# Subgroup and Cosets of Subgroups 

Wojciech A. Trybulec ${ }^{1}$<br>Warsaw University


#### Abstract

Summary. We introduce notion of subgroup, coset of a subgroup, sets of left and right cosets of a subgroup. We define multiplication of two subset of a group, subset of reverse elemens of a group, intersection of two subgroups. We define the notion of an index of a subgroup and prove Lagrange theorem which states that in a finite group the order of the group equals the order of a subgroup multiplied by the index of the subgroup. Some theorems that belong rather to [1] are proved.


MML Identifier: GROUP_2.

The papers [9], [6], [3], [4], [1], [11], [10], [12], [5], [8], [7], and [2] provide the notation and terminology for this paper. Let $D$ be a non-empty set. Then $\emptyset_{D}$ is a subset of $D$. Then $\Omega_{D}$ is a subset of $D$.

For simplicity we adopt the following convention: $x$ is arbitrary, $X, Y, Z$ are sets, $k$ is a natural number, $G, G_{1}, G_{2}, G_{3}$ are groups, and $a, b, g, g_{1}, g_{2}$, $h$ are elements of $G$. Let us consider $G$. A subset of $G$ is a subset of the carrier of $G$.

In the sequel $A, B, C$ denote subsets of $G$. The following propositions are true:
(1) If $x \in A$, then $x \in G$.
(2) If $x \in A$, then $x$ is an element of $G$.
(3) If $G$ is finite, then $A$ is finite.

Let us consider $G, A$. The functor $A^{-1}$ yielding a subset of $G$ is defined by: (Def.1) $\quad A^{-1}=\left\{g^{-1}: g \in A\right\}$.

Next we state several propositions:

$$
\begin{equation*}
A^{-1}=\left\{g^{-1}: g \in A\right\} . \tag{4}
\end{equation*}
$$

(5) $\quad x \in A^{-1}$ if and only if there exists $g$ such that $x=g^{-1}$ and $g \in A$.
(6) $\{g\}^{-1}=\left\{g^{-1}\right\}$.

[^0](7) $\{g, h\}^{-1}=\left\{g^{-1}, h^{-1}\right\}$.
(8) $\quad\left(\emptyset_{\text {the carrier of } G}\right)^{-1}=\emptyset$.
(9) $\left(\Omega_{\text {the carrier of } G}\right)^{-1}=$ the carrier of $G$.
(10) $A \neq \emptyset$ if and only if $A^{-1} \neq \emptyset$.

Let us consider $G, A, B$. The functor $A \cdot B$ yielding a subset of $G$ is defined as follows:
(Def.2) $\quad A \cdot B=\{g \cdot h: g \in A \wedge h \in B\}$.
One can prove the following propositions:
(11) $A \cdot B=\{g \cdot h: g \in A \wedge h \in B\}$.
(12) $x \in A \cdot B$ if and only if there exist $g, h$ such that $x=g \cdot h$ and $g \in A$ and $h \in B$.
(13) $\quad A \neq \emptyset$ and $B \neq \emptyset$ if and only if $A \cdot B \neq \emptyset$.
(14) $(A \cdot B) \cdot C=A \cdot(B \cdot C)$.
(15) $(A \cdot B)^{-1}=B^{-1} \cdot A^{-1}$.
(16) $A \cdot(B \cup C)=A \cdot B \cup A \cdot C$.
(17) $(A \cup B) \cdot C=A \cdot C \cup B \cdot C$.
(18) $A \cdot(B \cap C) \subseteq(A \cdot B) \cap(A \cdot C)$.
(19) $\quad(A \cap B) \cdot C \subseteq(A \cdot C) \cap(B \cdot C)$.
(20) $\emptyset_{\text {the carrier of } G} \cdot A=\emptyset$ and $A \cdot \emptyset_{\text {the carrier of } G}=\emptyset$.
(21) If $A \neq \emptyset$, then $\Omega_{\text {the carrier of } G} \cdot A=$ the carrier of $G$ and $A \cdot \Omega_{\text {the }}$ carrier of $G=$ the carrier of $G$.
(23) $\{g\} \cdot\left\{g_{1}, g_{2}\right\}=\left\{g \cdot g_{1}, g \cdot g_{2}\right\}$.
(24) $\left\{g_{1}, g_{2}\right\} \cdot\{g\}=\left\{g_{1} \cdot g, g_{2} \cdot g\right\}$.
(25) $\{g, h\} \cdot\left\{g_{1}, g_{2}\right\}=\left\{g \cdot g_{1}, g \cdot g_{2}, h \cdot g_{1}, h \cdot g_{2}\right\}$.
(26) If for all $g_{1}, g_{2}$ such that $g_{1} \in A$ and $g_{2} \in A$ holds $g_{1} \cdot g_{2} \in A$ and for every $g$ such that $g \in A$ holds $g^{-1} \in A$, then $A \cdot A=A$.
(27) If for every $g$ such that $g \in A$ holds $g^{-1} \in A$, then $A^{-1}=A$.
(28) If for all $a, b$ such that $a \in A$ and $b \in B$ holds $a \cdot b=b \cdot a$, then $A \cdot B=B \cdot A$.
(29) If $G$ is an Abelian group, then $A \cdot B=B \cdot A$.
(30) If $G$ is an Abelian group, then $(A \cdot B)^{-1}=A^{-1} \cdot B^{-1}$.

