Subgroup and Cosets of Subgroups

Wojciech A. Trybulec¹ Warsaw University

Summary. We introduce notion of subgroup, coset of a subgroup, sets of left and right cosets of a subgroup. We define multiplication of two subset of a group, subset of reverse elemens of a group, intersection of two subgroups. We define the notion of an index of a subgroup and prove Lagrange theorem which states that in a finite group the order of the group equals the order of a subgroup multiplied by the index of the subgroup. Some theorems that belong rather to [1] are proved.

MML Identifier: GROUP_2.

The papers [9], [6], [3], [4], [1], [11], [10], [12], [5], [8], [7], and [2] provide the notation and terminology for this paper. Let D be a non-empty set. Then \emptyset_D is a subset of D. Then Ω_D is a subset of D.

For simplicity we adopt the following convention: x is arbitrary, X, Y, Z are sets, k is a natural number, G, G_1, G_2, G_3 are groups, and a, b, g, g_1, g_2 , h are elements of G. Let us consider G. A subset of G is a subset of the carrier of G.

In the sequel A, B, C denote subsets of G. The following propositions are true:

- (1) If $x \in A$, then $x \in G$.
- (2) If $x \in A$, then x is an element of G.
- (3) If G is finite, then A is finite.

Let us consider G, A. The functor A^{-1} yielding a subset of G is defined by: (Def.1) $A^{-1} = \{g^{-1} : g \in A\}.$

Next we state several propositions:

(4)
$$A^{-1} = \{g^{-1} : g \in A\}.$$

(5) $x \in A^{-1}$ if and only if there exists g such that $x = g^{-1}$ and $g \in A$.

(6)
$$\{g\}^{-1} = \{g^{-1}\}.$$

¹Supported by RPBP.III-24.C1

855

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (7) $\{g,h\}^{-1} = \{g^{-1},h^{-1}\}.$
- (8) $(\emptyset_{\text{the carrier of }G})^{-1} = \emptyset.$
- (9) $(\Omega_{\text{the carrier of }G})^{-1} = \text{the carrier of }G.$
- (10) $A \neq \emptyset$ if and only if $A^{-1} \neq \emptyset$.

Let us consider $G,\,A,\,B.$ The functor $A\cdot B$ yielding a subset of G is defined as follows:

(Def.2)
$$A \cdot B = \{g \cdot h : g \in A \land h \in B\}.$$

One can prove the following propositions:

- (11) $A \cdot B = \{g \cdot h : g \in A \land h \in B\}.$
- (12) $x \in A \cdot B$ if and only if there exist g, h such that $x = g \cdot h$ and $g \in A$ and $h \in B$.
- (13) $A \neq \emptyset$ and $B \neq \emptyset$ if and only if $A \cdot B \neq \emptyset$.
- (14) $(A \cdot B) \cdot C = A \cdot (B \cdot C).$
- (15) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}.$
- (16) $A \cdot (B \cup C) = A \cdot B \cup A \cdot C.$
- (17) $(A \cup B) \cdot C = A \cdot C \cup B \cdot C.$
- (18) $A \cdot (B \cap C) \subseteq (A \cdot B) \cap (A \cdot C).$
- (19) $(A \cap B) \cdot C \subseteq (A \cdot C) \cap (B \cdot C).$
- (20) $\emptyset_{\text{the carrier of } G} \cdot A = \emptyset \text{ and } A \cdot \emptyset_{\text{the carrier of } G} = \emptyset.$
- (21) If $A \neq \emptyset$, then $\Omega_{\text{the carrier of } G} \cdot A = \text{the carrier of } G$ and $A \cdot \Omega_{\text{the carrier of } G} =$ the carrier of G.
- $(22) \quad \{g\} \cdot \{h\} = \{g \cdot h\}.$
- (23) $\{g\} \cdot \{g_1, g_2\} = \{g \cdot g_1, g \cdot g_2\}.$
- $(24) \quad \{g_1, g_2\} \cdot \{g\} = \{g_1 \cdot g, g_2 \cdot g\}.$
- (25) $\{g,h\} \cdot \{g_1,g_2\} = \{g \cdot g_1, g \cdot g_2, h \cdot g_1, h \cdot g_2\}.$
- (26) If for all g_1, g_2 such that $g_1 \in A$ and $g_2 \in A$ holds $g_1 \cdot g_2 \in A$ and for every g such that $g \in A$ holds $g^{-1} \in A$, then $A \cdot A = A$.
- (27) If for every g such that $g \in A$ holds $g^{-1} \in A$, then $A^{-1} = A$.
- (28) If for all a, b such that $a \in A$ and $b \in B$ holds $a \cdot b = b \cdot a$, then $A \cdot B = B \cdot A$.
- (29) If G is an Abelian group, then $A \cdot B = B \cdot A$.
- (30) If G is an Abelian group, then $(A \cdot B)^{-1} = A^{-1} \cdot B^{-1}$.

