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Summary. Some fundamental notions of the theory of Petri nets
are described in Mizar formalism. A Petri net is defined as a triple of the
form 〈places, transitions, flow〉 with places and transitions being disjoint
sets and flow being a relation included in places × transitions.

MML Identifier: NET 1.

The notation and terminology used here have been introduced in the following
articles: [1], and [2]. In the sequel x, y will be arbitrary. We consider nets which
are systems

〈places, transitions, a flow relation〉,
where the places constitute a set, the transitions constitute a set, and the flow
relation is a binary relation. In the sequel N is a net. Let N be a net. We say
that N is a Petri net if and only if:

(Def.1) (the places of N)∩ (the transitions of N) = ∅ and the flow relation of
N ⊆ [: the places of N, the transitions of N :] ∪ [: the transitions of N,

the places of N :].

Let N be a net. The functor Elements(N) yielding a set is defined as follows:

(Def.2) Elements(N) = (the places of N)∪ (the transitions of N).

We now state several propositions:

(1) For every N and for every x such that Elements(N) 6= ∅ holds x is an
element of Elements(N) if and only if x ∈ Elements(N).

(2) For every N and for every x such that the places of N 6= ∅ holds x is
an element of the places of N if and only if x ∈ the places of N .
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(3) For every N and for every x such that the transitions of N 6= ∅ holds
x is an element of the transitions of N if and only if x ∈ the transitions
of N .

(4) For every N holds the places of N ⊆ Elements(N).

(5) For every N holds the transitions of N ⊆ Elements(N).

Let N be a net. A set is said to be an element of N if:

(Def.3) it = Elements(N).

Next we state several propositions:

(6) For every N and for every x holds x ∈ Elements(N) if and only if x ∈
the places of N or x ∈ the transitions of N .

(7) For every N and for every x such that Elements(N) 6= ∅ holds if x is
an element of Elements(N), then x is an element of the places of N or x

is an element of the transitions of N .

(8) For every N and for every x such that x is an element of the places of
N and the places of N 6= ∅ holds x is an element of Elements(N).

(9) For every N and for every x such that x is an element of the transitions
of N and the transitions of N 6= ∅ holds x is an element of Elements(N).

(10) 〈∅, ∅, � 〉 is a Petri net.

A net is said to be a Petri net if:

(Def.4) it is a Petri net.

We now state several propositions:

(11) For every Petri net N holds it is not true that: x ∈ the places of N and
x ∈ the transitions of N .

(12) For every Petri net N and for all x, y such that 〈〈x, y〉〉 ∈ the flow relation
of N and x ∈ the transitions of N holds y ∈ the places of N .

(13) For every Petri net N and for all x, y such that 〈〈x, y〉〉 ∈ the flow relation
of N and y ∈ the transitions of N holds x ∈ the places of N .

(14) For every Petri net N and for all x, y such that 〈〈x, y〉〉 ∈ the flow relation
of N and x ∈ the places of N holds y ∈ the transitions of N .

(15) For every Petri net N and for all x, y such that 〈〈x, y〉〉 ∈ the flow relation
of N and y ∈ the places of N holds x ∈ the transitions of N .

We now define two new predicates. Let N be a Petri net, and let us consider
x, y. We say that x is a pre-element of y in N if and only if:

(Def.5) 〈〈y, x〉〉 ∈ the flow relation of N and x ∈ the transitions of N .

We say that x is a post-element of y in N if and only if:

(Def.6) 〈〈x, y〉〉 ∈ the flow relation of N and x ∈ the transitions of N .

We now define two new functors. Let N be a net, and let x be an element
of Elements(N). The functor Pre(N,x) yielding a set is defined by:

(Def.7) y ∈ Pre(N,x) if and only if y ∈ Elements(N) and 〈〈y, x〉〉 ∈ the flow
relation of N .
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The functor Post(N,x) yielding a set is defined by:

(Def.8) y ∈ Post(N,x) if and only if y ∈ Elements(N) and 〈〈x, y〉〉 ∈ the flow
relation of N .

Next we state several propositions:

(16) For every Petri net N and for every element x of Elements(N) holds
Pre(N,x) ⊆ Elements(N).

(17) For every Petri net N and for every element x of Elements(N) holds
Pre(N,x) ∈ 2Elements(N).

(18) For every Petri net N and for every element x of Elements(N) holds
Post(N,x) ⊆ Elements(N).

(19) For every Petri net N and for every element x of Elements(N) holds
Post(N,x) ∈ 2Elements(N).

(20) For every Petri net N and for every element y of Elements(N) such
that y ∈ the transitions of N holds x ∈ Pre(N, y) if and only if y is a
pre-element of x in N .

(21) For every Petri net N and for every element y of Elements(N) such
that y ∈ the transitions of N holds x ∈ Post(N, y) if and only if y is a
post-element of x in N .