We now define two new functors. Let us consider $G, g, A$. The functor $g \cdot A$ yields a subset of $G$ and is defined as follows:
(Def.3) $\quad g \cdot A=\{g\} \cdot A$.
The functor $A \cdot g$ yielding a subset of $G$ is defined as follows:
(Def.4) $\quad A \cdot g=A \cdot\{g\}$.
Next we state a number of propositions:
(31) $g \cdot A=\{g\} \cdot A$.
(32) $A \cdot g=A \cdot\{g\}$.
(33) $\quad x \in g \cdot A$ if and only if there exists $h$ such that $x=g \cdot h$ and $h \in A$.
(34) $\quad x \in A \cdot g$ if and only if there exists $h$ such that $x=h \cdot g$ and $h \in A$.
(35) $(g \cdot A) \cdot B=g \cdot(A \cdot B)$.
(36) $(A \cdot g) \cdot B=A \cdot(g \cdot B)$.
(37) $\quad(A \cdot B) \cdot g=A \cdot(B \cdot g)$.
(38) $\quad(g \cdot h) \cdot A=g \cdot(h \cdot A)$.
(39) $(g \cdot A) \cdot h=g \cdot(A \cdot h)$.
(40) $(A \cdot g) \cdot h=A \cdot(g \cdot h)$.
(41) $\emptyset_{\text {the carrier of } G} \cdot a=\emptyset$ and $a \cdot \emptyset_{\text {the carrier of } G}=\emptyset$.
(42) $\Omega_{\text {the carrier of } G} \cdot a=$ the carrier of $G$ and $a \cdot \Omega_{\text {the carrier of } G}=$ the carrier of $G$.
(43) $\quad\left(1_{G}\right) \cdot A=A$ and $A \cdot\left(1_{G}\right)=A$.
(44) If $G$ is an Abelian group, then $g \cdot A=A \cdot g$.

Let us consider $G$. A group is said to be a subgroup of $G$ if:
(Def.5) the carrier of it $\subseteq$ the carrier of $G$ and the operation of it $=$ (the operation of $G) \upharpoonright$ : the carrier of it, the carrier of it $:]$.

