Properties of Fields

Józef Białas¹ University of Łódź

Summary. The second part of considerations concerning groups and fields. It includes a definition and properties of commutative field F as a structure defined by: the set, a support of F, containing two different elements, by two binary operations $+_F$, \cdot_F on this set, called addition and multiplication, and by two elements from the support of F, $\mathbf{0}_F$ being neutral for addition and $\mathbf{1}_F$ being neutral for multiplication. This structure is named a field if (the support of F, $+_F$, $\mathbf{0}_F$) and (the support of F, \cdot_F , $\mathbf{1}_F$) are commutative groups and multiplication has the property of left-hand and right-hand distributivity with respect to addition. It is demonstrated that the field F satisfies the definition of a field in the axiomatic approach.

MML Identifier: REALSET2.

The articles [4], [2], [3], and [1] provide the notation and terminology for this paper. A field structure is said to be a field if:

(Def.1) there exists an at least 2-elements set A and there exists a binary operation o_1 of A and there exists an element n_1 of A and there exists a binary operation o_2 of A preserving $A \setminus \{n_1\}$ and there exists an element n_2 of $A \setminus \text{single}(n_1)$ such that it = field (A, o_1, o_2, n_1, n_2) and group (A, o_1, n_1) is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B = A \setminus \text{single}(n_1)$ and $e = n_2$ and $P = o_2 \upharpoonright_{n_1} A$ holds group(B, P, e) is a group and for all elements x, y, z of A holds $o_2(\langle x, o_1(\langle y, z \rangle) \rangle = o_1(\langle o_2(\langle x, y \rangle), o_2(\langle x, z \rangle) \rangle)$ and $o_2(\langle o_1(\langle x, y \rangle), z \rangle) = o_1(\langle o_2(\langle x, z \rangle), o_2(\langle y, z \rangle) \rangle)$.

Next we state the proposition

(1) Let F be a field structure. Then F is a field if and only if there exists an at least 2-elements set A and there exists a binary operation o_1 of A and there exists an element n_1 of A and there exists a binary operation o_2 of A preserving $A \setminus \{n_1\}$ and there exists an element n_2 of $A \setminus \text{single}(n_1)$ such

¹Supported by RPBP.III-24.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 that $F = \text{field}(A, o_1, o_2, n_1, n_2)$ and $\text{group}(A, o_1, n_1)$ is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B = A \setminus \text{single}(n_1)$ and $e = n_2$ and $P = o_2 \upharpoonright_{n_1} A$ holds group(B, P, e) is a group and for all elements x, y, z of A holds $o_2(\langle x, o_1(\langle y, z \rangle) \rangle) = o_1(\langle o_2(\langle x, y \rangle), o_2(\langle x, z \rangle) \rangle)$ and $o_2(\langle o_1(\langle x, y \rangle), z \rangle) =$ $o_1(\langle o_2(\langle x, z \rangle), o_2(\langle y, z \rangle) \rangle).$

Let F be a field. The support of F yielding an at least 2-elements set is defined by:

(Def.2) there exists a binary operation o_1 of the support of F and there exists an element n_1 of the support of F and there exists a binary operation o_2 of the support of F preserving the support of $F \setminus \{n_1\}$ and there exists an element n_2 of (the support of F) \setminus single (n_1) such that $F = \text{field}(\text{the support of } F, o_1, o_2, n_1, n_2).$

The following proposition is true

(2) For every field F and for every at least 2-elements set A holds A = the support of F if and only if there exists a binary operation o_1 of A and there exists an element n_1 of A and there exists a binary operation o_2 of A preserving $A \setminus \{n_1\}$ and there exists an element n_2 of $A \setminus \text{single}(n_1)$ such that $F = \text{field}(A, o_1, o_2, n_1, n_2)$.