We now define two new functors. Let us consider G, g, A. The functor $g \cdot A$ yields a subset of G and is defined as follows:

(Def.3) $g \cdot A = \{g\} \cdot A.$

The functor $A \cdot g$ yielding a subset of G is defined as follows:

(Def.4) $A \cdot g = A \cdot \{g\}.$

Next we state a number of propositions:

- $(31) \quad g \cdot A = \{g\} \cdot A.$
- $(32) \quad A \cdot g = A \cdot \{g\}.$
- (33) $x \in g \cdot A$ if and only if there exists h such that $x = g \cdot h$ and $h \in A$.
- (34) $x \in A \cdot g$ if and only if there exists h such that $x = h \cdot g$ and $h \in A$.
- (35) $(g \cdot A) \cdot B = g \cdot (A \cdot B).$
- $(36) \quad (A \cdot g) \cdot B = A \cdot (g \cdot B).$
- $(37) \quad (A \cdot B) \cdot g = A \cdot (B \cdot g).$
- (38) $(g \cdot h) \cdot A = g \cdot (h \cdot A).$
- (39) $(g \cdot A) \cdot h = g \cdot (A \cdot h).$
- (40) $(A \cdot g) \cdot h = A \cdot (g \cdot h).$
- (41) $\emptyset_{\text{the carrier of } G} \cdot a = \emptyset \text{ and } a \cdot \emptyset_{\text{the carrier of } G} = \emptyset.$
- (42) $\Omega_{\text{the carrier of } G} \cdot a = \text{the carrier of } G \text{ and } a \cdot \Omega_{\text{the carrier of } G} = \text{the carrier of } G.$
- (43) $(1_G) \cdot A = A \text{ and } A \cdot (1_G) = A.$
- (44) If G is an Abelian group, then $g \cdot A = A \cdot g$.

Let us consider G. A group is said to be a subgroup of G if:

(Def.5) the carrier of it \subseteq the carrier of G and the operation of it = (the operation of $G) \upharpoonright [$: the carrier of it, the carrier of it].

One can prove the following proposition

(45) If the carrier of $G_1 \subseteq$ the carrier of G_2 and the operation of $G_1 =$ (the operation of $G_2) \upharpoonright [$ the carrier of G_1 , the carrier of G_1], then G_1 is a subgroup of G_2 .

We follow the rules: I, H, H_1, H_2, H_3 will be subgroups of G and h, h_1, h_2 will be elements of H. One can prove the following propositions:

- (46) The carrier of $H \subseteq$ the carrier of G.
- (47) The operation of H = (the operation of $G) \upharpoonright [:$ the carrier of H, the carrier of H].
- (48) If G is finite, then H is finite.
- (49) If $x \in H$, then $x \in G$.
- (50) $h \in G$.
- (51) h is an element of G.
- (52) If $h_1 = g_1$ and $h_2 = g_2$, then $h_1 \cdot h_2 = g_1 \cdot g_2$.
- (53) $1_H = 1_G.$

(54)
$$1_{H_1} = 1_{H_2}$$
.

 $(55) \quad 1_G \in H.$

$$(56) \quad 1_{H_1} \in H_2$$

- (57) If h = g, then $h^{-1} = g^{-1}$.
- (58) $\cdot_{H}^{-1} = \cdot_{G}^{-1} \upharpoonright$ (the carrier of H).
- (59) If $g_1 \in H$ and $g_2 \in H$, then $g_1 \cdot g_2 \in H$.

