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Summary. The concepts of finite join and finite meet in a lattice
are introduced. Some properties of the finite join are proved. After intro-
ducing the concept of dual lattice in view of dualism we obtain analogous
properties of the meet. We prove these properties of binary operations
in a lattice, which are usually included in axioms of the lattice theory.
We also introduce the concept of Heyting lattice (a bounded lattice with
relative pseudo-complements).

MML Identifier: LATTICE2.

The papers [10], [3], [4], [5], [8], [2], [11], [6], [9], [7], and [1] provide the notation
and terminology for this paper. For simplicity we adopt the following convention:
A denotes a set, C denotes a non-empty set, B denotes a subset of A, x denotes
an element of A, and f , g denote functions from A into C. The following
propositions are true:

(1) f
�
B is a function from B into C.

(2) dom(g
�
B) = B.

(3) f ◦ B = (f
�
B) ◦ B.

(4) If x ∈ B, then (f
�
B)(x) = f(x).

(5) f
�

B = g
�

B if and only if for every x such that x ∈ B holds
g(x) = f(x).

(6) For every set B holds f +· g
�
B is a function from A into C.

(7) g
�
B +· f = f .

(8) For all functions f , g such that g ≤ f holds f +· g = f .

(9) f +· f
�
B = f .

(10) If for every x such that x ∈ B holds g(x) = f(x), then f +· g
�
B = f .
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In the sequel B will denote a finite subset of A. We now state several propo-
sitions:

(11) For every set X holds X is a finite subset of A if and only if X ⊆ A

and X is finite.

(12) g
�
B +· f = f .

(13) dom(g
�
B) = B.

(14) If for every x such that x ∈ B holds g(x) = f(x), then f +· g
�
B = f .

(15) f ◦ B = (f
�
B) ◦ B.

(16) If f
�
B = g

�
B, then f ◦ B = g ◦ B.

Let D be a non-empty set, and let o, o′ be binary operations on D. We say
that o absorbs o′ if and only if:

(Def.1) for all elements x, y of D holds o(x, o′(x, y)) = x.

In the sequel L will be a lattice structure. The following proposition is true

(17) If the join operation of L is commutative and the join operation of L

is associative and the meet operation of L is commutative and the meet
operation of L is associative and the join operation of L absorbs the meet
operation of L and the meet operation of L absorbs the join operation of
L, then L is a lattice.

Let L be a lattice structure. The functor L◦ yields a lattice structure and is
defined by:

(Def.2) L◦ = 〈 the carrier of L, the meet operation of L, the join operation of
L〉.

One can prove the following propositions:

(18) The carrier of L = the carrier of L◦ and the join operation of L = the
meet operation of L◦ and the meet operation of L = the join operation
of L◦.

(19) (L◦)◦ = L.

We follow the rules: L will be a lattice and a, b, u, v will be elements of the
carrier of L. We now state a number of propositions:

(20) If for every v holds u ⊓ v = u, then u = ⊥L.

(21) If for every v holds u ⊔ v = v, then u = ⊥L.

(22) If for every v holds (the join operation of L)(u, v) = v, then u = ⊥L.

(23) If for every v holds u ⊔ v = u, then u = ⊤L.

(24) If for every v holds u ⊓ v = v, then u = ⊤L.

(25) If for every v holds (the meet operation of L)(u, v) = v, then u = ⊤L.

(26) The join operation of L is idempotent.

(27) The join operation of L is commutative.

(28) If the join operation of L has a unity, then ⊥L = 1the join operation of L.

(29) The join operation of L is associative.

(30) The meet operation of L is idempotent.
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(31) The meet operation of L is commutative.

(32) The meet operation of L is associative.

(33) If the meet operation of L has a unity, then ⊤L = 1the meet operation of L.

(34) The join operation of L is distributive w.r.t. the join operation of L.

(35) If L is a distributive lattice, then the join operation of L is distributive
w.r.t. the meet operation of L.

