Classes of Conjugation. Normal Subgroups

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. Theorems that were not proved in [8] and in [9] are discussed. In the article we define notion of conjugation for elements, subsets and subgroups of a group. We define the classes of conjugation. Normal subgroups of a group and normalizer of a subset of a group or of a subgroup are introduced. We also define the set of all subgroups of a group. An auxiliary theorem that belongs rather to [1] is proved.

MML Identifier: GROUP_3.

The papers [3], [10], [5], [2], [8], [9], [6], [4], and [7] provide the notation and terminology for this paper. For simplicity we follow a convention: x, y are arbitrary, X denotes a set, G denotes a group, a, b, c, d, g, h denote elements of G, A, B, C, D denote subsets of $G, H, H_{1}, H_{2}, H_{3}$ denote subgroups of G, n denotes a natural number, and i denotes an integer. Next we state a number of propositions:
(1) $(a \cdot b) \cdot b^{-1}=a$ and $\left(a \cdot b^{-1}\right) \cdot b=a$ and $\left(b^{-1} \cdot b\right) \cdot a=a$ and $\left(b \cdot b^{-1}\right) \cdot a=a$ and $a \cdot\left(b \cdot b^{-1}\right)=a$ and $a \cdot\left(b^{-1} \cdot b\right)=a$ and $b^{-1} \cdot(b \cdot a)=a$ and $b \cdot\left(b^{-1} \cdot a\right)=a$.
(2) G is an Abelian group if and only if the operation of G is commutative.
(3) $\{\mathbf{1}\}_{G}$ is an Abelian group.
(4) If $A \subseteq B$ and $C \subseteq D$, then $A \cdot C \subseteq B \cdot D$.
(5) If $A \subseteq B$, then $a \cdot A \subseteq a \cdot B$ and $A \cdot a \subseteq B \cdot a$.
(6) If H_{1} is a subgroup of H_{2}, then $a \cdot H_{1} \subseteq a \cdot H_{2}$ and $H_{1} \cdot a \subseteq H_{2} \cdot a$.
(7) $a \cdot H=\{a\} \cdot H$.
(8) $H \cdot a=H \cdot\{a\}$.
(9) $(a \cdot A) \cdot H=a \cdot(A \cdot H)$.
(10) $(A \cdot a) \cdot H=A \cdot(a \cdot H)$.
(11) $(a \cdot H) \cdot A=a \cdot(H \cdot A)$.
(12) $(A \cdot H) \cdot a=A \cdot(H \cdot a)$.

[^0]\[

$$
\begin{array}{ll}
\text { (13) } & (H \cdot a) \cdot A=H \cdot(a \cdot A) . \tag{13}\\
\text { (14) } \quad(H \cdot A) \cdot a=H \cdot(A \cdot a) . \\
\text { (15) } & \left(H_{1} \cdot a\right) \cdot H_{2}=H_{1} \cdot\left(a \cdot H_{2}\right) .
\end{array}
$$
\]

Let us consider G. The functor $\operatorname{SubGr} G$ yielding a non-empty set is defined by:
(Def.1) $\quad x \in \operatorname{SubGr} G$ if and only if x is a subgroup of G.
In the sequel D denotes a non-empty set. Next we state four propositions:
(16) If for every x holds $x \in D$ if and only if x is a subgroup of G, then $D=\operatorname{SubGr} G$.
(17) $\quad x \in \operatorname{SubGr} G$ if and only if x is a subgroup of G.
(18) $G \in \operatorname{SubGr} G$.
(19) If G is finite, then $\operatorname{SubGr} G$ is finite.