- (60) If $g \in H$, then $g^{-1} \in H$.
- (61) If $A \neq \emptyset$ and for all g_1, g_2 such that $g_1 \in A$ and $g_2 \in A$ holds $g_1 \cdot g_2 \in A$ and for every g such that $g \in A$ holds $g^{-1} \in A$, then there exists H such that the carrier of H = A.
- (62) If G is an Abelian group, then H is an Abelian group.

Let G be an Abelian group. We see that the subgroup of G is an Abelian group.

We now state several propositions:

- (63) G is a subgroup of G.
- (64) If G_1 is a subgroup of G_2 and G_2 is a subgroup of G_1 , then $G_1 = G_2$.
- (65) If G_1 is a subgroup of G_2 and G_2 is a subgroup of G_3 , then G_1 is a subgroup of G_3 .
- (66) If the carrier of $H_1 \subseteq$ the carrier of H_2 , then H_1 is a subgroup of H_2 .
- (67) If for every g such that $g \in H_1$ holds $g \in H_2$, then H_1 is a subgroup of H_2 .
- (68) If the carrier of H_1 = the carrier of H_2 , then $H_1 = H_2$.
- (69) If for every g holds $g \in H_1$ if and only if $g \in H_2$, then $H_1 = H_2$.
- Let us consider G, H_1, H_2 . Let us note that one can characterize the predicate $H_1 = H_2$ by the following (equivalent) condition:

(Def.6) for every g holds $g \in H_1$ if and only if $g \in H_2$.

The following two propositions are true:

- (70) If the carrier of H = the carrier of G, then H = G.
- (71) If for every g holds $g \in H$, then H = G.

Let us consider G. The functor $\{1\}_G$ yields a subgroup of G and is defined by:

(Def.7) the carrier of $\{1\}_G = \{1_G\}.$

Let us consider G. The functor Ω_G yielding a subgroup of G is defined as follows:

(Def.8) $\Omega_G = G.$

The following propositions are true:

- (72) If the carrier of $H = \{1_G\}$, then $H = \{1\}_G$.
- (73) The carrier of $\{1\}_G = \{1_G\}.$
- (74) $\Omega_G = G.$
- (75) $\{\mathbf{1}\}_H = \{\mathbf{1}\}_G.$
- (76) $\{\mathbf{1}\}_{H_1} = \{\mathbf{1}\}_{H_2}.$
- (77) $\{\mathbf{1}\}_G$ is a subgroup of H.
- (78) H is a subgroup of Ω_G .
- (79) G is a subgroup of Ω_G .
- (80) $\{\mathbf{1}\}_G$ is finite.

- (81) $\operatorname{ord}(\{\mathbf{1}\}_G) = 1.$
- (82) If H is finite and $\operatorname{ord}(H) = 1$, then $H = \{\mathbf{1}\}_G$.
- (83) $\operatorname{Ord}(H) \leq \operatorname{Ord}(G).$
- (84) If G is finite, then $\operatorname{ord}(H) \leq \operatorname{ord}(G)$.
- (85) If G is finite and $\operatorname{ord}(G) = \operatorname{ord}(H)$, then H = G.

Let us consider G, H. The functor \overline{H} yields a subset of G and is defined by:

(Def.9) \overline{H} = the carrier of H.

The following propositions are true:

- (86) \overline{H} = the carrier of H.
- (87) $\overline{H} \neq \emptyset$.
- (88) $x \in \overline{H}$ if and only if $x \in H$.
- (89) If $g_1 \in \overline{H}$ and $g_2 \in \overline{H}$, then $g_1 \cdot g_2 \in \overline{H}$.
- (90) If $g \in \overline{H}$, then $g^{-1} \in \overline{H}$.
- (91) $\overline{H} \cdot \overline{H} = \overline{H}.$
- (92) $\overline{H}^{-1} = \overline{H}.$
- (93) $\overline{H_1} \cdot \overline{H_2} = \overline{H_2} \cdot \overline{H_1}$ if and only if there exists H such that the carrier of $H = \overline{H_1} \cdot \overline{H_2}$.
- (94) If G is an Abelian group, then there exists H such that the carrier of $H = \overline{H_1} \cdot \overline{H_2}$.

