Factorial and Newton coeffitients

Rafał Kwiatek¹ Nicolaus Copernicus University Toruń

Summary. We define the following functions: exponential function (for natural exponent), factorial function and Newton coefficients. We prove some basic properties of notions introduced. There is also a proof of binominal formula. We prove also that $\sum_{k=0}^{n} {n \choose k} = 2^{n}$.

MML Identifier: NEWTON.

The notation and terminology used in this paper have been introduced in the following articles: [4], [7], [6], [2], [3], [1], and [5]. We adopt the following rules: i, k, n, m, l denote natural numbers, a, b, x, y, z denote real numbers, and F, G denote finite sequences of elements of \mathbb{R} . One can prove the following propositions:

- (1) For all x, y, z such that $y \neq 0$ and $z \neq 0$ holds $\frac{z \cdot x}{z \cdot y} = \frac{x}{y}$.
- (2) If $k \ge l$, then k l is a natural number.
- (3) For all F, G such that len F = len G and for every i such that $i \in \text{dom } F$ holds F(i) = G(i) holds F = G.
- (4) For every n such that $n \ge 1$ holds $1 \in \text{Seg } n$.
- (5) For every *n* such that $n \ge 1$ holds $\text{Seg } n = (\{1\} \cup \{k : 1 < k \land k < n\}) \cup \{n\}.$
- (6) For every F holds $len(a \cdot F) = len F$.
- (7) $n \in \operatorname{dom} G$ if and only if $n \in \operatorname{dom}(a \cdot G)$.

Let us consider i, x. Then $i \mapsto x$ is a finite sequence of elements of \mathbb{R} .

Let us consider x, n. The functor x^n yielding a real number is defined as follows:

(Def.1) $x^n = \prod (n \longmapsto x).$

One can prove the following propositions:

¹Supported by RPBP.III-24.B5.

887

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (8) $x^n = \prod (n \longmapsto x).$
- (9) For every x holds $x^0 = 1$.
- (10) For every x holds $x^1 = x$.
- (11) For every *n* holds $x^{n+1} = x^n \cdot x$ and $x^{n+1} = x \cdot x^n$.
- (12) $(x \cdot y)^n = x^n \cdot y^n.$
- $(13) \quad x^{n+m} = x^n \cdot x^m.$
- $(14) \quad (x^n)^m = x^{n \cdot m}.$
- (15) For every n holds $1^n = 1$.
- (16) For every n such that $n \ge 1$ holds $0^n = 0$.

Let us consider n. Then id_n is a finite sequence of elements of \mathbb{R} .

Let us consider x. Then $\langle x \rangle$ is a finite sequence of elements of \mathbb{R} . Let us consider y. Then $\langle x, y \rangle$ is a finite sequence of elements of \mathbb{R} .

Let us consider *n*. The functor *n*! yielding a real number is defined by: (Def.2) $n! = \prod(id_n).$

We now state several propositions:

- (17) $n! = \prod (\mathrm{id}_n).$
- $(18) \quad 0! = 1.$
- (19) 1! = 1.
- (20) 2! = 2.
- (21) For every *n* holds $(n+1)! = (n+1) \cdot (n!)$ and $(n+1)! = (n!) \cdot (n+1)$.
- (22) For every n holds n! is a natural number.
- (23) For every n holds n! > 0.
- (24) For every n holds $n! \neq 0$.
- (25) For all n, k holds $(n!) \cdot (k!) \neq 0$.

Let us consider k, n. The functor $\binom{n}{k}$ yielding a real number is defined as follows:

(Def.3) for every l such that l = n - k holds $\binom{n}{k} = \frac{n!}{(k!) \cdot (l!)}$ if $n \ge k$, $\binom{n}{k} = 0$, otherwise.