Let us consider G, a, b. The functor a^{b} yielding an element of G is defined as follows:
(Def.2) $\quad a^{b}=\left(b^{-1} \cdot a\right) \cdot b$.
One can prove the following propositions:
(20) $\quad a^{b}=\left(b^{-1} \cdot a\right) \cdot b$ and $a^{b}=b^{-1} \cdot(a \cdot b)$.
(21) If $a^{g}=b^{g}$, then $a=b$.
(22) $\left(1_{G}\right)^{a}=1_{G}$.
(23) If $a^{b}=1_{G}$, then $a=1_{G}$.
(24) $a^{1_{G}}=a$.
(25) $a^{a}=a$.
(26) $\quad\left(a^{a}\right)^{-1}=a$ and $\left(a^{-1}\right)^{a}=a^{-1}$.
(27) $a^{b}=a$ if and only if $a \cdot b=b \cdot a$.
(28) $(a \cdot b)^{g}=a^{g} \cdot b^{g}$.
(29) $\quad\left(a^{g}\right)^{h}=a^{g \cdot h}$.
(30) $\left(\left(a^{b}\right)^{b}\right)^{-1}=a$ and $\left(\left(a^{b}\right)^{-1}\right)^{b}=a$.
(31) $a^{b}=c$ if and only if $a=\left(c^{b}\right)^{-1}$.
(32) $\left(a^{-1}\right)^{b}=\left(a^{b}\right)^{-1}$.
(33) $\left(a^{n}\right)^{b}=\left(a^{b}\right)^{n}$.
(34) $\left(a^{i}\right)^{b}=\left(a^{b}\right)^{i}$.
(35) If G is an Abelian group, then $a^{b}=a$.
(36) If for all a, b holds $a^{b}=a$, then G is an Abelian group.

Let us consider G, A, B. The functor A^{B} yielding a subset of G is defined as follows:
(Def.3) $\quad A^{B}=\left\{g^{h}: g \in A \wedge h \in B\right\}$.
We now state a number of propositions:

$$
\begin{equation*}
A^{B}=\left\{g^{h}: g \in A \wedge h \in B\right\} \tag{37}
\end{equation*}
$$

(38) $x \in A^{B}$ if and only if there exist g, h such that $x=g^{h}$ and $g \in A$ and $h \in B$.
(39) $\quad A^{B} \neq \emptyset$ if and only if $A \neq \emptyset$ and $B \neq \emptyset$.
(40) $\quad A^{B} \subseteq\left(B^{-1} \cdot A\right) \cdot B$.
(41) $(A \cdot B)^{C} \subseteq A^{C} \cdot B^{C}$.
(42) $\quad\left(A^{B}\right)^{C}=A^{B \cdot C}$.
(43) $\left(A^{-1}\right)^{B}=\left(A^{B}\right)^{-1}$.
(44) $\{a\}^{\{b\}}=\left\{a^{b}\right\}$.
(45) $\{a\}^{\{b, c\}}=\left\{a^{b}, a^{c}\right\}$.
(46) $\{a, b\}^{\{c\}}=\left\{a^{c}, b^{c}\right\}$.
(47) $\{a, b\}^{\{c, d\}}=\left\{a^{c}, a^{d}, b^{c}, b^{d}\right\}$.

We now define two new functors. Let us consider G, A, g. The functor A^{g} yields a subset of G and is defined as follows:
(Def.4) $\quad A^{g}=A^{\{g\}}$.
The functor g^{A} yields a subset of G and is defined by:
(Def.5) $\quad g^{A}=\{g\}^{A}$.
Next we state a number of propositions:
(48) $A^{g}=A^{\{g\}}$.
(49) $g^{A}=\{g\}^{A}$.
(50) $x \in A^{g}$ if and only if there exists h such that $x=h^{g}$ and $h \in A$.
(51) $x \in g^{A}$ if and only if there exists h such that $x=g^{h}$ and $h \in A$.
(52) $\quad g^{A} \subseteq\left(A^{-1} \cdot g\right) \cdot A$.
(53) $\quad\left(A^{B}\right)^{g}=A^{B \cdot g}$.
(54) $\quad\left(A^{g}\right)^{B}=A^{g \cdot B}$.
(55) $\quad\left(g^{A}\right)^{B}=g^{A \cdot B}$.
(56) $\quad\left(A^{a}\right)^{b}=A^{a \cdot b}$.
(57) $\quad\left(a^{A}\right)^{b}=a^{A \cdot b}$.
(58) $\quad\left(a^{b}\right)^{A}=a^{b \cdot A}$.
(59) $\quad A^{g}=\left(g^{-1} \cdot A\right) \cdot g$.
(60) $(A \cdot B)^{a} \subseteq A^{a} \cdot B^{a}$.
(61) $A^{1_{G}}=A$.
(62) If $A \neq \emptyset$, then $\left(1_{G}\right)^{A}=\left\{1_{G}\right\}$.
(63) $\quad\left(\left(A^{a}\right)^{a}\right)^{-1}=A$ and $\left(\left(A^{a}\right)^{-1}\right)^{a}=A$.
(64) $A=B^{g}$ if and only if $B=\left(A^{g}\right)^{-1}$.
(65) G is an Abelian group if and only if for all A, B such that $B \neq \emptyset$ holds $A^{B}=A$.
(66) $\quad G$ is an Abelian group if and only if for all A, g holds $A^{g}=A$.
(67) G is an Abelian group if and only if for all A, g such that $A \neq \emptyset$ holds $g^{A}=\{g\}$.