One can prove the following proposition
(45) If the carrier of $G_{1} \subseteq$ the carrier of $G_{2}$ and the operation of $G_{1}=$ (the operation of $\left.G_{2}\right) \upharpoonright$ : the carrier of $G_{1}$, the carrier of $G_{1}$ :, then $G_{1}$ is a subgroup of $G_{2}$.
We follow the rules: $I, H, H_{1}, H_{2}, H_{3}$ will be subgroups of $G$ and $h, h_{1}, h_{2}$ will be elements of $H$. One can prove the following propositions:
(46) The carrier of $H \subseteq$ the carrier of $G$.
(47) The operation of $H=$ (the operation of $G) \upharpoonright$ : the carrier of $H$, the carrier of $H$ :.
(48) If $G$ is finite, then $H$ is finite.
(49) If $x \in H$, then $x \in G$.
(50) $h \in G$.
(51) $h$ is an element of $G$.
(52) If $h_{1}=g_{1}$ and $h_{2}=g_{2}$, then $h_{1} \cdot h_{2}=g_{1} \cdot g_{2}$.
(53) $1_{H}=1_{G}$.
(54) $1_{H_{1}}=1_{H_{2}}$.
(55) $1_{G} \in H$.
(56) $\quad 1_{H_{1}} \in H_{2}$.
(57) If $h=g$, then $h^{-1}=g^{-1}$.
(58) $\quad \cdot_{H}^{-1}=\cdot{ }_{G}^{-1} \upharpoonright($ the carrier of $H)$.
(59) If $g_{1} \in H$ and $g_{2} \in H$, then $g_{1} \cdot g_{2} \in H$.
(60) If $g \in H$, then $g^{-1} \in H$.
(61) If $A \neq \emptyset$ and for all $g_{1}, g_{2}$ such that $g_{1} \in A$ and $g_{2} \in A$ holds $g_{1} \cdot g_{2} \in A$ and for every $g$ such that $g \in A$ holds $g^{-1} \in A$, then there exists $H$ such that the carrier of $H=A$.
(62) If $G$ is an Abelian group, then $H$ is an Abelian group.

Let $G$ be an Abelian group. We see that the subgroup of $G$ is an Abelian group.

We now state several propositions:
(63) $G$ is a subgroup of $G$.
(64) If $G_{1}$ is a subgroup of $G_{2}$ and $G_{2}$ is a subgroup of $G_{1}$, then $G_{1}=G_{2}$.
(65) If $G_{1}$ is a subgroup of $G_{2}$ and $G_{2}$ is a subgroup of $G_{3}$, then $G_{1}$ is a subgroup of $G_{3}$.
(66) If the carrier of $H_{1} \subseteq$ the carrier of $H_{2}$, then $H_{1}$ is a subgroup of $H_{2}$.
(67) If for every $g$ such that $g \in H_{1}$ holds $g \in H_{2}$, then $H_{1}$ is a subgroup of $\mathrm{H}_{2}$.
(68) If the carrier of $H_{1}=$ the carrier of $H_{2}$, then $H_{1}=H_{2}$.
(69) If for every $g$ holds $g \in H_{1}$ if and only if $g \in H_{2}$, then $H_{1}=H_{2}$.

Let us consider $G, H_{1}, H_{2}$. Let us note that one can characterize the predicate $H_{1}=H_{2}$ by the following (equivalent) condition:
(Def.6) for every $g$ holds $g \in H_{1}$ if and only if $g \in H_{2}$.
The following two propositions are true:
(70) If the carrier of $H=$ the carrier of $G$, then $H=G$.
(71) If for every $g$ holds $g \in H$, then $H=G$.

