Some Elementary Notions of the Theory of Petri Nets

Waldemar Korczyński¹ Warsaw University Białystok

Summary. Some fundamental notions of the theory of Petri nets are described in Mizar formalism. A Petri net is defined as a triple of the form $\langle \text{places}, \text{transitions}, \text{flow} \rangle$ with places and transitions being disjoint sets and flow being a relation included in places \times transitions.

MML Identifier: NET_1.

The notation and terminology used here have been introduced in the following articles: [1], and [2]. In the sequel x, y will be arbitrary. We consider nets which are systems

 $\langle \text{places, transitions, a flow relation} \rangle$,

where the places constitute a set, the transitions constitute a set, and the flow relation is a binary relation. In the sequel N is a net. Let N be a net. We say that N is a Petri net if and only if:

(Def.1) (the places of N) \cap (the transitions of N) = \emptyset and the flow relation of $N \subseteq [$: the places of N, the transitions of $N \nmid \cup [$: the transitions of N, the places of $N \nmid :$.

Let N be a net. The functor Elements(N) yielding a set is defined as follows:

(Def.2) Elements(N) = (the places of $N) \cup$ (the transitions of N).

We now state several propositions:

- (1) For every N and for every x such that $\text{Elements}(N) \neq \emptyset$ holds x is an element of Elements(N) if and only if $x \in \text{Elements}(N)$.
- (2) For every N and for every x such that the places of $N \neq \emptyset$ holds x is an element of the places of N if and only if $x \in$ the places of N.

¹Supported by RPBP.III-24.C1.

 \bigodot 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (3) For every N and for every x such that the transitions of $N \neq \emptyset$ holds x is an element of the transitions of N if and only if $x \in$ the transitions of N.
- (4) For every N holds the places of $N \subseteq \text{Elements}(N)$.
- (5) For every N holds the transitions of $N \subseteq \text{Elements}(N)$.
- Let N be a net. A set is said to be an element of N if:

(Def.3) it = Elements(N).

Next we state several propositions:

- (6) For every N and for every x holds $x \in \text{Elements}(N)$ if and only if $x \in \text{the places of } N$ or $x \in \text{the transitions of } N$.
- (7) For every N and for every x such that $\text{Elements}(N) \neq \emptyset$ holds if x is an element of Elements(N), then x is an element of the places of N or x is an element of the transitions of N.
- (8) For every N and for every x such that x is an element of the places of N and the places of $N \neq \emptyset$ holds x is an element of Elements(N).
- (9) For every N and for every x such that x is an element of the transitions of N and the transitions of $N \neq \emptyset$ holds x is an element of Elements(N).
- (10) $\langle \emptyset, \emptyset, \emptyset \rangle$ is a Petri net.
 - A net is said to be a Petri net if:

(Def.4) it is a Petri net.

We now state several propositions:

- (11) For every Petri net N holds it is not true that: $x \in$ the places of N and $x \in$ the transitions of N.
- (12) For every Petri net N and for all x, y such that $\langle x, y \rangle \in$ the flow relation of N and $x \in$ the transitions of N holds $y \in$ the places of N.
- (13) For every Petri net N and for all x, y such that $\langle x, y \rangle \in$ the flow relation of N and $y \in$ the transitions of N holds $x \in$ the places of N.
- (14) For every Petri net N and for all x, y such that $\langle x, y \rangle \in$ the flow relation of N and $x \in$ the places of N holds $y \in$ the transitions of N.
- (15) For every Petri net N and for all x, y such that $\langle x, y \rangle \in$ the flow relation of N and $y \in$ the places of N holds $x \in$ the transitions of N.

We now define two new predicates. Let N be a Petri net, and let us consider x, y. We say that x is a pre-element of y in N if and only if:

(Def.5) $\langle y, x \rangle \in$ the flow relation of N and $x \in$ the transitions of N.

We say that x is a post-element of y in N if and only if:

(Def.6) $\langle x, y \rangle \in$ the flow relation of N and $x \in$ the transitions of N.

We now define two new functors. Let N be a net, and let x be an element of Elements(N). The functor Pre(N, x) yielding a set is defined by:

(Def.7) $y \in \operatorname{Pre}(N, x)$ if and only if $y \in \operatorname{Elements}(N)$ and $\langle y, x \rangle \in$ the flow relation of N.

The functor Post(N, x) yielding a set is defined by:

(Def.8) $y \in \text{Post}(N, x)$ if and only if $y \in \text{Elements}(N)$ and $\langle x, y \rangle \in \text{the flow}$ relation of N.

Next we state several propositions:

- (16) For every Petri net N and for every element x of Elements(N) holds $Pre(N, x) \subseteq Elements(N)$.
- (17) For every Petri net N and for every element x of Elements(N) holds $Pre(N, x) \in 2^{Elements(N)}$.
- (18) For every Petri net N and for every element x of Elements(N) holds $Post(N, x) \subseteq Elements(N)$.
- (19) For every Petri net N and for every element x of Elements(N) holds $\text{Post}(N, x) \in 2^{\text{Elements}(N)}$.
- (20) For every Petri net N and for every element y of Elements(N) such that $y \in$ the transitions of N holds $x \in Pre(N, y)$ if and only if y is a pre-element of x in N.
- (21) For every Petri net N and for every element y of Elements(N) such that $y \in \text{the transitions of } N$ holds $x \in \text{Post}(N, y)$ if and only if y is a post-element of x in N.

Let N be a Petri net, and let x be an element of Elements(N). Let us assume that $Elements(N) \neq \emptyset$. The functor enter(N, x) yielding a set is defined by:

(Def.9) if $x \in$ the places of N, then enter $(N, x) = \{x\}$ but if $x \in$ the transitions of N, then enter $(N, x) = \operatorname{Pre}(N, x)$.