Let us consider G, H, a. The functor H^{a} yielding a subgroup of G is defined by:
(Def.6) the carrier of $H^{a}=\bar{H}^{a}$.
The following propositions are true:
(68) If the carrier of $H_{1}=\bar{H}^{a}$, then $H_{1}=H^{a}$.
(69) The carrier of $H^{a}=\bar{H}^{a}$.
(70) $x \in H^{a}$ if and only if there exists g such that $x=g^{a}$ and $g \in H$.
(71) The carrier of $H^{a}=\left(a^{-1} \cdot H\right) \cdot a$.
(72) $\quad\left(H^{a}\right)^{b}=H^{a \cdot b}$.
(73) $H^{1_{G}}=H$.
(74) $\quad\left(\left(H^{a}\right)^{a}\right)^{-1}=H$ and $\left(\left(H^{a}\right)^{-1}\right)^{a}=H$.
(75) $\quad H_{1}=H_{2}^{a}$ if and only if $H_{2}=\left(H_{1}^{a}\right)^{-1}$.
(76) $\quad\left(H_{1} \cap H_{2}\right)^{a}=H_{1}^{a} \cap H_{2}^{a}$.
(77) $\operatorname{Ord}(H)=\operatorname{Ord}\left(H^{a}\right)$.
(78) H is finite if and only if H^{a} is finite.
(79) If H is finite, then $\operatorname{ord}(H)=\operatorname{ord}\left(H^{a}\right)$.
(80) $\{\mathbf{1}\}_{G}^{a}=\{\mathbf{1}\}_{G}$.
(81) If $H^{a}=\{\mathbf{1}\}_{G}$, then $H=\{\mathbf{1}\}_{G}$.
(82) $\Omega_{G}{ }^{a}=G$.
(83) If $H^{a}=G$, then $H=G$.
(84) $|\bullet: H|=\left|\bullet: H^{a}\right|$.
(85) If the left cosets of H is finite, then $|\bullet: H|_{\mathbb{N}}=\left|\bullet: H^{a}\right|_{\mathrm{N}}$.
(86) If G is an Abelian group, then for all H, a holds $H^{a}=H$.

Let us consider G, a, b. We say that a and b are conjugated if and only if:
(Def.7) there exists g such that $a=b^{g}$.
We now state several propositions:
(87) $\quad a$ and b are conjugated if and only if there exists g such that $a=b^{g}$.
(88) $\quad a$ and b are conjugated if and only if there exists g such that $b=a^{g}$.
(89) $\quad a$ and a are conjugated.
(90) If a and b are conjugated, then b and a are conjugated.
(91) If a and b are conjugated and b and c are conjugated, then a and c are conjugated.
(92) If a and 1_{G} are conjugated or 1_{G} and a are conjugated, then $a=1_{G}$.
(93) $a^{\overline{\Omega_{G}}}=\{b: a$ and b are conjugated $\}$.

Let us consider G, a. The functor a^{\bullet} yielding a subset of G is defined by:
(Def.8) $\quad a^{\bullet}=a^{\overline{\Omega_{G}}}$.
We now state several propositions:
(94) $\quad a^{\bullet}=a^{\overline{\Omega_{G}}}$.
(95) $\quad x \in a^{\bullet}$ if and only if there exists b such that $b=x$ and a and b are conjugated.
(96) $a \in b^{\bullet}$ if and only if a and b are conjugated.
(97) $a^{g} \in a^{\bullet}$.
(98) $a \in a^{\bullet}$.
(99) If $a \in b^{\bullet}$, then $b \in a^{\bullet}$.
(100) $a^{\bullet \bullet}=b^{\bullet}$ if and only if a^{\bullet} meets b^{\bullet}.
(101) $\quad a^{\bullet}=\left\{1_{G}\right\}$ if and only if $a=1_{G}$.
(102) $\quad a^{\bullet} \cdot A=A \cdot a^{\bullet}$.

Let us consider G, A, B. We say that A and B are conjugated if and only if: (Def.9) there exists g such that $A=B^{g}$.