Let F be a field. The functor $+_F$ yielding a binary operation of the support of F

is defined as follows:

(Def.3) there exists an element n_1 of the support of F and there exists a binary operation o_2 of the support of F preserving the support of $F \setminus \{n_1\}$ and there exists an element n_2 of the support of $F \setminus \text{single}(n_1)$ such that F =field(the support of $F, +_F, o_2, n_1, n_2$).

Next we state the proposition

(3) For every field F and for every binary operation o₁ of the support of F holds o₁ = +_F if and only if there exists an element n₁ of the support of F and there exists a binary operation o₂ of the support of F preserving the support of F \ {n₁} and there exists an element n₂ of the support of F \ single(n₁) such that F = field(the support of F, o₁, o₂, n₁, n₂).

Let F be a field. The functor $\mathbf{0}_F$ yielding an element of the support of F is defined by:

(Def.4) there exists a binary operation o_2 of the support of F preserving the support of $F \setminus {\mathbf{0}_F}$ and there exists an element n_2 of the support of $F \setminus$ single($\mathbf{0}_F$) such that F =field(the support of $F, +_F, o_2, \mathbf{0}_F, n_2$).

Next we state the proposition

(4) For every field F and for every element n_1 of the support of F holds $n_1 = \mathbf{0}_F$ if and only if there exists a binary operation o_2 of the support of F preserving the support of $F \setminus \{n_1\}$ and there exists an element n_2 of

the support of $F \setminus \text{single}(n_1)$ such that $F = \text{field}(\text{the support of } F, +_F, o_2, n_1, n_2).$

Let F be a field. The functor \cdot_F yields a binary operation of the support of F preserving the support of $F \setminus \{\mathbf{0}_F\}$ and is defined as follows:

(Def.5) there exists an element n_2 of the support of $F \setminus \text{single}(\mathbf{0}_F)$ such that $F = \text{field}(\text{the support of } F, +_F, \cdot_F, \mathbf{0}_F, n_2).$

We now state the proposition

(5) For every field F and for every binary operation o_2 of the support of F preserving the support of $F \setminus \{\mathbf{0}_F\}$ holds $o_2 = \cdot_F$ if and only if there exists an element n_2 of the support of $F \setminus \text{single}(\mathbf{0}_F)$ such that $F = \text{field}(\text{the support of } F, +_F, o_2, \mathbf{0}_F, n_2).$

Let F be a field. The functor $\mathbf{1}_F$ yielding an element of the support of $F \setminus \operatorname{single}(\mathbf{0}_F)$ is defined as follows:

(Def.6) $F = \text{field}(\text{the support of } F, +_F, \cdot_F, \mathbf{0}_F, \mathbf{1}_F).$

The following propositions are true:

- (6) For every field F and for every element n_2 of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $n_2 = \mathbf{1}_F$ if and only if $F = \text{field}(\text{the support of } F, +_F, \cdot_F, \mathbf{0}_F, n_2).$
- (7) For every field F holds $F = \text{field}(\text{the support of } F, +_F, \cdot_F, \mathbf{0}_F, \mathbf{1}_F).$
- (8) For every field F holds group (the support of $F, +_F, \mathbf{0}_F$) is a group.
- (9) For every field F and for every non-empty set B and for every binary operation P of B and for every element e of B such that B =the support of $F \setminus \text{single}(\mathbf{0}_F)$ and $e = \mathbf{1}_F$ and $P = \cdot_F \upharpoonright_{\mathbf{0}_F}$ the support of Fholds group(B, P, e) is a group.
- (10) Let F be a field. Let x, y, z be elements of the support of F. Then
 - (i) $\cdot_F(\langle x, +_F(\langle y, z \rangle) \rangle) = +_F(\langle \cdot_F(\langle x, y \rangle), \cdot_F(\langle x, z \rangle) \rangle),$
 - (ii) $\cdot_F(\langle +_F(\langle x, y \rangle), z \rangle) = +_F(\langle \cdot_F(\langle x, z \rangle), \cdot_F(\langle y, z \rangle) \rangle).$
- (11) For every field F and for all elements a, b, c of the support of F holds +_F($\langle +_F(\langle a, b \rangle), c \rangle$) = +_F($\langle a, +_F(\langle b, c \rangle) \rangle$).
- (12) For every field F and for all elements a, b of the support of F holds $+_F(\langle a, b \rangle) = +_F(\langle b, a \rangle).$
- (13) For every field F and for every element a of the support of F holds $+_F(\langle a, \mathbf{0}_F \rangle) = a$ and $+_F(\langle \mathbf{0}_F, a \rangle) = a$.
- (14) For every field F and for every element a of the support of F there exists an element b of the support of F such that $+_F(\langle a, b \rangle) = \mathbf{0}_F$ and $+_F(\langle b, a \rangle) = \mathbf{0}_F$.

