) there exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{\mathbf{0}_{F}\right\}$ and there exists an element n_{2} of the support of $F \backslash$ $\operatorname{single}\left(\mathbf{0}_{F}\right)$ such that $F=$ field(the support of $\left.F,+_{F}, o_{2}, \mathbf{0}_{F}, n_{2}\right)$.
Next we state the proposition
(4) For every field F and for every element n_{1} of the support of F holds $n_{1}=\mathbf{0}_{F}$ if and only if there exists a binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{n_{1}\right\}$ and there exists an element n_{2} of
the support of $F \backslash \operatorname{single}\left(n_{1}\right)$ such that $F=$ field(the support of $F,+{ }_{F}, o_{2}$, n_{1}, n_{2}).
Let F be a field. The functor ${ }^{F} F$ yields a binary operation of the support of F preserving the support of $F \backslash\left\{\mathbf{0}_{F}\right\}$ and is defined as follows:
(Def.5) there exists an element n_{2} of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ such that $F=$ field(the support of $\left.F,+{ }_{F},{ }_{F}, \mathbf{0}_{F}, n_{2}\right)$.
We now state the proposition
(5) For every field F and for every binary operation o_{2} of the support of F preserving the support of $F \backslash\left\{\mathbf{0}_{F}\right\}$ holds $o_{2}=\cdot_{F}$ if and only if there exists an element n_{2} of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ such that $F=$ field(the support of $\left.F,{ }_{F}, o_{2}, \mathbf{0}_{F}, n_{2}\right)$.
Let F be a field. The functor $\mathbf{1}_{F}$ yielding an element of the support of $F \backslash$ single $\left(\mathbf{0}_{F}\right)$ is defined as follows:
(Def.6) $\quad F=$ field(the support of $F,+{ }_{F}, \cdot_{F}, \mathbf{0}_{F}, \mathbf{1}_{F}$).
The following propositions are true:
(6) For every field F and for every element n_{2} of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $n_{2}=\mathbf{1}_{F}$ if and only if $F=$ field(the support of $\left.F,+_{F},{ }_{F}, \mathbf{0}_{F}, n_{2}\right)$.
(7) For every field F holds $F=$ field(the support of $\left.F,+_{F},{ }^{\cdot} F, \mathbf{0}_{F}, \mathbf{1}_{F}\right)$.
(8) For every field F holds group(the support of $F,+{ }_{F}, \mathbf{0}_{F}$) is a group.
(9) For every field F and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B=$ the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ and $e=\mathbf{1}_{F}$ and $P={ }^{\circ}{ }_{F}{ }_{\mathbf{0}}^{F}$ the support of F holds $\operatorname{group}(B, P, e)$ is a group.
(10) Let F be a field. Let x, y, z be elements of the support of F. Then
(i) $\quad{ }_{F}\left(\left\langle x,+{ }_{F}(\langle y, z\rangle)\right\rangle\right)=+{ }_{F}\left(\left\langle\cdot{ }_{F}(\langle x, y\rangle), \cdot{ }_{F}(\langle x, z\rangle)\right\rangle\right)$,
(ii) $\quad \cdot{ }_{F}\left(\left\langle+{ }_{F}(\langle x, y\rangle), z\right\rangle\right)=+_{F}\left(\left\langle\cdot{ }_{F}(\langle x, z\rangle), \cdot{ }_{F}(\langle y, z\rangle)\right\rangle\right)$.
(11) For every field F and for all elements a, b, c of the support of F holds $+{ }_{F}\left(\left\langle{ }_{F}(\langle a, b\rangle), c\right\rangle\right)=+{ }_{F}\left(\left\langle a,{ }_{F}(\langle b, c\rangle)\right\rangle\right)$.
(12) For every field F and for all elements a, b of the support of F holds $+_{F}(\langle a, b\rangle)=+_{F}(\langle b, a\rangle)$.
(13) For every field F and for every element a of the support of F holds $+_{F}\left(\left\langle a, \mathbf{0}_{F}\right\rangle\right)=a$ and $+_{F}\left(\left\langle\mathbf{0}_{F}, a\right\rangle\right)=a$.
(14) For every field F and for every element a of the support of F there exists an element b of the support of F such that $+{ }_{F}(\langle a, b\rangle)=\mathbf{0}_{F}$ and $+_{F}(\langle b, a\rangle)=\mathbf{0}_{F}$.
Let F be an at least 2-elements set. A set is said to be a one-element subset of F if:
(Def.7) there exists an element x of F such that it $=\operatorname{single}(x)$.
We now state the proposition
(15) For every at least 2-elements set F and for every one-element subset A of F holds $F \backslash A$ is a non-empty set.