We now state several propositions:
(103) $\quad A$ and B are conjugated if and only if there exists g such that $A=B^{g}$.
(104) A and B are conjugated if and only if there exists g such that $B=A^{g}$.
(105) A and A are conjugated.
(106) If A and B are conjugated, then B and A are conjugated.
(107) If A and B are conjugated and B and C are conjugated, then A and C are conjugated.
(108) $\{a\}$ and $\{b\}$ are conjugated if and only if a and b are conjugated.
(109) If A and $\overline{H_{1}}$ are conjugated, then there exists H_{2} such that the carrier of $H_{2}=A$.
Let us consider G, A. The functor A^{\bullet} yielding a family of subsets of the carrier of G is defined as follows:
(Def.10) $\quad A^{\bullet}=\{B: A$ and B are conjugated $\}$.
The following propositions are true:
(110) $\quad A^{\bullet}=\{B: A$ and B are conjugated $\}$.
(111) $\quad x \in A^{\bullet}$ if and only if there exists B such that $x=B$ and A and B are conjugated.
(112) If $x \in A^{\bullet}$, then x is a subset of G.
(113) $\quad A \in B^{\bullet}$ if and only if A and B are conjugated.
(114) $A^{g} \in A^{\bullet}$.
(115) $A \in A^{\bullet}$.
(116) If $A \in B^{\bullet}$, then $B \in A^{\bullet}$.
(117) $A^{\bullet}=B^{\bullet}$ if and only if A^{\bullet} meets B^{\bullet}.
(118) $\{a\}^{\bullet}=\left\{\{b\}: b \in a^{\bullet}\right\}$.
(119) If G is finite, then A^{\bullet} is finite.

Let us consider G, H_{1}, H_{2}. We say that H_{1} and H_{2} are conjugated if and only if:
(Def.11) there exists g such that $H_{1}=H_{2}^{g}$.

The following propositions are true:
(120) $\quad H_{1}$ and H_{2} are conjugated if and only if there exists g such that $H_{1}=$ H_{2}^{g}.
(121) $\quad H_{1}$ and H_{2} are conjugated if and only if there exists g such that $H_{2}=$ H_{1}^{g}.
(122) H_{1} and H_{1} are conjugated.
(123) If H_{1} and H_{2} are conjugated, then H_{2} and H_{1} are conjugated.
(124) If H_{1} and H_{2} are conjugated and H_{2} and H_{3} are conjugated, then H_{1} and H_{3} are conjugated.
In the sequel L denotes a subset of $\operatorname{SubGr} G$. Let us consider G, H. The functor H^{\bullet} yielding a subset of $\operatorname{SubGr} G$ is defined as follows:
(Def.12) $\quad x \in H^{\bullet}$ if and only if there exists H_{1} such that $x=H_{1}$ and H and H_{1} are conjugated.
One can prove the following propositions:
(125) If for every x holds $x \in L$ if and only if there exists H such that $x=H$ and H_{1} and H are conjugated, then $L=H_{1}^{\bullet}$.
(126) $\quad x \in H_{1}^{\bullet}$ if and only if there exists H_{2} such that $x=H_{2}$ and H_{1} and H_{2} are conjugated.
(127) If $x \in H^{\bullet}$, then x is a subgroup of G.
(128) $\quad H_{1} \in H_{2}^{\bullet}$ if and only if H_{1} and H_{2} are conjugated.
(129) $H^{g} \in H^{\bullet}$.
(130) $H \in H^{\bullet}$.
(131) If $H_{1} \in H_{2}^{\bullet}$, then $H_{2} \in H_{1}^{\bullet}$.
(132) $H_{1}^{\boldsymbol{\bullet}}=H_{2}^{\boldsymbol{\bullet}}$ if and only if $H_{1}^{\boldsymbol{\bullet}}$ meets $H_{2}^{\boldsymbol{\bullet}}$.
(133) If G is finite, then H^{\bullet} is finite.
(134) H_{1} and H_{2} are conjugated if and only if $\overline{H_{1}}$ and $\overline{H_{2}}$ are conjugated.

Let us consider G. A subgroup of G is called a normal subgroup of G if:
(Def.13) for every a holds it ${ }^{a}=\mathrm{it}$.
One can prove the following proposition
(135) If for every a holds $H=H^{a}$, then H is a normal subgroup of G.

