Factorial and Newton coeffitients

Rafał Kwiatek ${ }^{1}$
Nicolaus Copernicus University
Toruń

Abstract

Summary. We define the following functions: exponential function (for natural exponent), factorial function and Newton coefficients. We prove some basic properties of notions introduced. There is also a proof of binominal formula. We prove also that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

MML Identifier: NEWTON.

The notation and terminology used in this paper have been introduced in the following articles: [4], [7], [6], [2], [3], [1], and [5]. We adopt the following rules: i, k, n, m, l denote natural numbers, a, b, x, y, z denote real numbers, and F, G denote finite sequences of elements of \mathbb{R}. One can prove the following propositions:
(1) For all x, y, z such that $y \neq 0$ and $z \neq 0$ holds $\frac{z \cdot x}{z \cdot y}=\frac{x}{y}$.
(2) If $k \geq l$, then $k-l$ is a natural number.
(3) For all F, G such that len $F=\operatorname{len} G$ and for every i such that $i \in \operatorname{dom} F$ holds $F(i)=G(i)$ holds $F=G$.
(4) For every n such that $n \geq 1$ holds $1 \in \operatorname{Seg} n$.
(5) For every n such that $n \geq 1$ holds $\operatorname{Seg} n=(\{1\} \cup\{k: 1<k \wedge k<$ $n\}) \cup\{n\}$.
(6) For every F holds len $(a \cdot F)=\operatorname{len} F$.
(7) $n \in \operatorname{dom} G$ if and only if $n \in \operatorname{dom}(a \cdot G)$.

Let us consider i, x. Then $i \longmapsto x$ is a finite sequence of elements of \mathbb{R}.
Let us consider x, n. The functor x^{n} yielding a real number is defined as follows:
(Def.1) $\quad x^{n}=\Pi(n \longmapsto x)$.
One can prove the following propositions:

[^0](8) $\quad x^{n}=\Pi(n \longmapsto x)$.
(9) For every x holds $x^{0}=1$.
(10) For every x holds $x^{1}=x$.
(11) For every n holds $x^{n+1}=x^{n} \cdot x$ and $x^{n+1}=x \cdot x^{n}$.
(12) $(x \cdot y)^{n}=x^{n} \cdot y^{n}$.
(13) $x^{n+m}=x^{n} \cdot x^{m}$.
(14) $\left(x^{n}\right)^{m}=x^{n \cdot m}$.
(15) For every n holds $1^{n}=1$.
(16) For every n such that $n \geq 1$ holds $0^{n}=0$.

Let us consider n. Then id_{n} is a finite sequence of elements of \mathbb{R}.
Let us consider x. Then $\langle x\rangle$ is a finite sequence of elements of \mathbb{R}. Let us consider y. Then $\langle x, y\rangle$ is a finite sequence of elements of \mathbb{R}.

Let us consider n. The functor n ! yielding a real number is defined by:
(Def.2) $n!=\prod\left(\mathrm{id}_{n}\right)$.
We now state several propositions:
(17) $n!=\prod\left(\mathrm{id}_{n}\right)$.
(18) $0!=1$.
(19) $1!=1$.
(20) $2!=2$.
(21) For every n holds $(n+1)!=(n+1) \cdot(n!)$ and $(n+1)!=(n!) \cdot(n+1)$.
(22) For every n holds n ! is a natural number.
(23) For every n holds $n!>0$.
(24) For every n holds $n!\neq 0$.
(25) For all n, k holds $(n!) \cdot(k!) \neq 0$.

Let us consider k, n. The functor $\binom{n}{k}$ yielding a real number is defined as follows:
(Def.3) for every l such that $l=n-k$ holds $\binom{n}{k}=\frac{n!}{(k!\cdot(l!)}$ if $n \geq k,\binom{n}{k}=0$, otherwise.
We now state a number of propositions:
(26) For every l such that $l=n-k$ holds $\binom{n}{k}=\frac{n!}{(k!\cdot \cdot(!!)}$ if and only if $n \geq k$ or if $\binom{n}{k}=1$, then $n<k$.
(27) $\binom{0}{0}=1$.
(28) For every k such that $k>0$ holds $\binom{0}{k}=0$.
(29) For every n holds $\binom{n}{0}=1$.
(30) For all n, k such that $n \geq k$ for every l such that $l=n-k$ holds $\binom{n}{k}=\binom{n}{l}$.
(31) For every n holds $\binom{n}{n}=1$.
(32) For all k, n such that $k<n$ holds $\binom{n+1}{k+1}=\binom{n}{k+1}+\binom{n}{k}$ and $\binom{n+1}{k+1}=$ $\binom{n}{k}+\binom{n}{k+1}$.

For every n such that $n \geq 1$ holds $\binom{n}{1}=n$.
For all n, l such that $n \geq 1$ and $l=n-1$ holds $\binom{n}{l}=n$.
For every n and for every k holds $\binom{n}{k}$ is a natural number.
For all m, F such that $m \neq 0$ and len $F=m$ and for all i, l such that $i \in \operatorname{dom} F$ and $l=(n+i)-1$ holds $F(i)=\binom{l}{n}$ holds $\sum F=\binom{n+m}{n+1}$.
Let a, b be real numbers, and let n be a natural number. The functor $\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:
(Def.4) $\operatorname{len}\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle=n+1$ and for all i, l, m such that $i \in$ $\operatorname{dom}\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle$ and $m=i-1$ and $l=n-m$ holds $\left.\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle(i)=\binom{n}{m} \cdot a^{l}\right) \cdot b^{m}$.
Next we state several propositions:
(37) Given F. Then the following conditions are equivalent:
(i) len $F=n+1$ and for all i, l, m such that $i \in \operatorname{dom} F$ and $m=i-1$ and $l=n-m$ holds $F(i)=\left(\binom{n}{m} \cdot a^{l}\right) \cdot b^{m}$,
(ii) $\quad F=\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle$.

$$
\begin{align*}
& \left.\left\langle\begin{array}{l}
0 \\
0
\end{array}\right) a^{0} b^{0}, \ldots,\binom{0}{0} a^{0} b^{0}\right\rangle=\langle 1\rangle . \tag{38}\\
& \left\langle\binom{(}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle(1)=a^{n} . \tag{39}\\
& \left.\left\langle\begin{array}{l}
n \\
0
\end{array}\right) a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle(n+1)=b^{n} . \tag{40}
\end{align*}
$$

(41) For every n holds $(a+b)^{n}=\sum\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle$.

Let us consider n. The functor $\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle$ yields a finite sequence of elements of \mathbb{R} and is defined by:
(Def.5) $\operatorname{len}\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle=n+1$ and for all i, k such that $i \in \operatorname{dom}\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle$ and $k=i-1$ holds $\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle(i)=\binom{n}{k}$.
We now state three propositions:
(42) For every F holds len $F=n+1$ and for all i, m such that $i \in \operatorname{dom} F$ and $m=i-1$ holds $F(i)=\binom{n}{m}$ if and only if $\left.F=\left\langle\begin{array}{l}n \\ 0\end{array}\right), \ldots,\binom{n}{n}\right\rangle$.
(43) For every n holds $\left.\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle=\left\langle\begin{array}{l}n \\ 0\end{array}\right) 1^{0} 1^{n}, \ldots,\binom{n}{n} 1^{n} 1^{0}\right\rangle$.

$$
\begin{equation*}
\text { For every } n \text { holds } 2^{n}=\sum\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle \text {. } \tag{44}
\end{equation*}
$$

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 27, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.B5.

