Classes of Conjugation. Normal Subgroups

Wojciech A. Trybulec¹ Warsaw University

Summary. Theorems that were not proved in [8] and in [9] are discussed. In the article we define notion of conjugation for elements, subsets and subgroups of a group. We define the classes of conjugation. Normal subgroups of a group and normalizer of a subset of a group or of a subgroup are introduced. We also define the set of all subgroups of a group. An auxiliary theorem that belongs rather to [1] is proved.

MML Identifier: GROUP_3.

The papers [3], [10], [5], [2], [8], [9], [6], [4], and [7] provide the notation and terminology for this paper. For simplicity we follow a convention: x, y are arbitrary, X denotes a set, G denotes a group, a, b, c, d, g, h denote elements of G, A, B, C, D denote subsets of G, H, H₁, H₂, H₃ denote subgroups of G, n denotes a natural number, and i denotes an integer. Next we state a number of propositions:

- (1) $(a \cdot b) \cdot b^{-1} = a$ and $(a \cdot b^{-1}) \cdot b = a$ and $(b^{-1} \cdot b) \cdot a = a$ and $(b \cdot b^{-1}) \cdot a = a$ and $a \cdot (b \cdot b^{-1}) = a$ and $a \cdot (b^{-1} \cdot b) = a$ and $b^{-1} \cdot (b \cdot a) = a$ and $b \cdot (b^{-1} \cdot a) = a$.
- (2) G is an Abelian group if and only if the operation of G is commutative.
- (3) $\{\mathbf{1}\}_G$ is an Abelian group.
- (4) If $A \subseteq B$ and $C \subseteq D$, then $A \cdot C \subseteq B \cdot D$.
- (5) If $A \subseteq B$, then $a \cdot A \subseteq a \cdot B$ and $A \cdot a \subseteq B \cdot a$.
- (6) If H_1 is a subgroup of H_2 , then $a \cdot H_1 \subseteq a \cdot H_2$ and $H_1 \cdot a \subseteq H_2 \cdot a$.
- $(7) \quad a \cdot H = \{a\} \cdot H.$
- $(8) \quad H \cdot a = H \cdot \{a\}.$
- (9) $(a \cdot A) \cdot H = a \cdot (A \cdot H).$
- (10) $(A \cdot a) \cdot H = A \cdot (a \cdot H).$
- (11) $(a \cdot H) \cdot A = a \cdot (H \cdot A).$
- (12) $(A \cdot H) \cdot a = A \cdot (H \cdot a).$

¹Supported by RPBP.III-24.C1

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (13) $(H \cdot a) \cdot A = H \cdot (a \cdot A).$
- (14) $(H \cdot A) \cdot a = H \cdot (A \cdot a).$
- (15) $(H_1 \cdot a) \cdot H_2 = H_1 \cdot (a \cdot H_2).$

Let us consider G. The functor SubGrG yielding a non-empty set is defined by:

(Def.1) $x \in \operatorname{SubGr} G$ if and only if x is a subgroup of G.

In the sequel D denotes a non-empty set. Next we state four propositions:

- (16) If for every x holds $x \in D$ if and only if x is a subgroup of G, then $D = \operatorname{SubGr} G$.
- (17) $x \in \operatorname{SubGr} G$ if and only if x is a subgroup of G.
- (18) $G \in \operatorname{SubGr} G.$
- (19) If G is finite, then SubGrG is finite.

Let us consider G, a, b. The functor a^b yielding an element of G is defined as follows:

(Def.2)
$$a^b = (b^{-1} \cdot a) \cdot b.$$

One can prove the following propositions:

- (20) $a^{b} = (b^{-1} \cdot a) \cdot b$ and $a^{b} = b^{-1} \cdot (a \cdot b)$.
- (21) If $a^g = b^g$, then a = b.
- (22) $(1_G)^a = 1_G.$
- (23) If $a^b = 1_G$, then $a = 1_G$.
- (24) $a^{1_G} = a.$
- (25) $a^a = a$.
- (26) $(a^a)^{-1} = a$ and $(a^{-1})^a = a^{-1}$.
- (27) $a^b = a$ if and only if $a \cdot b = b \cdot a$.
- $(28) \quad (a \cdot b)^g = a^g \cdot b^g.$
- $(29) \quad (a^g)^h = a^{g \cdot h}.$
- (30) $((a^b)^b)^{-1} = a \text{ and } ((a^b)^{-1})^b = a.$
- (31) $a^b = c$ if and only if $a = (c^b)^{-1}$.
- $(32) \quad (a^{-1})^b = (a^b)^{-1}.$
- $(33) \quad (a^n)^b = (a^b)^n.$
- $(34) \quad (a^i)^b = (a^b)^i.$
- (35) If G is an Abelian group, then $a^b = a$.
- (36) If for all a, b holds $a^b = a$, then G is an Abelian group.