In the sequel N, N_{1}, N_{2} will denote ha normal subgroups of G. We now state a number of propositions:
$N^{a}=N$.
(137) $\quad\{\mathbf{1}\}_{G}$ is a normal subgroup of G and Ω_{G} is a normal subgroup of G.
(138) $\quad N_{1} \cap N_{2}$ is a normal subgroup of G.
(139) If G is an Abelian group, then H is a normal subgroup of G.
(140) $\quad H$ is a normal subgroup of G if and only if for every a holds $a \cdot H=H \cdot a$.
(141) H is a normal subgroup of G if and only if for every a holds $a \cdot H \subseteq H \cdot a$.
(142) $\quad H$ is a normal subgroup of G if and only if for every a holds $H \cdot a \subseteq a \cdot H$.
H is a normal subgroup of G if and only if for every A holds $A \cdot H=H \cdot A$.
(144) H is a normal subgroup of G if and only if for every a holds H is a subgroup of H^{a}.
(145) $\quad H$ is a normal subgroup of G if and only if for every a holds H^{a} is a subgroup of H.
(146) H is a normal subgroup of G if and only if $H^{\bullet}=\{H\}$.
(147) H is a normal subgroup of G if and only if for every a such that $a \in H$ holds $a^{\bullet} \subseteq \bar{H}$.
(148) $\overline{N_{1}} \cdot \overline{N_{2}}=\overline{N_{2}} \cdot \overline{N_{1}}$.
(149) There exists N such that the carrier of $N=\overline{N_{1}} \cdot \overline{N_{2}}$.
(150) The left cosets of $N=$ the right cosets of N.
(151) If the left cosets of H is finite and $|\bullet: H|_{\mathcal{N}}=2$, then H is a normal subgroup of G.
Let us consider G, A. The functor $\mathrm{N}(A)$ yielding a subgroup of G is defined by:
(Def.14) the carrier of $\mathrm{N}(A)=\left\{h: A^{h}=A\right\}$.
We now state several propositions:
(152) If the carrier of $H=\left\{h: A^{h}=A\right\}$, then $H=\mathrm{N}(A)$.
(153) The carrier of $\mathrm{N}(A)=\left\{h: A^{h}=A\right\}$.
(154) $\quad x \in \mathrm{~N}(A)$ if and only if there exists h such that $x=h$ and $A^{h}=A$.
(155) $\quad \overline{\overline{A^{\bullet}}}=|\bullet: \mathrm{N}(A)|$.
(156) If A^{\bullet} is finite or the left cosets of $\mathrm{N}(A)$ is finite, then $\operatorname{card} A^{\bullet}=\mid \bullet$: $\left.\mathrm{N}(A)\right|_{\mathrm{N}}$. $\overline{\overline{a^{\bullet}}}=|\bullet: \mathrm{N}(\{a\})|$.
(158) If a^{\bullet} is finite or the left cosets of $\mathrm{N}(\{a\})$ is finite, then $\operatorname{card} a^{\bullet}=\mid \bullet$: $\left.\mathrm{N}(\{a\})\right|_{\mathrm{N}}$.
Let us consider G, H. The functor $\mathrm{N}(H)$ yields a subgroup of G and is defined as follows:
(Def.15) $\quad \mathrm{N}(H)=\mathrm{N}(\bar{H})$.
We now state several propositions:
(159) $\quad \mathrm{N}(H)=\mathrm{N}(\bar{H})$.
(160) $\quad x \in \mathrm{~N}(H)$ if and only if there exists h such that $x=h$ and $H^{h}=H$.
(161) $\quad \overline{\overline{H^{\bullet}}}=|\bullet: \mathrm{N}(H)|$.
(162) If H^{\bullet} is finite or the left cosets of $\mathrm{N}(H)$ is finite, then card $H^{\bullet}=\mid \bullet$: $\left.\mathrm{N}(H)\right|_{\mathrm{N}}$.
(163) $\quad H$ is a normal subgroup of G if and only if $\mathrm{N}(H)=G$.
(164) $\mathrm{N}\left(\{\mathbf{1}\}_{G}\right)=G$.
(165) $\mathrm{N}\left(\Omega_{G}\right)=G$.
(166) If X is finite and card $X=2$, then there exist x, y such that $x \neq y$ and $X=\{x, y\}$.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[7] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[8] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[9] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[10] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

