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Summary. Theorems that were not proved in [8] and in [9] are
discussed. In the article we define notion of conjugation for elements,
subsets and subgroups of a group. We define the classes of conjugation.
Normal  subgroups  of a group  and normalizer of a subset of a group or
of a subgroup are introduced. We also define the set of all subgroups of
a group. An auxiliary theorem that belongs rather to [1] is proved.

MML Identifier: GROUP 3.

The papers [3], [10], [5], [2], [8], [9], [6], [4], and [7] provide the notation and
terminology for this paper. For simplicity we follow a convention: x, y are
arbitrary, X denotes a set, G denotes a group, a, b, c, d, g, h denote elements
of G, A, B, C, D denote subsets of G, H, H1, H2, H3 denote subgroups of G,
n denotes a natural number, and i denotes an integer. Next we state a number
of propositions:

(1) (a ·b) ·b−1 = a and (a ·b−1) ·b = a and (b−1 ·b) ·a = a and (b ·b−1) ·a = a

and a·(b·b−1) = a and a·(b−1 ·b) = a and b−1 ·(b·a) = a and b·(b−1 ·a) = a.

(2) G is an Abelian group if and only if the operation of G is commutative.

(3) {1}G is an Abelian group.

(4) If A ⊆ B and C ⊆ D, then A · C ⊆ B · D.

(5) If A ⊆ B, then a · A ⊆ a · B and A · a ⊆ B · a.

(6) If H1 is a subgroup of H2, then a · H1 ⊆ a · H2 and H1 · a ⊆ H2 · a.

(7) a · H = {a} · H.

(8) H · a = H · {a}.

(9) (a · A) · H = a · (A · H).

(10) (A · a) · H = A · (a · H).

(11) (a · H) · A = a · (H · A).

(12) (A · H) · a = A · (H · a).
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(13) (H · a) · A = H · (a · A).

(14) (H · A) · a = H · (A · a).

(15) (H1 · a) · H2 = H1 · (a · H2).

Let us consider G. The functor SubGrG yielding a non-empty set is defined
by:

(Def.1) x ∈ SubGrG if and only if x is a subgroup of G.

In the sequel D denotes a non-empty set. Next we state four propositions:

(16) If for every x holds x ∈ D if and only if x is a subgroup of G, then
D = SubGrG.

(17) x ∈ SubGrG if and only if x is a subgroup of G.

(18) G ∈ SubGr G.

(19) If G is finite, then SubGr G is finite.

Let us consider G, a, b. The functor ab yielding an element of G is defined
as follows:

(Def.2) ab = (b−1 · a) · b.

One can prove the following propositions:

(20) ab = (b−1 · a) · b and ab = b−1 · (a · b).

(21) If ag = bg, then a = b.

(22) (1G)a = 1G.

(23) If ab = 1G, then a = 1G.

(24) a1G = a.

(25) aa = a.

(26) (aa)−1 = a and (a−1)a = a−1.

(27) ab = a if and only if a · b = b · a.

(28) (a · b)g = ag · bg.

(29) (ag)h = ag·h.

(30) ((ab)b)−1 = a and ((ab)−1)b = a.

(31) ab = c if and only if a = (cb)−1.

(32) (a−1)b = (ab)−1.

(33) (an)b = (ab)n.

(34) (ai)b = (ab)i.

(35) If G is an Abelian group, then ab = a.

(36) If for all a, b holds ab = a, then G is an Abelian group.

Let us consider G, A, B. The functor AB yielding a subset of G is defined
as follows:

(Def.3) AB = {gh : g ∈ A ∧ h ∈ B}.

We now state a number of propositions:

(37) AB = {gh : g ∈ A ∧ h ∈ B}.
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(38) x ∈ AB if and only if there exist g, h such that x = gh and g ∈ A and
h ∈ B.

(39) AB 6= ∅ if and only if A 6= ∅ and B 6= ∅.

(40) AB ⊆ (B−1 · A) · B.

(41) (A · B)C ⊆ AC · BC .

(42) (AB)C = AB·C .

(43) (A−1)B = (AB)−1.

(44) {a}{b} = {ab}.

(45) {a}{b,c} = {ab, ac}.

(46) {a, b}{c} = {ac, bc}.

(47) {a, b}{c,d} = {ac, ad, bc, bd}.

We now define two new functors. Let us consider G, A, g. The functor Ag

yields a subset of G and is defined as follows:

(Def.4) Ag = A{g}.

The functor gA yields a subset of G and is defined by:

(Def.5) gA = {g}A.

Next we state a number of propositions:

(48) Ag = A{g}.

(49) gA = {g}A.