(36) If the join operation of L is distributive w.r.t. the meet operation of L,
then L is a distributive lattice.

(37) If L is a distributive lattice, then the meet operation of L is distributive
w.r.t. the join operation of L.

(38) If the meet operation of L is distributive w.r.t. the join operation of L,
then L is a distributive lattice.

(39) The meet operation of L is distributive w.r.t. the meet operation of L.

(40) The join operation of L absorbs the meet operation of L.

(41) The meet operation of L absorbs the join operation of L.

We now define two new functors. Let A be a non-empty set, and let L be a
lattice, and let B be a finite subset of A, and let f be a function from A into
the carrier of L. The functor

⊔f
B

f yields an element of the carrier of L and is
defined as follows:

(Def.3)
⊔f

B
f = (the join operation of L)-

∑
B

f .

The functor ⌈−⌉f
B

f yields an element of the carrier of L and is defined by:

(Def.4) ⌈−⌉f
B
f = (the meet operation of L)-

∑
B

f .

We now state the proposition

(42) For every non-empty set A and for every lattice L and for every finite
subset B of A and for every function f from A into the carrier of L holds
⊔f

B
f = (the join operation of L)-

∑
B

f .

For simplicity we adopt the following convention: A will be a non-empty
set, x will be an element of A, B will be a finite subset of A, and f , g will be
functions from A into the carrier of L. Next we state several propositions:

(43) If x ∈ B, then f(x) ⊑
⊔f

B
f .

(44) If there exists x such that x ∈ B and u ⊑ f(x), then u ⊑
⊔f

B
f .

(45) If for every x such that x ∈ B holds f(x) = u and B 6= ∅, then
⊔f

B
f = u.

(46) If
⊔f

B
f ⊑ u, then for every x such that x ∈ B holds f(x) ⊑ u.

(47) If B 6= ∅ and for every x such that x ∈ B holds f(x) ⊑ u, then
⊔f

B
f ⊑ u.

(48) If B 6= ∅ and for every x such that x ∈ B holds f(x) ⊑ g(x), then
⊔f

B
f ⊑

⊔f
B

g.

(49) If B 6= ∅ and f
�
B = g

�
B, then

⊔f
B

f =
⊔f

B
g.

(50) If B 6= ∅, then v ⊔
⊔f

B
f =

⊔f
B

( (the join operation of L)◦(v, f)).

Let L be a lattice. Then L◦ is a lattice.

We now state a number of propositions:
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(51) For every lattice L and for every finite subset B of A and for every
function f from A into the carrier of L and for every function f ′ from A

into the carrier of L◦ such that f = f ′ holds
⊔f

B
f = ⌈−⌉f

B
f ′ and ⌈−⌉f

B
f =

⊔f
B

f ′.

(52) For all elements a′, b′ of the carrier of L◦ such that a = a′ and b = b′

holds a ⊓ b = a′ ⊔ b′ and a ⊔ b = a′ ⊓ b′.

(53) If a ⊑ b, then for all elements a′, b′ of the carrier of L◦ such that a = a′

and b = b′ holds b′ ⊑ a′.

(54) For all elements a′, b′ of the carrier of L◦ such that a′ ⊑ b′ and a = a′

and b = b′ holds b ⊑ a.

(55) If x ∈ B, then ⌈−⌉f
B
f ⊑ f(x).

(56) If there exists x such that x ∈ B and f(x) ⊑ u, then ⌈−⌉f
B

f ⊑ u.

(57) If for every x such that x ∈ B holds f(x) = u and B 6= ∅, then ⌈−⌉f
B
f = u.

(58) If B 6= ∅, then v ⊓ ⌈−⌉f
B
f = ⌈−⌉f

B
( (the meet operation of L)◦(v, f)).

(59) If u ⊑ ⌈−⌉f
B
f , then for every x such that x ∈ B holds u ⊑ f(x).