Let N be a Petri net, and let x be an element of Elements(N). Let us assume
that Elements(N) 6= ∅. The functor enter(N,x) yielding a set is defined by:

(Def.9) if x ∈ the places of N , then enter(N,x) = {x} but if x ∈ the transitions
of N , then enter(N,x) = Pre(N,x).

We now state three propositions:

(22) For every Petri net N and for every element x of Elements(N) such that
Elements(N) 6= ∅ holds enter(N,x) = {x} or enter(N,x) = Pre(N,x).

(23) For every Petri net N and for every element x of Elements(N) such
that Elements(N) 6= ∅ holds enter(N,x) ⊆ Elements(N).

(24) For every Petri net N and for every element x of Elements(N) such
that Elements(N) 6= ∅ holds enter(N,x) ∈ 2Elements(N).

Let N be a Petri net, and let x be an element of Elements(N). Let us assume
that Elements(N) 6= ∅. The functor exit(N,x) yields a set and is defined by:

(Def.10) if x ∈ the places of N , then exit(N,x) = {x} but if x ∈ the transitions
of N , then exit(N,x) = Post(N,x).

We now state three propositions:

(25) For every Petri net N and for every element x of Elements(N) such
that Elements(N) 6= ∅ holds exit(N,x) = {x} or exit(N,x) = Post(N,x).

(26) For every Petri net N and for every element x of Elements(N) such
that Elements(N) 6= ∅ holds exit(N,x) ⊆ Elements(N).

(27) For every Petri net N and for every element x of Elements(N) such
that Elements(N) 6= ∅ holds exit(N,x) ∈ 2Elements(N).
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Let N be a Petri net, and let x be an element of Elements(N). Let us
assume that Elements(N) 6= ∅. The functor field(N,x) yielding a set is defined
as follows:

(Def.11) field(N,x) = enter(N,x) ∪ exit(N,x).

We now define two new functors. Let N be a net, and let x be an element
of the transitions of N . The functor Prec(N,x) yielding a set is defined by:

(Def.12) y ∈ Prec(N,x) if and only if y ∈ the places of N and 〈〈y, x〉〉 ∈ the flow
relation of N .

The functor Postc(N,x) yielding a set is defined as follows:

(Def.13) y ∈ Postc(N,x) if and only if y ∈ the places of N and 〈〈x, y〉〉 ∈ the flow
relation of N .

We now define two new functors. Let N be a Petri net, and let X be a set.
Let us assume that X ⊆ Elements(N). The functor Entr(N,X) yields a set and
is defined by:

(Def.14) x ∈ Entr(N,X) if and only if x ∈ 2Elements(N) and there exists an
element y of Elements(N) such that y ∈ X and x = enter(N, y).

The functor Ext(N,X) yielding a set is defined by:

(Def.15) x ∈ Ext(N,X) if and only if x ∈ 2Elements(N) and there exists an element
y of Elements(N) such that y ∈ X and x = exit(N, y).

Next we state two propositions:

(28) For every Petri net N and for every element x of Elements(N) and for
every set X such that Elements(N) 6= ∅ and X ⊆ Elements(N) and x ∈ X

holds enter(N,x) ∈ Entr(N,X).

(29) For every Petri net N and for every element x of Elements(N) and for
every set X such that Elements(N) 6= ∅ and X ⊆ Elements(N) and x ∈ X

holds exit(N,x) ∈ Ext(N,X).

We now define two new functors. Let N be a Petri net, and let X be a set.
Let us assume that X ⊆ Elements(N). The functor Input(N,X) yields a set
and is defined by:

(Def.16) Input(N,X) =
⋃

Entr(N,X).

The functor Output(N,X) yielding a set is defined by:

(Def.17) Output(N,X) =
⋃

Ext(N,X).

The following four propositions are true:

(30) For every Petri net N and for every x and for every set X such that
Elements(N) 6= ∅ and X ⊆ Elements(N) holds x ∈ Input(N,X) if and
only if there exists an element y of Elements(N) such that y ∈ X and
x ∈ enter(N, y).

(31) For every Petri net N and for every x and for every set X such that
Elements(N) 6= ∅ and X ⊆ Elements(N) holds x ∈ Output(N,X) if and
only if there exists an element y of Elements(N) such that y ∈ X and
x ∈ exit(N, y).
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(32) Let N be a Petri net. Then for every subset X of Elements(N) and for
every element x of Elements(N) such that Elements(N) 6= ∅ holds x ∈
Input(N,X) if and only if x ∈ X and x ∈ the places of N or there exists
an element y of Elements(N) such that y ∈ X and y ∈ the transitions of
N and y is a pre-element of x in N .

(33) Let N be a Petri net. Then for every subset X of Elements(N) and
for every element x of Elements(N) such that Elements(N) 6= ∅ holds
x ∈ Output(N,X) if and only if x ∈ X and x ∈ the places of N or
there exists an element y of Elements(N) such that y ∈ X and y ∈ the
transitions of N and y is a post-element of x in N .
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