Let us consider G, A, B. The functor A^B yielding a subset of G is defined as follows:

$$(Def.3) \quad A^B = \{g^h : g \in A \land h \in B\}.$$

We now state a number of propositions:

$$(37) \quad A^B = \{g^h : g \in A \land h \in B\}.$$

- (38) $x \in A^B$ if and only if there exist g, h such that $x = g^h$ and $g \in A$ and $h \in B$.
- (39) $A^B \neq \emptyset$ if and only if $A \neq \emptyset$ and $B \neq \emptyset$.
- $(40) \qquad A^B \subseteq (B^{-1} \cdot A) \cdot B.$
- $(41) \quad (A \cdot B)^C \subseteq A^C \cdot B^C.$
- $(42) \quad (A^B)^C = A^{B \cdot C}.$
- $(43) \quad (A^{-1})^B = (A^B)^{-1}.$
- $(44) \quad \{a\}^{\{b\}} = \{a^b\}.$
- (45) $\{a\}^{\{b,c\}} = \{a^b, a^c\}.$
- (46) $\{a,b\}^{\{c\}} = \{a^c,b^c\}.$
- (47) $\{a,b\}^{\{c,d\}} = \{a^c, a^d, b^c, b^d\}.$

We now define two new functors. Let us consider G, A, g. The functor A^g yields a subset of G and is defined as follows:

(Def.4) $A^g = A^{\{g\}}.$

The functor g^A yields a subset of G and is defined by: (Def.5) $g^A = \{g\}^A$.

Next we state a number of propositions:

- $A^g = A^{\{g\}}.$ (48) $q^A = \{q\}^A.$ (49) $x \in A^g$ if and only if there exists h such that $x = h^g$ and $h \in A$. (50) $x \in q^A$ if and only if there exists h such that $x = q^h$ and $h \in A$. (51) $q^A \subset (A^{-1} \cdot q) \cdot A.$ (52) $(A^B)^g = A^{B \cdot g}.$ (53) $(A^g)^B = A^{g \cdot B}.$ (54) $(q^A)^B = q^{A \cdot B}.$ (55) $(A^a)^b = A^{a \cdot b}.$ (56) $(a^A)^b = a^{A \cdot b}.$ (57) $(a^b)^A = a^{b \cdot A}.$ (58) $A^g = (g^{-1} \cdot A) \cdot g.$ (59) $(A \cdot B)^a \subseteq A^a \cdot B^a.$ (60) $A^{1_G} = A.$ (61)If $A \neq \emptyset$, then $(1_G)^A = \{1_G\}$. (62) $((A^a)^a)^{-1} = A$ and $((A^a)^{-1})^a = A$. (63)(64) $A = B^g$ if and only if $B = (A^g)^{-1}$. G is an Abelian group if and only if for all $A,\,B$ such that $B\neq \emptyset$ holds (65) $A^B = A.$
- (66) G is an Abelian group if and only if for all A, g holds $A^g = A$.
- (67) G is an Abelian group if and only if for all A, g such that $A \neq \emptyset$ holds $g^A = \{g\}.$

Let us consider G, H, a. The functor H^a yielding a subgroup of G is defined by:

(Def.6) the carrier of $H^a = \overline{H}^a$.

The following propositions are true:

(68) If the carrier of $H_1 = \overline{H}^a$, then $H_1 = H^a$.

- (69) The carrier of $H^a = \overline{H}^a$.
- (70) $x \in H^a$ if and only if there exists g such that $x = g^a$ and $g \in H$.
- (71) The carrier of $H^a = (a^{-1} \cdot H) \cdot a$.
- $(72) \quad (H^a)^b = H^{a \cdot b}.$
- (73) $H^{1_G} = H.$
- (74) $((H^a)^a)^{-1} = H$ and $((H^a)^{-1})^a = H$.
- (75) $H_1 = H_2^a$ if and only if $H_2 = (H_1^a)^{-1}$.
- (76) $(H_1 \cap H_2)^a = H_1^a \cap H_2^a.$
- (77) $\operatorname{Ord}(H) = \operatorname{Ord}(H^a).$
- (78) H is finite if and only if H^a is finite.
- (79) If H is finite, then $\operatorname{ord}(H) = \operatorname{ord}(H^a)$.
- (80) $\{\mathbf{1}\}_G^a = \{\mathbf{1}\}_G.$
- (81) If $H^a = \{\mathbf{1}\}_G$, then $H = \{\mathbf{1}\}_G$.
- (82) $\Omega_G^a = G.$
- (83) If $H^a = G$, then H = G.
- $(84) \quad |\bullet:H| = |\bullet:H^a|.$
- (85) If the left cosets of H is finite, then $|\bullet:H|_{\mathbb{N}} = |\bullet:H^a|_{\mathbb{N}}$.
- (86) If G is an Abelian group, then for all H, a holds $H^a = H$.