We now state a number of propositions:

- (26) For every l such that l = n k holds $\binom{n}{k} = \frac{n!}{(k!) \cdot (l!)}$ if and only if $n \ge k$ or if $\binom{n}{k} = 1$, then n < k.
- (27) $\binom{0}{0} = 1.$
- (28) For every k such that k > 0 holds $\binom{0}{k} = 0$.
- (29) For every n holds $\binom{n}{0} = 1$.
- (30) For all n, k such that $n \ge k$ for every l such that l = n k holds $\binom{n}{k} = \binom{n}{l}$.
- (31) For every *n* holds $\binom{n}{n} = 1$.
- (32) For all k, n such that k < n holds $\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$ and $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

- (33) For every n such that $n \ge 1$ holds $\binom{n}{1} = n$.
- (34) For all n, l such that $n \ge 1$ and l = n 1 holds $\binom{n}{l} = n$.
- (35) For every n and for every k holds $\binom{n}{k}$ is a natural number.
- (36) For all m, F such that $m \neq 0$ and len F = m and for all i, l such that $i \in \text{dom } F$ and l = (n+i) 1 holds $F(i) = \binom{l}{n}$ holds $\sum F = \binom{n+m}{n+1}$.

Let a, b be real numbers, and let n be a natural number. The functor $\langle \binom{n}{0}a^{0}b^{n}, \ldots, \binom{n}{n}a^{n}b^{0} \rangle$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:

(Def.4)
$$\operatorname{len}\langle \binom{n}{0}a^{0}b^{n}, \dots, \binom{n}{n}a^{n}b^{0}\rangle = n+1$$
 and for all i, l, m such that $i \in \operatorname{dom}\langle \binom{n}{0}a^{0}b^{n}, \dots, \binom{n}{n}a^{n}b^{0}\rangle$ and $m = i-1$ and $l = n-m$ holds $\langle \binom{n}{0}a^{0}b^{n}, \dots, \binom{n}{n}a^{n}b^{0}\rangle(i) = (\binom{n}{m}\cdot a^{l})\cdot b^{m}.$

Next we state several propositions:

- (37) Given F. Then the following conditions are equivalent:
 - (i) len F = n + 1 and for all i, l, m such that $i \in \text{dom } F$ and m = i 1and l = n - m holds $F(i) = (\binom{n}{m} \cdot a^l) \cdot b^m$,

(ii)
$$F = \langle \binom{n}{0} a^0 b^n, \dots, \binom{n}{n} a^n b^0 \rangle.$$

- (38) $\langle \begin{pmatrix} 0 \\ 0 \end{pmatrix} a^0 b^0, \dots, \begin{pmatrix} 0 \\ 0 \end{pmatrix} a^0 b^0 \rangle = \langle 1 \rangle.$
- (39) $\langle \binom{n}{0}a^0b^n, \ldots, \binom{n}{n}a^nb^0\rangle(1) = a^n.$
- (40) $\langle \binom{n}{0}a^0b^n, \ldots, \binom{n}{n}a^nb^0\rangle(n+1) = b^n.$
- (41) For every *n* holds $(a+b)^n = \sum \langle \binom{n}{0} a^0 b^n, \dots, \binom{n}{n} a^n b^0 \rangle$.

Let us consider *n*. The functor $\langle \binom{n}{0}, \ldots, \binom{n}{n} \rangle$ yields a finite sequence of elements of \mathbb{R} and is defined by:

(Def.5)
$$\operatorname{len}\langle \binom{n}{0}, \dots, \binom{n}{n} \rangle = n+1$$
 and for all i, k such that $i \in \operatorname{dom}\langle \binom{n}{0}, \dots, \binom{n}{n} \rangle$
and $k = i-1$ holds $\langle \binom{n}{0}, \dots, \binom{n}{n} \rangle (i) = \binom{n}{k}$.

We now state three propositions:

- (42) For every F holds len F = n + 1 and for all i, m such that $i \in \text{dom } F$ and m = i - 1 holds $F(i) = \binom{n}{m}$ if and only if $F = \langle \binom{n}{0}, \dots, \binom{n}{n} \rangle$.
- (43) For every *n* holds $\langle \binom{n}{0}, \ldots, \binom{n}{n} \rangle = \langle \binom{n}{0} 1^0 1^n, \ldots, \binom{n}{n} 1^n 1^0 \rangle.$
- (44) For every *n* holds $2^n = \sum \langle \binom{n}{0}, \dots, \binom{n}{n} \rangle$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529–536, 1990.

- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received July 27, 1990