(50) x ∈ Ag if and only if there exists h such that x = hg and h ∈ A.

(51) x ∈ gA if and only if there exists h such that x = gh and h ∈ A.

(52) gA ⊆ (A−1 · g) · A.

(53) (AB)g = AB·g.

(54) (Ag)B = Ag·B.

(55) (gA)B = gA·B .

(56) (Aa)b = Aa·b.

(57) (aA)b = aA·b.

(58) (ab)A = ab·A.

(59) Ag = (g−1 · A) · g.

(60) (A · B)a ⊆ Aa · Ba.

(61) A1G = A.

(62) If A 6= ∅, then (1G)A = {1G}.

(63) ((Aa)a)−1 = A and ((Aa)−1)a = A.

(64) A = Bg if and only if B = (Ag)−1.

(65) G is an Abelian group if and only if for all A, B such that B 6= ∅ holds
AB = A.

(66) G is an Abelian group if and only if for all A, g holds Ag = A.

(67) G is an Abelian group if and only if for all A, g such that A 6= ∅ holds
gA = {g}.
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Let us consider G, H, a. The functor Ha yielding a subgroup of G is defined
by:

(Def.6) the carrier of Ha = H
a
.

The following propositions are true:

(68) If the carrier of H1 = H
a
, then H1 = Ha.

(69) The carrier of Ha = H
a
.

(70) x ∈ Ha if and only if there exists g such that x = ga and g ∈ H.

(71) The carrier of Ha = (a−1 · H) · a.

(72) (Ha)b = Ha·b.

(73) H1G = H.

(74) ((Ha)a)−1 = H and ((Ha)−1)a = H.

(75) H1 = Ha
2 if and only if H2 = (Ha

1 )−1.

(76) (H1 ∩ H2)a = Ha
1 ∩ Ha

2 .

(77) Ord(H) = Ord(Ha).

(78) H is finite if and only if Ha is finite.

(79) If H is finite, then ord(H) = ord(Ha).

(80) {1}a
G = {1}G.

(81) If Ha = {1}G, then H = {1}G.

(82) ΩG
a = G.

(83) If Ha = G, then H = G.

(84) |• : H| = |• : Ha|.

(85) If the left cosets of H is finite, then |• : H| 	 = |• : Ha| 	 .

(86) If G is an Abelian group, then for all H, a holds H a = H.

Let us consider G, a, b. We say that a and b are conjugated if and only if:

(Def.7) there exists g such that a = bg.

We now state several propositions:

(87) a and b are conjugated if and only if there exists g such that a = bg.

(88) a and b are conjugated if and only if there exists g such that b = ag.

(89) a and a are conjugated.

(90) If a and b are conjugated, then b and a are conjugated.

(91) If a and b are conjugated and b and c are conjugated, then a and c are
conjugated.

(92) If a and 1G are conjugated or 1G and a are conjugated, then a = 1G.

(93) aΩG = {b : a and b are conjugated }.

Let us consider G, a. The functor a• yielding a subset of G is defined by:

(Def.8) a• = aΩG .

We now state several propositions:

(94) a• = aΩG .
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(95) x ∈ a• if and only if there exists b such that b = x and a and b are
conjugated.

(96) a ∈ b• if and only if a and b are conjugated.

(97) ag ∈ a•.

(98) a ∈ a•.

(99) If a ∈ b•, then b ∈ a•.

(100) a• = b• if and only if a• meets b•.

(101) a• = {1G} if and only if a = 1G.

(102) a• · A = A · a•.

Let us consider G, A, B. We say that A and B are conjugated if and only if:

(Def.9) there exists g such that A = Bg.

We now state several propositions:

(103) A and B are conjugated if and only if there exists g such that A = B g.

(104) A and B are conjugated if and only if there exists g such that B = Ag.

(105) A and A are conjugated.

(106) If A and B are conjugated, then B and A are conjugated.

(107) If A and B are conjugated and B and C are conjugated, then A and C

are conjugated.

(108) {a} and {b} are conjugated if and only if a and b are conjugated.

(109) If A and H1 are conjugated, then there exists H2 such that the carrier
of H2 = A.

Let us consider G, A. The functor A• yielding a family of subsets of the
carrier of G is defined as follows:

(Def.10) A• = {B : A and B are conjugated }.

The following propositions are true:

(110) A• = {B : A and B are conjugated }.

(111) x ∈ A• if and only if there exists B such that x = B and A and B are
conjugated.

(112) If x ∈ A•, then x is a subset of G.

(113) A ∈ B• if and only if A and B are conjugated.

(114) Ag ∈ A•.

(115) A ∈ A•.

(116) If A ∈ B•, then B ∈ A•.