Let us consider G, a, b. We say that a and b are conjugated if and only if:

(Def.7) there exists g such that $a = b^g$.

We now state several propositions:

- (87) a and b are conjugated if and only if there exists g such that $a = b^g$.
- (88) a and b are conjugated if and only if there exists g such that $b = a^g$.
- (89) a and a are conjugated.
- (90) If a and b are conjugated, then b and a are conjugated.
- (91) If a and b are conjugated and b and c are conjugated, then a and c are conjugated.
- (92) If a and 1_G are conjugated or 1_G and a are conjugated, then $a = 1_G$.

(93)
$$a^{\Omega_G} = \{b : a \text{ and } b \text{ are conjugated }\}$$

Let us consider G, a. The functor a^{\bullet} yielding a subset of G is defined by: (Def.8) $a^{\bullet} = a^{\overline{\Omega_G}}$.

We now state several propositions:

$$(94) a^{\bullet} = a^{\Omega_G}$$

- (95) $x \in a^{\bullet}$ if and only if there exists b such that b = x and a and b are conjugated.
- (96) $a \in b^{\bullet}$ if and only if a and b are conjugated.
- $(97) \quad a^g \in a^{\bullet}.$
- $(98) \quad a \in a^{\bullet}.$
- (99) If $a \in b^{\bullet}$, then $b \in a^{\bullet}$.
- (100) $a^{\bullet} = b^{\bullet}$ if and only if a^{\bullet} meets b^{\bullet} .
- (101) $a^{\bullet} = \{1_G\}$ if and only if $a = 1_G$.
- (102) $a^{\bullet} \cdot A = A \cdot a^{\bullet}.$

Let us consider G, A, B. We say that A and B are conjugated if and only if: (Def.9) there exists g such that $A = B^g$.

We now state several propositions:

- (103) A and B are conjugated if and only if there exists g such that $A = B^{g}$.
- (104) A and B are conjugated if and only if there exists g such that $B = A^g$.
- (105) A and A are conjugated.
- (106) If A and B are conjugated, then B and A are conjugated.
- (107) If A and B are conjugated and B and C are conjugated, then A and C are conjugated.
- (108) $\{a\}$ and $\{b\}$ are conjugated if and only if a and b are conjugated.
- (109) If A and $\overline{H_1}$ are conjugated, then there exists H_2 such that the carrier of $H_2 = A$.

Let us consider G, A. The functor A^{\bullet} yielding a family of subsets of the carrier of G is defined as follows:

(Def.10) $A^{\bullet} = \{B : A \text{ and } B \text{ are conjugated } \}.$

The following propositions are true:

- (110) $A^{\bullet} = \{B : A \text{ and } B \text{ are conjugated } \}.$
- (111) $x \in A^{\bullet}$ if and only if there exists B such that x = B and A and B are conjugated.
- (112) If $x \in A^{\bullet}$, then x is a subset of G.
- (113) $A \in B^{\bullet}$ if and only if A and B are conjugated.
- (114) $A^g \in A^{\bullet}$.
- (115) $A \in A^{\bullet}$.
- (116) If $A \in B^{\bullet}$, then $B \in A^{\bullet}$.
- (117) $A^{\bullet} = B^{\bullet}$ if and only if A^{\bullet} meets B^{\bullet} .
- (118) $\{a\}^{\bullet} = \{\{b\} : b \in a^{\bullet}\}.$
- (119) If G is finite, then A^{\bullet} is finite.

Let us consider G, H_1 , H_2 . We say that H_1 and H_2 are conjugated if and only if:

(Def.11) there exists g such that $H_1 = H_2^g$.

The following propositions are true:

- (120) H_1 and H_2 are conjugated if and only if there exists g such that $H_1 = H_2^g$.
- (121) H_1 and H_2 are conjugated if and only if there exists g such that $H_2 = H_1^g$.
- (122) H_1 and H_1 are conjugated.
- (123) If H_1 and H_2 are conjugated, then H_2 and H_1 are conjugated.
- (124) If H_1 and H_2 are conjugated and H_2 and H_3 are conjugated, then H_1 and H_3 are conjugated.

In the sequel L denotes a subset of SubGr G. Let us consider G, H. The functor H^{\bullet} yielding a subset of SubGr G is defined as follows:

(Def.12) $x \in H^{\bullet}$ if and only if there exists H_1 such that $x = H_1$ and H and H_1 are conjugated.