Let us consider G, H_1 , H_2 . The functor $H_1 \cap H_2$ yields a subgroup of G and is defined as follows:

(Def.10) the carrier of
$$H_1 \cap H_2 = H_1 \cap H_2$$
.

One can prove the following propositions:

- (95) If the carrier of $H = \overline{H_1} \cap \overline{H_2}$, then $H = H_1 \cap H_2$.
- (96) The carrier of $H_1 \cap H_2 = \overline{H_1} \cap \overline{H_2}$.
- (97) $H = H_1 \cap H_2$ if and only if the carrier of $H = (\text{the carrier of } H_1) \cap (\text{the carrier of } H_2).$
- $(98) \quad \overline{H_1 \cap H_2} = \overline{H_1} \cap \overline{H_2}.$
- (99) $x \in H_1 \cap H_2$ if and only if $x \in H_1$ and $x \in H_2$.
- $(100) \quad H \cap H = H.$
- $(101) \quad H_1 \cap H_2 = H_2 \cap H_1.$
- (102) $(H_1 \cap H_2) \cap H_3 = H_1 \cap (H_2 \cap H_3).$
- (103) $\{\mathbf{1}\}_G \cap H = \{\mathbf{1}\}_G \text{ and } H \cap \{\mathbf{1}\}_G = \{\mathbf{1}\}_G.$
- (104) $H \cap \Omega_G = H$ and $\Omega_G \cap H = H$.
- (105) $\Omega_G \cap \Omega_G = G.$
- (106) $H_1 \cap H_2$ is a subgroup of H_1 and $H_1 \cap H_2$ is a subgroup of H_2 .
- (107) H_1 is a subgroup of H_2 if and only if $H_1 \cap H_2 = H_1$.
- (108) If H_1 is a subgroup of H_2 , then $H_1 \cap H_3$ is a subgroup of H_2 .

- (109) If H_1 is a subgroup of H_2 and H_1 is a subgroup of H_3 , then H_1 is a subgroup of $H_2 \cap H_3$.
- (110) If H_1 is a subgroup of H_2 , then $H_1 \cap H_3$ is a subgroup of $H_2 \cap H_3$.
- (111) If H_1 is finite or H_2 is finite, then $H_1 \cap H_2$ is finite.

We now define two new functors. Let us consider G, H, A. The functor $A \cdot H$ yielding a subset of G is defined as follows:

(Def.11) $A \cdot H = A \cdot \overline{H}$.

The functor $H \cdot A$ yields a subset of G and is defined as follows:

(Def.12) $H \cdot A = \overline{H} \cdot A$.

One can prove the following propositions:

- (112) $A \cdot H = A \cdot \overline{H}.$
- (113) $H \cdot A = \overline{H} \cdot A.$
- (114) $x \in A \cdot H$ if and only if there exist g_1, g_2 such that $x = g_1 \cdot g_2$ and $g_1 \in A$ and $g_2 \in H$.
- (115) $x \in H \cdot A$ if and only if there exist g_1, g_2 such that $x = g_1 \cdot g_2$ and $g_1 \in H$ and $g_2 \in A$.
- (116) $(A \cdot B) \cdot H = A \cdot (B \cdot H).$
- (117) $(A \cdot H) \cdot B = A \cdot (H \cdot B).$
- (118) $(H \cdot A) \cdot B = H \cdot (A \cdot B).$
- (119) $(A \cdot H_1) \cdot H_2 = A \cdot (H_1 \cdot \overline{H_2}).$
- (120) $(H_1 \cdot A) \cdot H_2 = H_1 \cdot (A \cdot H_2).$
- (121) $(H_1 \cdot \overline{H_2}) \cdot A = H_1 \cdot (H_2 \cdot A).$
- (122) If G is an Abelian group, then $A \cdot H = H \cdot A$.

We now define two new functors. Let us consider G, H, a. The functor $a \cdot H$ yielding a subset of G is defined as follows:

(Def.13) $a \cdot H = a \cdot \overline{H}$.

The functor $H \cdot a$ yielding a subset of G is defined by:

(Def.14) $H \cdot a = \overline{H} \cdot a$.