(60) If B 6= ∅ and f
�
B = g

�
B, then ⌈−⌉f

B
f = ⌈−⌉f

B
g.

(61) If B 6= ∅ and for every x such that x ∈ B holds u ⊑ f(x), then u ⊑ ⌈−⌉f
B

f .

(62) If B 6= ∅ and for every x such that x ∈ B holds f(x) ⊑ g(x), then
⌈−⌉f

B
f ⊑ ⌈−⌉f

B
g.

(63) For every lattice L holds L is a lower bound lattice if and only if L◦ is
an upper bound lattice.

(64) For every lattice L holds L is an upper bound lattice if and only if L◦

is a lower bound lattice.

(65) L is a distributive lattice if and only if L◦ is a distributive lattice.

In the sequel L denotes a lower bound lattice, f , g denote functions from A

into the carrier of L, and u denotes an element of the carrier of L. The following
propositions are true:

(66) ⊥L is a unity w.r.t. the join operation of L.

(67) The join operation of L has a unity.

(68) ⊥L = 1the join operation of L.

(69) If f
�
B = g

�
B, then

⊔f
B

f =
⊔f

B
g.

(70) If for every x such that x ∈ B holds f(x) ⊑ u, then
⊔f

B
f ⊑ u.

(71) If for every x such that x ∈ B holds f(x) ⊑ g(x), then
⊔f

B
f ⊑

⊔f
B

g.

In the sequel L will denote an upper bound lattice, f , g will denote functions
from A into the carrier of L, and u will denote an element of the carrier of L.
The following propositions are true:

(72) ⊤L is a unity w.r.t. the meet operation of L.

(73) The meet operation of L has a unity.

(74) ⊤L = 1the meet operation of L.

(75) If f
�
B = g

�
B, then ⌈−⌉f

B
f = ⌈−⌉f

B
g.
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(76) If for every x such that x ∈ B holds u ⊑ f(x), then u ⊑ ⌈−⌉f
B

f .

(77) If for every x such that x ∈ B holds f(x) ⊑ g(x), then ⌈−⌉f
B

f ⊑ ⌈−⌉f
B

g.

(78) For every lower bound lattice L holds ⊥L = ⊤L◦ .

(79) For every upper bound lattice L holds ⊤L = ⊥L◦ .

A lower bound lattice is called a distributive lower bounded lattice if:

(Def.5) it is a distributive lattice.

In the sequel L will denote a distributive lower bounded lattice, f , g will
denote functions from A into the carrier of L, and u will denote an element of
the carrier of L. We now state four propositions:

(80) The meet operation of L is distributive w.r.t. the join operation of L.

(81) (the meet operation of L)(u,
⊔f

B
f) =

⊔f
B

( (the meet operation of
L)◦(u, f)).

(82) If for every x such that x ∈ B holds g(x) = u ⊓ f(x), then u ⊓
⊔f

B
f =

⊔f
B

g.

(83) u ⊓
⊔f

B
f =

⊔f
B

( (the meet operation of L)◦(u, f)).

A lower bound lattice is said to be a Heyting lattice if:

(Def.6) it is a implicative lattice.

Next we state the proposition

(84) For every lower bound lattice L holds L is a Heyting lattice if and only
if for every elements x, z of the carrier of L there exists an element y of
the carrier of L such that x⊓ y ⊑ z and for every element v of the carrier
of L such that x ⊓ v ⊑ z holds v ⊑ y.

Let L be a lattice. We say that L is finite if and only if:

(Def.7) the carrier of L is finite.

We now state several propositions:

(85) For every lattice L holds L is finite if and only if L◦ is finite.

(86) For every lattice L such that L is finite holds L is a lower bound lattice.

(87) For every lattice L such that L is finite holds L is an upper bound
lattice.

(88) For every lattice L such that L is finite holds L is a bound lattice.

(89) For every distributive lattice L such that L is finite holds L is a Heyting
lattice.
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