Let us consider $G$. The functor $\{\mathbf{1}\}_{G}$ yields a subgroup of $G$ and is defined by:
(Def.7) the carrier of $\{\mathbf{1}\}_{G}=\left\{1_{G}\right\}$.
Let us consider $G$. The functor $\Omega_{G}$ yielding a subgroup of $G$ is defined as follows:
(Def.8) $\Omega_{G}=G$.
The following propositions are true:
(72) If the carrier of $H=\left\{1_{G}\right\}$, then $H=\{\mathbf{1}\}_{G}$.
(73) The carrier of $\{\mathbf{1}\}_{G}=\left\{1_{G}\right\}$.
(74) $\Omega_{G}=G$.
(75) $\{\mathbf{1}\}_{H}=\{\mathbf{1}\}_{G}$.
(76) $\{\mathbf{1}\}_{H_{1}}=\{\mathbf{1}\}_{H_{2}}$.
(77) $\{\mathbf{1}\}_{G}$ is a subgroup of $H$.
(78) $H$ is a subgroup of $\Omega_{G}$.
(79) $\quad G$ is a subgroup of $\Omega_{G}$.
(80) $\{\mathbf{1}\}_{G}$ is finite.
(81) $\quad \operatorname{ord}\left(\{\mathbf{1}\}_{G}\right)=1$.
(82) If $H$ is finite and $\operatorname{ord}(H)=1$, then $H=\{\mathbf{1}\}_{G}$.
(83) $\operatorname{Ord}(H) \leq \operatorname{Ord}(G)$.
(84) If $G$ is finite, then $\operatorname{ord}(H) \leq \operatorname{ord}(G)$.
(85) If $G$ is finite and $\operatorname{ord}(G)=\operatorname{ord}(H)$, then $H=G$.

Let us consider $G, H$. The functor $\bar{H}$ yields a subset of $G$ and is defined by:
(Def.9) $\bar{H}=$ the carrier of $H$.
The following propositions are true:
(86) $\bar{H}=$ the carrier of $H$.
(87) $\bar{H} \neq \emptyset$.
(88) $\quad x \in \bar{H}$ if and only if $x \in H$.
(89) If $g_{1} \in \bar{H}$ and $g_{2} \in \bar{H}$, then $g_{1} \cdot g_{2} \in \bar{H}$.
(90) If $g \in \bar{H}$, then $g^{-1} \in \bar{H}$.
(91) $\bar{H} \cdot \bar{H}=\bar{H}$.
(92) $\bar{H}^{-1}=\bar{H}$.
(93) $\overline{H_{1}} \cdot \overline{H_{2}}=\overline{H_{2}} \cdot \overline{H_{1}}$ if and only if there exists $H$ such that the carrier of $H=\overline{H_{1}} \cdot \overline{H_{2}}$.
(94) If $G$ is an Abelian group, then there exists $H$ such that the carrier of $H=\overline{H_{1}} \cdot \overline{H_{2}}$.
Let us consider $G, H_{1}, H_{2}$. The functor $H_{1} \cap H_{2}$ yields a subgroup of $G$ and is defined as follows:
(Def.10) the carrier of $H_{1} \cap H_{2}=\overline{H_{1}} \cap \overline{H_{2}}$.
One can prove the following propositions:
(95) If the carrier of $H=\overline{H_{1}} \cap \overline{H_{2}}$, then $H=H_{1} \cap H_{2}$.
(96) The carrier of $H_{1} \cap H_{2}=\overline{H_{1}} \cap \overline{H_{2}}$.
(97) $H=H_{1} \cap H_{2}$ if and only if the carrier of $H=$ (the carrier of $H_{1}$ ) $\cap$ (the carrier of $\mathrm{H}_{2}$ ).
(98) $\overline{H_{1} \cap H_{2}}=\overline{H_{1}} \cap \overline{H_{2}}$.
(99) $\quad x \in H_{1} \cap H_{2}$ if and only if $x \in H_{1}$ and $x \in H_{2}$.
(100) $H \cap H=H$.
(101) $H_{1} \cap H_{2}=H_{2} \cap H_{1}$.
(102) $\quad\left(H_{1} \cap H_{2}\right) \cap H_{3}=H_{1} \cap\left(H_{2} \cap H_{3}\right)$.
(103) $\{\mathbf{1}\}_{G} \cap H=\{\mathbf{1}\}_{G}$ and $H \cap\{\mathbf{1}\}_{G}=\{\mathbf{1}\}_{G}$.
(104) $H \cap \Omega_{G}=H$ and $\Omega_{G} \cap H=H$.
(105) $\Omega_{G} \cap \Omega_{G}=G$.
(106) $H_{1} \cap H_{2}$ is a subgroup of $H_{1}$ and $H_{1} \cap H_{2}$ is a subgroup of $H_{2}$.
(107) $\quad H_{1}$ is a subgroup of $H_{2}$ if and only if $H_{1} \cap H_{2}=H_{1}$.
(108) If $H_{1}$ is a subgroup of $H_{2}$, then $H_{1} \cap H_{3}$ is a subgroup of $H_{2}$.
(109) If $H_{1}$ is a subgroup of $H_{2}$ and $H_{1}$ is a subgroup of $H_{3}$, then $H_{1}$ is a subgroup of $H_{2} \cap H_{3}$.
(110) If $H_{1}$ is a subgroup of $H_{2}$, then $H_{1} \cap H_{3}$ is a subgroup of $H_{2} \cap H_{3}$.
(111) If $H_{1}$ is finite or $H_{2}$ is finite, then $H_{1} \cap H_{2}$ is finite.