The following propositions are true:

- (123) $a \cdot H = a \cdot \overline{H}.$
- (124) $H \cdot a = \overline{H} \cdot a.$
- (125) $x \in a \cdot H$ if and only if there exists g such that $x = a \cdot g$ and $g \in H$.
- (126) $x \in H \cdot a$ if and only if there exists g such that $x = g \cdot a$ and $g \in H$.
- (127) $(a \cdot b) \cdot H = a \cdot (b \cdot H).$
- (128) $(a \cdot H) \cdot b = a \cdot (H \cdot b).$
- (129) $(H \cdot a) \cdot b = H \cdot (a \cdot b).$
- (130) $a \in a \cdot H$ and $a \in H \cdot a$.
- (131) $a \cdot H \neq \emptyset$ and $H \cdot a \neq \emptyset$.
- (132) $(1_G) \cdot H = \overline{H} \text{ and } H \cdot (1_G) = \overline{H}.$

- (133) $\{\mathbf{1}\}_G \cdot a = \{a\} \text{ and } a \cdot \{\mathbf{1}\}_G = \{a\}.$
- (134) $a \cdot \Omega_G$ = the carrier of G and $\Omega_G \cdot a$ = the carrier of G.
- (135) If G is an Abelian group, then $a \cdot H = H \cdot a$.
- (136) $a \in H$ if and only if $a \cdot H = \overline{H}$.
- (137) $a \cdot H = b \cdot H$ if and only if $b^{-1} \cdot a \in H$.
- (138) $a \cdot H = b \cdot H$ if and only if $a \cdot H$ meets $b \cdot H$.
- (139) $(a \cdot b) \cdot H \subseteq (a \cdot H) \cdot (b \cdot H).$
- (140) $\overline{H} \subseteq (a \cdot H) \cdot (a^{-1} \cdot H) \text{ and } \overline{H} \subseteq (a^{-1} \cdot H) \cdot (a \cdot H).$
- (141) $a^2 \cdot H \subseteq (a \cdot H) \cdot (a \cdot H).$
- (142) $a \in H$ if and only if $H \cdot a = \overline{H}$.
- (143) $H \cdot a = H \cdot b$ if and only if $b \cdot a^{-1} \in H$.
- (144) $H \cdot a = H \cdot b$ if and only if $H \cdot a$ meets $H \cdot b$.
- (145) $(H \cdot a) \cdot b \subseteq (H \cdot a) \cdot (H \cdot b).$
- (146) $\overline{H} \subseteq (H \cdot a) \cdot (H \cdot a^{-1}) \text{ and } \overline{H} \subseteq (H \cdot a^{-1}) \cdot (H \cdot a).$
- (147) $H \cdot a^2 \subseteq (H \cdot a) \cdot (H \cdot a).$
- (148) $a \cdot (H_1 \cap H_2) = (a \cdot H_1) \cap (a \cdot H_2).$
- (149) $(H_1 \cap H_2) \cdot a = (H_1 \cdot a) \cap (H_2 \cdot a).$
- (150) There exists H_1 such that the carrier of $H_1 = (a \cdot H_2) \cdot a^{-1}$.
- (151) $a \cdot H \approx b \cdot H.$
- (152) $a \cdot H \approx H \cdot b.$
- (153) $H \cdot a \approx H \cdot b.$
- (154) $\overline{H} \approx a \cdot H$ and $\overline{H} \approx H \cdot a$.
- (155) $\operatorname{Ord}(H) = \overline{\overline{a \cdot H}} \text{ and } \operatorname{Ord}(H) = \overline{\overline{H \cdot a}}.$
- (156) If H is finite, then $\operatorname{ord}(H) = \operatorname{card}(a \cdot H)$ and $\operatorname{ord}(H) = \operatorname{card}(H \cdot a)$.

The scheme *SubFamComp* deals with a set \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a family \mathcal{C} of subsets of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

$$\mathcal{B} = \mathcal{C}$$

provided the parameters meet the following requirements:

- for every subset X of A holds $X \in \mathcal{B}$ if and only if $\mathcal{P}[X]$,
- for every subset X of \mathcal{A} holds $X \in \mathcal{C}$ if and only if $\mathcal{P}[X]$.