(117) A• = B• if and only if A• meets B•.

(118) {a}• = {{b} : b ∈ a•}.

(119) If G is finite, then A• is finite.

Let us consider G, H1, H2. We say that H1 and H2 are conjugated if and
only if:

(Def.11) there exists g such that H1 = H
g
2
.
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The following propositions are true:

(120) H1 and H2 are conjugated if and only if there exists g such that H1 =
H

g
2
.

(121) H1 and H2 are conjugated if and only if there exists g such that H2 =
H

g
1
.

(122) H1 and H1 are conjugated.

(123) If H1 and H2 are conjugated, then H2 and H1 are conjugated.

(124) If H1 and H2 are conjugated and H2 and H3 are conjugated, then H1

and H3 are conjugated.

In the sequel L denotes a subset of SubGrG. Let us consider G, H. The
functor H• yielding a subset of SubGr G is defined as follows:

(Def.12) x ∈ H• if and only if there exists H1 such that x = H1 and H and H1

are conjugated.

One can prove the following propositions:

(125) If for every x holds x ∈ L if and only if there exists H such that x = H

and H1 and H are conjugated, then L = H•
1 .

(126) x ∈ H•
1 if and only if there exists H2 such that x = H2 and H1 and H2

are conjugated.

(127) If x ∈ H•, then x is a subgroup of G.

(128) H1 ∈ H•
2 if and only if H1 and H2 are conjugated.

(129) Hg ∈ H•.

(130) H ∈ H•.

(131) If H1 ∈ H•
2 , then H2 ∈ H•

1 .

(132) H•
1 = H•

2 if and only if H•
1 meets H•

2 .

(133) If G is finite, then H• is finite.

(134) H1 and H2 are conjugated if and only if H1 and H2 are conjugated.

Let us consider G. A subgroup of G is called a normal subgroup of G if:

(Def.13) for every a holds ita = it.

One can prove the following proposition

(135) If for every a holds H = Ha, then H is a normal subgroup of G.

In the sequel N , N1, N2 will denote ha normal subgroups of G. We now
state a number of propositions:

(136) Na = N .

(137) {1}G is a normal subgroup of G and ΩG is a normal subgroup of G.

(138) N1 ∩ N2 is a normal subgroup of G.

(139) If G is an Abelian group, then H is a normal subgroup of G.

(140) H is a normal subgroup of G if and only if for every a holds a·H = H ·a.

(141) H is a normal subgroup of G if and only if for every a holds a·H ⊆ H ·a.

(142) H is a normal subgroup of G if and only if for every a holds H ·a ⊆ a·H.

(143) H is a normal subgroup of G if and only if for every A holds A·H = H ·A.
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(144) H is a normal subgroup of G if and only if for every a holds H is a
subgroup of Ha.

(145) H is a normal subgroup of G if and only if for every a holds H a is a
subgroup of H.

(146) H is a normal subgroup of G if and only if H • = {H}.

(147) H is a normal subgroup of G if and only if for every a such that a ∈ H

holds a• ⊆ H.

(148) N1 · N2 = N2 · N1.

(149) There exists N such that the carrier of N = N1 · N2.

(150) The left cosets of N = the right cosets of N .

(151) If the left cosets of H is finite and |• : H| 	 = 2, then H is a normal
subgroup of G.

Let us consider G, A. The functor N(A) yielding a subgroup of G is defined
by:

(Def.14) the carrier of N(A) = {h : Ah = A}.

We now state several propositions:

(152) If the carrier of H = {h : Ah = A}, then H = N(A).

(153) The carrier of N(A) = {h : Ah = A}.

(154) x ∈ N(A) if and only if there exists h such that x = h and Ah = A.

(155) A• = |• : N(A)|.

(156) If A• is finite or the left cosets of N(A) is finite, then card A• = |• :
N(A)| 	 .

(157) a• = |• : N({a})|.

(158) If a• is finite or the left cosets of N({a}) is finite, then card a• = |• :
N({a})| 	 .

Let us consider G, H. The functor N(H) yields a subgroup of G and is
defined as follows:

(Def.15) N(H) = N(H).

We now state several propositions:

(159) N(H) = N(H).

(160) x ∈ N(H) if and only if there exists h such that x = h and Hh = H.

(161) H• = |• : N(H)|.

(162) If H• is finite or the left cosets of N(H) is finite, then card H • = |• :
N(H)| 	 .

(163) H is a normal subgroup of G if and only if N(H) = G.

(164) N({1}G) = G.

(165) N(ΩG) = G.

(166) If X is finite and card X = 2, then there exist x, y such that x 6= y and
X = {x, y}.
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