We now define two new functors. Let us consider $G, H, A$. The functor $A \cdot H$ yielding a subset of $G$ is defined as follows:
(Def.11) $\quad A \cdot H=A \cdot \bar{H}$.
The functor $H \cdot A$ yields a subset of $G$ and is defined as follows:
(Def.12) $\quad H \cdot A=\bar{H} \cdot A$.
One can prove the following propositions:
(112) $\quad A \cdot H=A \cdot \bar{H}$.
(113) $\quad H \cdot A=\bar{H} \cdot A$.
(114) $\quad x \in A \cdot H$ if and only if there exist $g_{1}, g_{2}$ such that $x=g_{1} \cdot g_{2}$ and $g_{1} \in A$ and $g_{2} \in H$.
(115) $\quad x \in H \cdot A$ if and only if there exist $g_{1}, g_{2}$ such that $x=g_{1} \cdot g_{2}$ and $g_{1} \in H$ and $g_{2} \in A$.
(116) $\quad(A \cdot B) \cdot H=A \cdot(B \cdot H)$.
(117) $\quad(A \cdot H) \cdot B=A \cdot(H \cdot B)$.
(118) $\quad(H \cdot A) \cdot B=H \cdot(A \cdot B)$.
(119) $\quad\left(A \cdot H_{1}\right) \cdot H_{2}=A \cdot\left(H_{1} \cdot \overline{H_{2}}\right)$.
(120) $\quad\left(H_{1} \cdot A\right) \cdot H_{2}=H_{1} \cdot\left(A \cdot H_{2}\right)$.
(121) $\left(H_{1} \cdot \overline{H_{2}}\right) \cdot A=H_{1} \cdot\left(H_{2} \cdot A\right)$.
(122) If $G$ is an Abelian group, then $A \cdot H=H \cdot A$.