Let F be an at least 2-elements set. A set is said to be a one-element subset of F if:

(Def.7) there exists an element x of F such that it = single(x).

We now state the proposition

(15) For every at least 2-elements set F and for every one-element subset A of F holds $F \setminus A$ is a non-empty set.

Let F be an at least 2-elements set, and let A be a one-element subset of F. Then $F \setminus A$ is a non-empty set.

The following proposition is true

(16) For every at least 2-elements set F and for every element x of F holds $\operatorname{single}(x)$ is a one-element subset of F.

Let F be an at least 2-elements set, and let x be an element of F. Then single(x) is a one-element subset of F.

The following propositions are true:

- (20)² For every field F and for all elements a, b, c of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $\cdot_F(\langle \cdot_F(\langle a, b \rangle), c \rangle) = \cdot_F(\langle a, \cdot_F(\langle b, c \rangle) \rangle).$
- (21) For every field F and for all elements a, b of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $\cdot_F(\langle a, b \rangle) = \cdot_F(\langle b, a \rangle).$
- (22) For every field F and for every element a of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $\cdot_F(\langle a, \mathbf{1}_F \rangle) = a$ and $\cdot_F(\langle \mathbf{1}_F, a \rangle) = a$.
- (23) For every field F and for every element a of the support of $F \setminus \text{single}(\mathbf{0}_F)$ there exists an element b of the support of $F \setminus \text{single}(\mathbf{0}_F)$ such that $\cdot_F(\langle a, b \rangle) = \mathbf{1}_F$ and $\cdot_F(\langle b, a \rangle) = \mathbf{1}_F$.

Let F be a field. The functor $-_F$ yielding a function from the support of F into the support of F is defined by:

(Def.8) for every element x of the support of F holds $+_F(\langle x, -_F(x) \rangle) = \mathbf{0}_F$.

One can prove the following propositions:

- (24) For every field F and for every element x of the support of F holds $+_F(\langle x, -_F(x) \rangle) = \mathbf{0}_F.$
- (25) For every field F and for every function S from the support of F into the support of F holds S = -F if and only if for every element x of the support of F holds $+F(\langle x, S(x) \rangle) = \mathbf{0}_F$.
- (26) For every field F and for every element x of the support of F and for every element y of the support of F such that $+_F(\langle x, y \rangle) = \mathbf{0}_F$ holds $y = -_F(x)$.
- (27) For every field F and for every element x of the support of F holds x = -F(-F(x)).
- (28) For every field F and for all elements a, b of the support of F holds $+_F(\langle a, b \rangle)$ is an element of the support of F and $\cdot_F(\langle a, b \rangle)$ is an element of the support of F and $-_F(a)$ is an element of the support of F.
- (29) For every field F and for all elements a, b, c of the support of F holds $\cdot_F(\langle a, +_F(\langle b, -_F(c) \rangle) \rangle) = +_F(\langle \cdot_F(\langle a, b \rangle), -_F(\cdot_F(\langle a, c \rangle)) \rangle).$
- (30) For every field F and for all elements a, b, c of the support of F holds $\cdot_F(\langle +_F(\langle a, -_F(b) \rangle), c \rangle) = +_F(\langle \cdot_F(\langle a, c \rangle), -_F(\cdot_F(\langle b, c \rangle)) \rangle).$

²The propositions (17)–(19) became obvious.