Let F be an at least 2-elements set, and let A be a one-element subset of F. Then $F \backslash A$ is a non-empty set.

The following proposition is true
(16) For every at least 2-elements set F and for every element x of F holds single (x) is a one-element subset of F.
Let F be an at least 2-elements set, and let x be an element of F. Then single (x) is a one-element subset of F.

The following propositions are true:
$(20)^{2}$ For every field F and for all elements a, b, c of the support of $F \backslash$ single $\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle), c\right\rangle\right)=\cdot{ }_{F}\left(\left\langle a, \cdot{ }_{F}(\langle b, c\rangle)\right\rangle\right)$.
(21) For every field F and for all elements a, b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot F(\langle a, b\rangle)=\cdot{ }_{F}(\langle b, a\rangle)$.
(22) For every field F and for every element a of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}\left(\left\langle a, \mathbf{1}_{F}\right\rangle\right)=a$ and $\cdot{ }_{F}\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right)=a$.
(23) For every field F and for every element a of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$
there exists an element b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ such that $\cdot{ }_{F}(\langle a, b\rangle)=$ $\mathbf{1}_{F}$ and $\cdot_{F}(\langle b, a\rangle)=\mathbf{1}_{F}$.
Let F be a field. The functor $-_{F}$ yielding a function from the support of F into the support of F is defined by:
(Def.8) for every element x of the support of F holds $+{ }_{F}\left(\left\langle x,-{ }_{F}(x)\right\rangle\right)=\mathbf{0}_{F}$.
One can prove the following propositions:
(24) For every field F and for every element x of the support of F holds $+{ }_{F}\left(\left\langle x,-{ }_{F}(x)\right\rangle\right)=\mathbf{0}_{F}$.
(25) For every field F and for every function S from the support of F into the support of F holds $S={ }_{F}$ if and only if for every element x of the support of F holds $+{ }_{F}(\langle x, S(x)\rangle)=\mathbf{0}_{F}$.
(26) For every field F and for every element x of the support of F and for every element y of the support of F such that $+_{F}(\langle x, y\rangle)=\mathbf{0}_{F}$ holds $y=-{ }_{F}(x)$.
(27) For every field F and for every element x of the support of F holds $x=-{ }_{F}\left(-{ }_{F}(x)\right)$.
(28) For every field F and for all elements a, b of the support of F holds $+_{F}(\langle a, b\rangle)$ is an element of the support of F and ${ }_{F}(\langle a, b\rangle)$ is an element of the support of F and $-{ }_{F}(a)$ is an element of the support of F.
(29) For every field F and for all elements a, b, c of the support of F holds $\cdot{ }_{F}\left(\left\langle a,+_{F}\left(\left\langle b,-{ }_{F}(c)\right\rangle\right)\right\rangle\right)=+{ }_{F}\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle),-{ }_{F}\left(\cdot{ }_{F}(\langle a, c\rangle)\right)\right\rangle\right)$.
(30) For every field F and for all elements a, b, c of the support of F holds $\cdot{ }_{F}\left(\left\langle+{ }_{F}\left(\left\langle a,-{ }_{F}(b)\right\rangle\right), c\right\rangle\right)=+{ }_{F}\left(\left\langle\cdot{ }_{F}(\langle a, c\rangle),-{ }_{F}\left(\cdot{ }_{F}(\langle b, c\rangle)\right)\right\rangle\right)$.