We now define two new functors. Let us consider $G, H, a$. The functor $a \cdot H$ yielding a subset of $G$ is defined as follows:
(Def.13) $\quad a \cdot H=a \cdot \bar{H}$.
The functor $H \cdot a$ yielding a subset of $G$ is defined by:
(Def.14) $\quad H \cdot a=\bar{H} \cdot a$.
The following propositions are true:
(123) $\quad a \cdot H=a \cdot \bar{H}$.
(124) $H \cdot a=\bar{H} \cdot a$.
(125) $\quad x \in a \cdot H$ if and only if there exists $g$ such that $x=a \cdot g$ and $g \in H$.
(126) $\quad x \in H \cdot a$ if and only if there exists $g$ such that $x=g \cdot a$ and $g \in H$.
(127) $(a \cdot b) \cdot H=a \cdot(b \cdot H)$.
(128) $\quad(a \cdot H) \cdot b=a \cdot(H \cdot b)$.
(129) $(H \cdot a) \cdot b=H \cdot(a \cdot b)$.
(130) $a \in a \cdot H$ and $a \in H \cdot a$.
(131) $\quad a \cdot H \neq \emptyset$ and $H \cdot a \neq \emptyset$.
(132) $\quad\left(1_{G}\right) \cdot H=\bar{H}$ and $H \cdot\left(1_{G}\right)=\bar{H}$.
(135) If $G$ is an Abelian group, then $a \cdot H=H \cdot a$.
(136) $a \in H$ if and only if $a \cdot H=\bar{H}$.
(142) $a \in H$ if and only if $H \cdot a=\bar{H}$.
(143) $H \cdot a=H \cdot b$ if and only if $b \cdot a^{-1} \in H$.
(144) $H \cdot a=H \cdot b$ if and only if $H \cdot a$ meets $H \cdot b$.
(151) $a \cdot H \approx b \cdot H$.
(152) $a \cdot H \approx H \cdot b$.
(153) $H \cdot a \approx H \cdot b$.
(154) $\bar{H} \approx a \cdot H$ and $\bar{H} \approx H \cdot a$.
(155) $\quad \operatorname{Ord}(H)=\overline{\overline{a \cdot H}}$ and $\operatorname{Ord}(H)=\overline{\overline{H \cdot a}}$.
(156) If $H$ is finite, then $\operatorname{ord}(H)=\operatorname{card}(a \cdot H)$ and $\operatorname{ord}(H)=\operatorname{card}(H \cdot a)$.

The scheme SubFamComp deals with a set $\mathcal{A}$, a family $\mathcal{B}$ of subsets of $\mathcal{A}$, a family $\mathcal{C}$ of subsets of $\mathcal{A}$, and a unary predicate $\mathcal{P}$, and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters meet the following requirements:

- for every subset $X$ of $\mathcal{A}$ holds $X \in \mathcal{B}$ if and only if $\mathcal{P}[X]$,
- for every subset $X$ of $\mathcal{A}$ holds $X \in \mathcal{C}$ if and only if $\mathcal{P}[X]$.

We now define two new functors. Let us consider $G, H$. The left cosets of $H$ yielding a family of subsets of the carrier of $G$ is defined as follows:
(Def.15) $\quad A \in$ the left cosets of $H$ if and only if there exists $a$ such that $A=a \cdot H$. The right cosets of $H$ yielding a family of subsets of the carrier of $G$ is defined by:
(Def.16) $\quad A \in$ the right cosets of $H$ if and only if there exists $a$ such that $A=H \cdot a$.
In the sequel $F$ denotes a family of subsets of the carrier of $G$. One can prove the following propositions:
(157) If for every $A$ holds $A \in F$ if and only if there exists $a$ such that $A=a \cdot H$, then $F=$ the left cosets of $H$.
(158) If for every $A$ holds $A \in F$ if and only if there exists $a$ such that $A=H \cdot a$, then $F=$ the right cosets of $H$.
(159) $\quad A \in$ the left cosets of $H$ if and only if there exists $a$ such that $A=a \cdot H$.
(160) $A \in$ the right cosets of $H$ if and only if there exists $a$ such that $A=H \cdot a$.
(161) If $x \in$ the left cosets of $H$ or $x \in$ the right cosets of $H$, then $x$ is a subset of $G$.
(162) $\quad x \in$ the left cosets of $H$ if and only if there exists $a$ such that $x=a \cdot H$.
(163) $\quad x \in$ the right cosets of $H$ if and only if there exists $a$ such that $x=H \cdot a$.
(164) If $G$ is finite, then the right cosets of $H$ is finite and the left cosets of $H$ is finite.
(165) $\bar{H} \in$ the left cosets of $H$ and $\bar{H} \in$ the right cosets of $H$.
(166) The left cosets of $H \approx$ the right cosets of $H$.
(167) $\bigcup \cup($ The left cosets of $H)=$ the carrier of $G$ and $\bigcup($ the right cosets of $H)=$ the carrier of $G$.
(168) The left cosets of $\{\mathbf{1}\}_{G}=\{\{a\}\}$.
(169) The right cosets of $\{\mathbf{1}\}_{G}=\{\{a\}\}$.
(170) If the left cosets of $H=\{\{a\}\}$, then $H=\{\mathbf{1}\}_{G}$.
(171) If the right cosets of $H=\{\{a\}\}$, then $H=\{\mathbf{1}\}_{G}$.
(172) The left cosets of $\Omega_{G}=\{$ the carrier of $G\}$ and the right cosets of $\Omega_{G}=\{$ the carrier of $G\}$.
(173) If the left cosets of $H=\{$ the carrier of $G\}$, then $H=G$.
(174) If the right cosets of $H=\{$ the carrier of $G\}$, then $H=G$.