One can prove the following propositions:

- (125) If for every x holds $x \in L$ if and only if there exists H such that x = H and H_1 and H are conjugated, then $L = H_1^{\bullet}$.
- (126) $x \in H_1^{\bullet}$ if and only if there exists H_2 such that $x = H_2$ and H_1 and H_2 are conjugated.
- (127) If $x \in H^{\bullet}$, then x is a subgroup of G.
- (128) $H_1 \in H_2^{\bullet}$ if and only if H_1 and H_2 are conjugated.
- (129) $H^g \in H^{\bullet}$.
- (130) $H \in H^{\bullet}$.
- (131) If $H_1 \in H_2^{\bullet}$, then $H_2 \in H_1^{\bullet}$.
- (132) $H_1^{\bullet} = H_2^{\bullet}$ if and only if H_1^{\bullet} meets H_2^{\bullet} .
- (133) If G is finite, then H^{\bullet} is finite.
- (134) H_1 and H_2 are conjugated if and only if $\overline{H_1}$ and $\overline{H_2}$ are conjugated.

Let us consider G. A subgroup of G is called a normal subgroup of G if: (Def.13) for every a holds it^a = it.

One can prove the following proposition

(135) If for every a holds $H = H^a$, then H is a normal subgroup of G.

In the sequel N, N_1 , N_2 will denote ha normal subgroups of G. We now state a number of propositions:

- $(136) \qquad N^a = N.$
- (137) $\{1\}_G$ is a normal subgroup of G and Ω_G is a normal subgroup of G.
- (138) $N_1 \cap N_2$ is a normal subgroup of G.
- (139) If G is an Abelian group, then H is a normal subgroup of G.
- (140) H is a normal subgroup of G if and only if for every a holds $a \cdot H = H \cdot a$.
- (141) *H* is a normal subgroup of *G* if and only if for every *a* holds $a \cdot H \subseteq H \cdot a$.
- (142) *H* is a normal subgroup of *G* if and only if for every *a* holds $H \cdot a \subseteq a \cdot H$.
- (143) H is a normal subgroup of G if and only if for every A holds $A \cdot H = H \cdot A$.

- (144) H is a normal subgroup of G if and only if for every a holds H is a subgroup of H^a .
- (145) H is a normal subgroup of G if and only if for every a holds H^a is a subgroup of H.
- (146) H is a normal subgroup of G if and only if $H^{\bullet} = \{H\}$.
- (147) H is a normal subgroup of G if and only if for every a such that $a \in H$ holds $a^{\bullet} \subseteq \overline{H}$.
- (148) $\overline{N_1} \cdot \overline{N_2} = \overline{N_2} \cdot \overline{N_1}.$
- (149) There exists N such that the carrier of $N = \overline{N_1} \cdot \overline{N_2}$.
- (150) The left cosets of N =the right cosets of N.
- (151) If the left cosets of H is finite and $|\bullet : H|_{\mathbb{N}} = 2$, then H is a normal subgroup of G.

Let us consider G, A. The functor N(A) yielding a subgroup of G is defined by:

(Def.14) the carrier of $N(A) = \{h : A^h = A\}.$

We now state several propositions:

- (152) If the carrier of $H = \{h : A^h = A\}$, then H = N(A).
- (153) The carrier of $N(A) = \{h : A^h = A\}.$
- (154) $x \in N(A)$ if and only if there exists h such that x = h and $A^h = A$.

(155)
$$\overline{A^{\bullet}} = |\bullet: \mathcal{N}(A)|.$$

- (156) If A^{\bullet} is finite or the left cosets of N(A) is finite, then card $A^{\bullet} = |\bullet|$: $N(A)|_{\mathbb{N}}$.
- (157) $\overline{a^{\bullet}} = |\bullet: \mathcal{N}(\{a\})|.$
- (158) If a^{\bullet} is finite or the left cosets of N({a}) is finite, then card $a^{\bullet} = |\bullet|$: N({a})|_N.

Let us consider G, H. The functor N(H) yields a subgroup of G and is defined as follows:

(Def.15)
$$N(H) = N(\overline{H}).$$

We now state several propositions:

- (159) $N(H) = N(\overline{H}).$
- (160) $x \in N(H)$ if and only if there exists h such that x = h and $H^h = H$.
- (161) $\overline{H^{\bullet}} = |\bullet: \mathcal{N}(H)|.$
- (162) If H^{\bullet} is finite or the left cosets of N(H) is finite, then card $H^{\bullet} = |\bullet|$: $N(H)|_{\mathbb{N}}$.
- (163) H is a normal subgroup of G if and only if N(H) = G.
- (164) $N({\mathbf{1}}_G) = G.$
- (165) $N(\Omega_G) = G.$
- (166) If X is finite and card X = 2, then there exist x, y such that $x \neq y$ and $X = \{x, y\}.$

References

- [1] Grzegorz Bancerek. Cardinal arithmetics. *Formalized Mathematics*, 1(3):543–547, 1990.
- [2] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377–382, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [7] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [8] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [9] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
- [10] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received August 10, 1990