[^1](31) For every field F and for every element a of the support of F holds ${ }^{\cdot}{ }_{F}\left(\left\langle a, \mathbf{0}_{F}\right\rangle\right)=\mathbf{0}_{F}$.
(32) For every field F and for every element a of the support of F holds $\cdot{ }_{F}\left(\left\langle\mathbf{0}_{F}, a\right\rangle\right)=\mathbf{0}_{F}$.
(33) For every field F and for all elements a, b of the support of F holds ${ }_{-F}\left(\cdot{ }_{F}(\langle a, b\rangle)\right)=\cdot{ }_{F}\left(\left\langle a,-{ }_{F}(b)\right\rangle\right)$.
(34) For every field F holds $\cdot{ }_{F}\left(\left\langle\mathbf{1}_{F}, \mathbf{0}_{F}\right\rangle\right)=\mathbf{0}_{F}$.
\[

$$
\begin{equation*}
\text { For every field } F \text { holds } \cdot_{F}\left(\left\langle\mathbf{0}_{F}, \mathbf{1}_{F}\right\rangle\right)=\mathbf{0}_{F} \tag{35}
\end{equation*}
$$

\]

(36) For every field F and for all elements a, b of the support of F holds $\cdot{ }^{F}(\langle a, b\rangle)$ is an element of the support of F.
(37) For every field F and for all elements a, b, c of the support of F holds $\cdot{ }_{F}\left(\left\langle\cdot{ }_{F}(\langle a, b\rangle), c\right\rangle\right)=\cdot{ }_{F}\left(\left\langle a, \cdot{ }_{F}(\langle b, c\rangle)\right\rangle\right)$.
(38) For every field F and for all elements a, b of the support of F holds $\cdot{ }_{F}(\langle a, b\rangle)=\cdot{ }_{F}(\langle b, a\rangle)$.
(39) For every field F and for every element a of the support of F holds ${ }^{\cdot}{ }_{F}\left(\left\langle a, \mathbf{1}_{F}\right\rangle\right)=a$ and $\cdot{ }_{F}\left(\left\langle\mathbf{1}_{F}, a\right\rangle\right)=a$.
Let F be a field. The functor ${ }_{F}^{-1}$ yielding a function from the support of $F \backslash$ single $\left(\mathbf{0}_{F}\right)$ into the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ is defined by:
(Def.9) for every element x of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot F\left(\left\langle x,{ }_{F}{ }^{-1}(x)\right\rangle\right)=$ $\mathbf{1}_{F}$.

One can prove the following propositions:
(40) For every field F and for every element x of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}\left(\left\langle x,{ }_{F}^{-1}(x)\right\rangle\right)=\mathbf{1}_{F}$.
(41) For every field F and for every function S from the support of $F \backslash$ single $\left(\mathbf{0}_{F}\right)$ into the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $S={ }_{F}^{-1}$ if and only if for every element x of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $\cdot{ }_{F}(\langle x, S(x)\rangle)=\mathbf{1}_{F}$.
(42) For every field F and for every element x of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$
and for every element y of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ such that $\cdot{ }_{F}(\langle x, y\rangle)=$ $\mathbf{1}_{F}$ holds $y={ }_{F}^{-1}(x)$.
(43) For every field F and for every element x of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds $x={ }_{F}^{-1}(\underset{F}{-1}(x))$.
(44) For every field F and for all elements a, b of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ holds ${ }_{F}(\langle a, b\rangle)$ is an element of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ and ${ }_{F}^{-1}(a)$ is an element of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$.
(45) For every field F and for all elements a, b, c of the support of F such that $+{ }_{F}(\langle a, b\rangle)=+{ }_{F}(\langle a, c\rangle)$ holds $b=c$.
(46) For every field F and for every element a of the support of $F \backslash \operatorname{single}\left(\mathbf{0}_{F}\right)$ and for all elements b, c of the support of F such that $\cdot{ }_{F}(\langle a, b\rangle)={ }_{F}(\langle a, c\rangle)$ holds $b=c$.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 20, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.

[^1]: ${ }^{2}$ The propositions (17)-(19) became obvious.