Let us consider $G, H$. The functor $|\bullet: H|$ yielding a cardinal number is defined by:
(Def.17) $|\bullet: H|=\overline{\overline{\text { the left cosets of } H}}$.
We now state the proposition

$$
\begin{equation*}
|\bullet: H|=\overline{\overline{\text { the left cosets of } H}} \text { and }|\bullet: H|=\overline{\overline{\text { the right cosets of } H}} . \tag{175}
\end{equation*}
$$

Let us consider $G, H$. Let us assume that the left cosets of $H$ is finite. The functor $|\bullet: H|_{\mathrm{N}}$ yielding a natural number is defined as follows:
(Def.18) $\quad|\bullet: H|_{\mathbb{N}}=\operatorname{card}($ the left cosets of $H)$.
Next we state the proposition
(176) If the left cosets of $H$ is finite, then $|\bullet: H|_{\mathcal{N}}=\operatorname{card}($ the left cosets of $H)$ and $|\bullet: H|_{\mathrm{N}}=\operatorname{card}($ the right cosets of $H)$.
Let $D$ be a non-empty set, and let $d$ be an element of $D$. Then $\{d\}$ is an element of Fin $D$.

The following two propositions are true:
(177) If $G$ is finite, then $\operatorname{ord}(G)=\operatorname{ord}(H) \cdot|\bullet: H|_{\mathbb{N}}$.
(178) If $G$ is finite, then $\operatorname{ord}(H) \mid \operatorname{ord}(G)$.

In the sequel $J$ will denote a subgroup of $H$. One can prove the following propositions:
(179) If $G$ is finite and $I=J$, then $|\bullet: I|_{\mathbb{N}}=|\bullet: J|_{\mathbb{N}} \cdot|\bullet: H|_{\mathbb{N}}$.
(180) $\left|\bullet: \Omega_{G}\right|_{N}=1$.
(181) If the left cosets of $H$ is finite and $|\bullet: H|_{\mathcal{N}}=1$, then $H=G$.
(182) $\left|\bullet:\{\mathbf{1}\}_{G}\right|=\operatorname{Ord}(G)$.
(183) If $G$ is finite, then $\left|\bullet:\{\mathbf{1}\}_{G}\right|_{\mathcal{N}}=\operatorname{ord}(G)$.
(184) If $G$ is finite and $|\bullet: H|_{\mathbb{N}}=\operatorname{ord}(G)$, then $H=\{\mathbf{1}\}_{G}$.
(185) If the left cosets of $H$ is finite and $|\bullet: H|=\operatorname{Ord}(G)$, then $G$ is finite and $H=\{\mathbf{1}\}_{G}$.
(186) If $X$ is finite and for every $Y$ such that $Y \in X$ holds $Y$ is finite and card $Y=k$ and for every $Z$ such that $Z \in X$ and $Y \neq Z$ holds $Y \approx Z$ and $Y$ misses $Z$, then $\operatorname{card}(\cup X)=k \cdot \operatorname{card} X$.
If $Y$ is finite and $X \subseteq Y$ and $\operatorname{card} X=\operatorname{card} Y$, then $X=Y$.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec and Agata Darmochwat. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[11] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received July 23, 1990


[^0]:    ${ }^{1}$ Supported by RPBP.III-24.C1