We now state three propositions:

- (22) For every Petri net N and for every element x of Elements(N) such that $Elements(N) \neq \emptyset$ holds $enter(N, x) = \{x\}$ or enter(N, x) = Pre(N, x).
- (23) For every Petri net N and for every element x of Elements(N) such that $Elements(N) \neq \emptyset$ holds $enter(N, x) \subseteq Elements(N)$.
- (24) For every Petri net N and for every element x of Elements(N) such that $\text{Elements}(N) \neq \emptyset$ holds $\text{enter}(N, x) \in 2^{\text{Elements}(N)}$.

Let N be a Petri net, and let x be an element of Elements(N). Let us assume that $Elements(N) \neq \emptyset$. The functor exit(N, x) yields a set and is defined by:

(Def.10) if $x \in$ the places of N, then $exit(N, x) = \{x\}$ but if $x \in$ the transitions of N, then exit(N, x) = Post(N, x).

We now state three propositions:

- (25) For every Petri net N and for every element x of Elements(N) such that $\text{Elements}(N) \neq \emptyset$ holds $\text{exit}(N, x) = \{x\}$ or exit(N, x) = Post(N, x).
- (26) For every Petri net N and for every element x of Elements(N) such that $\text{Elements}(N) \neq \emptyset$ holds $\text{exit}(N, x) \subseteq \text{Elements}(N)$.
- (27) For every Petri net N and for every element x of Elements(N) such that $\text{Elements}(N) \neq \emptyset$ holds $\text{exit}(N, x) \in 2^{\text{Elements}(N)}$.

Let N be a Petri net, and let x be an element of Elements(N). Let us assume that $\text{Elements}(N) \neq \emptyset$. The functor field(N, x) yielding a set is defined as follows:

(Def.11) field $(N, x) = enter(N, x) \cup exit(N, x).$

We now define two new functors. Let N be a net, and let x be an element of the transitions of N. The functor Prec(N, x) yielding a set is defined by:

(Def.12) $y \in \operatorname{Prec}(N, x)$ if and only if $y \in$ the places of N and $\langle y, x \rangle \in$ the flow relation of N.

The functor Postc(N, x) yielding a set is defined as follows:

(Def.13) $y \in \text{Postc}(N, x)$ if and only if $y \in \text{the places of } N$ and $\langle x, y \rangle \in \text{the flow relation of } N$.

We now define two new functors. Let N be a Petri net, and let X be a set. Let us assume that $X \subseteq \text{Elements}(N)$. The functor Entr(N, X) yields a set and is defined by:

(Def.14) $x \in \text{Entr}(N, X)$ if and only if $x \in 2^{\text{Elements}(N)}$ and there exists an element y of Elements(N) such that $y \in X$ and x = enter(N, y).

The functor Ext(N, X) yielding a set is defined by:

(Def.15) $x \in \text{Ext}(N, X)$ if and only if $x \in 2^{\text{Elements}(N)}$ and there exists an element y of Elements(N) such that $y \in X$ and x = exit(N, y).

Next we state two propositions:

- (28) For every Petri net N and for every element x of Elements(N) and for every set X such that $\text{Elements}(N) \neq \emptyset$ and $X \subseteq \text{Elements}(N)$ and $x \in X$ holds $\text{enter}(N, x) \in \text{Entr}(N, X)$.
- (29) For every Petri net N and for every element x of Elements(N) and for every set X such that $\text{Elements}(N) \neq \emptyset$ and $X \subseteq \text{Elements}(N)$ and $x \in X$ holds $\text{exit}(N, x) \in \text{Ext}(N, X)$.

We now define two new functors. Let N be a Petri net, and let X be a set. Let us assume that $X \subseteq \text{Elements}(N)$. The functor Input(N, X) yields a set and is defined by:

(Def.16) Input $(N, X) = \bigcup \operatorname{Entr}(N, X).$

The functor Output(N, X) yielding a set is defined by:

(Def.17) $\operatorname{Output}(N, X) = \bigcup \operatorname{Ext}(N, X).$

The following four propositions are true:

- (30) For every Petri net N and for every x and for every set X such that $\text{Elements}(N) \neq \emptyset$ and $X \subseteq \text{Elements}(N)$ holds $x \in \text{Input}(N, X)$ if and only if there exists an element y of Elements(N) such that $y \in X$ and $x \in \text{enter}(N, y)$.
- (31) For every Petri net N and for every x and for every set X such that $\text{Elements}(N) \neq \emptyset$ and $X \subseteq \text{Elements}(N)$ holds $x \in \text{Output}(N, X)$ if and only if there exists an element y of Elements(N) such that $y \in X$ and $x \in \text{exit}(N, y)$.

- (32) Let N be a Petri net. Then for every subset X of Elements(N) and for every element x of Elements(N) such that $Elements(N) \neq \emptyset$ holds $x \in$ Input(N, X) if and only if $x \in X$ and $x \in$ the places of N or there exists an element y of Elements(N) such that $y \in X$ and $y \in$ the transitions of N and y is a pre-element of x in N.
- (33) Let N be a Petri net. Then for every subset X of Elements(N) and for every element x of Elements(N) such that $\text{Elements}(N) \neq \emptyset$ holds $x \in \text{Output}(N, X)$ if and only if $x \in X$ and $x \in$ the places of N or there exists an element y of Elements(N) such that $y \in X$ and $y \in$ the transitions of N and y is a post-element of x in N.

References

- [1] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [2] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 10, 1990