- (31) For every field F and for every element a of the support of F holds $\cdot_F(\langle a, \mathbf{0}_F \rangle) = \mathbf{0}_F.$
- (32) For every field F and for every element a of the support of F holds $\cdot_F(\langle \mathbf{0}_F, a \rangle) = \mathbf{0}_F.$
- (33) For every field F and for all elements a, b of the support of F holds $-_F(\cdot_F(\langle a, b \rangle)) = \cdot_F(\langle a, -_F(b) \rangle).$
- (34) For every field F holds $\cdot_F(\langle \mathbf{1}_F, \mathbf{0}_F \rangle) = \mathbf{0}_F$.
- (35) For every field F holds $\cdot_F(\langle \mathbf{0}_F, \mathbf{1}_F \rangle) = \mathbf{0}_F$.
- (36) For every field F and for all elements a, b of the support of F holds $\cdot_F(\langle a, b \rangle)$ is an element of the support of F.
- (37) For every field F and for all elements a, b, c of the support of F holds $\cdot_F(\langle \cdot_F(\langle a, b \rangle), c \rangle) = \cdot_F(\langle a, \cdot_F(\langle b, c \rangle) \rangle).$
- (38) For every field F and for all elements a, b of the support of F holds $\cdot_F(\langle a, b \rangle) = \cdot_F(\langle b, a \rangle).$
- (39) For every field F and for every element a of the support of F holds $\cdot_F(\langle a, \mathbf{1}_F \rangle) = a$ and $\cdot_F(\langle \mathbf{1}_F, a \rangle) = a$.

Let F be a field. The functor F^{-1} yielding a function from the support of $F \setminus \text{single}(\mathbf{0}_F)$ into the support of $F \setminus \text{single}(\mathbf{0}_F)$ is defined by:

(Def.9) for every element x of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $\cdot_F(\langle x, F^{-1}(x) \rangle) = \mathbf{1}_F$.

One can prove the following propositions:

- (40) For every field F and for every element x of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $\cdot_F(\langle x, F^{-1}(x) \rangle) = \mathbf{1}_F$.
- (41) For every field F and for every function S from the support of $F \setminus \text{single}(\mathbf{0}_F)$ into the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $S = {}_F^{-1}$ if and only if for every element x of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $\cdot_F(\langle x, S(x) \rangle) = \mathbf{1}_F$.
- (42) For every field F and for every element x of the support of $F \setminus \text{single}(\mathbf{0}_F)$ and for every element y of the support of $F \setminus \text{single}(\mathbf{0}_F)$ such that $\cdot_F(\langle x, y \rangle) =$ $\mathbf{1}_F$ holds $y = {}_F^{-1}(x)$.
- (43) For every field F and for every element x of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $x = {}_F^{-1}({}_F^{-1}(x))$.
- (44) For every field F and for all elements a, b of the support of $F \setminus \text{single}(\mathbf{0}_F)$ holds $\cdot_F(\langle a, b \rangle)$ is an element of the support of $F \setminus \text{single}(\mathbf{0}_F)$ and $_F^{-1}(a)$ is an element of the support of $F \setminus \text{single}(\mathbf{0}_F)$.
- (45) For every field F and for all elements a, b, c of the support of F such that $+_F(\langle a, b \rangle) = +_F(\langle a, c \rangle)$ holds b = c.
- (46) For every field F and for every element a of the support of $F \setminus \text{single}(\mathbf{0}_F)$ and for all elements b, c of the support of F such that $\cdot_F(\langle a, b \rangle) = \cdot_F(\langle a, c \rangle)$ holds b = c.

References

- [1] Józef Białas. Group and field definitions. *Formalized Mathematics*, 1(3):433–439, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.

Received June 20, 1990