We now define two new functors. Let us consider G, H. The left cosets of H yielding a family of subsets of the carrier of G is defined as follows:

- (Def.15) $A \in$ the left cosets of H if and only if there exists a such that $A = a \cdot H$. The right cosets of H yielding a family of subsets of the carrier of G is defined by:
- (Def.16) $A \in \text{the right cosets of } H \text{ if and only if there exists } a \text{ such that } A = H \cdot a.$

In the sequel F denotes a family of subsets of the carrier of G. One can prove the following propositions:

(157) If for every A holds $A \in F$ if and only if there exists a such that $A = a \cdot H$, then F = the left cosets of H.

- (158) If for every A holds $A \in F$ if and only if there exists a such that $A = H \cdot a$, then F = the right cosets of H.
- (159) $A \in \text{the left cosets of } H \text{ if and only if there exists } a \text{ such that } A = a \cdot H.$
- (160) $A \in \text{the right cosets of } H \text{ if and only if there exists } a \text{ such that } A = H \cdot a.$
- (161) If $x \in$ the left cosets of H or $x \in$ the right cosets of H, then x is a subset of G.
- (162) $x \in \text{the left cosets of } H \text{ if and only if there exists } a \text{ such that } x = a \cdot H.$
- (163) $x \in \text{the right cosets of } H \text{ if and only if there exists } a \text{ such that } x = H \cdot a.$
- (164) If G is finite, then the right cosets of H is finite and the left cosets of H is finite.
- (165) $\overline{H} \in \text{the left cosets of } H \text{ and } \overline{H} \in \text{the right cosets of } H.$
- (166) The left cosets of $H \approx$ the right cosets of H.
- (167) \bigcup (The left cosets of H) = the carrier of G and \bigcup (the right cosets of H) = the carrier of G.
- (168) The left cosets of $\{1\}_G = \{\{a\}\}.$
- (169) The right cosets of $\{\mathbf{1}\}_G = \{\{a\}\}.$
- (170) If the left cosets of $H = \{\{a\}\}, \text{ then } H = \{\mathbf{1}\}_G$.
- (171) If the right cosets of $H = \{\{a\}\}, \text{ then } H = \{\mathbf{1}\}_G$.
- (172) The left cosets of $\Omega_G = \{$ the carrier of $G \}$ and the right cosets of $\Omega_G = \{$ the carrier of $G \}$.
- (173) If the left cosets of $H = \{$ the carrier of $G\}$, then H = G.
- (174) If the right cosets of $H = \{$ the carrier of $G\}$, then H = G.

Let us consider G, H. The functor $|\bullet : H|$ yielding a cardinal number is defined by:

(Def.17) $|\bullet: H| = \text{the left cosets of } H.$

We now state the proposition

(175) $|\bullet:H| = \overline{\text{the left cosets of } H}$ and $|\bullet:H| = \overline{\text{the right cosets of } H}$.

Let us consider G, H. Let us assume that the left cosets of H is finite. The functor $|\bullet: H|_{\mathbb{N}}$ yielding a natural number is defined as follows:

(Def.18) $|\bullet: H|_{\mathbb{N}} = \operatorname{card}(\operatorname{the left cosets of} H).$

Next we state the proposition

(176) If the left cosets of H is finite, then $|\bullet: H|_{\mathbb{N}} = \operatorname{card}(\operatorname{the left cosets of } H)$ and $|\bullet: H|_{\mathbb{N}} = \operatorname{card}(\operatorname{the right cosets of } H)$.

Let D be a non-empty set, and let d be an element of D. Then $\{d\}$ is an element of Fin D.

The following two propositions are true:

- (177) If G is finite, then $\operatorname{ord}(G) = \operatorname{ord}(H) \cdot |\bullet: H|_{\mathbb{N}}$.
- (178) If G is finite, then $\operatorname{ord}(H) | \operatorname{ord}(G)$.

In the sequel J will denote a subgroup of H. One can prove the following propositions:

- (179) If G is finite and I = J, then $|\bullet: I|_{\mathbb{N}} = |\bullet: J|_{\mathbb{N}} \cdot |\bullet: H|_{\mathbb{N}}$.
- (180) $|\bullet:\Omega_G|_{\mathbb{N}} = 1.$
- (181) If the left cosets of H is finite and $|\bullet: H|_{\mathbb{N}} = 1$, then H = G.
- $(182) \quad |\bullet: \{\mathbf{1}\}_G| = \operatorname{Ord}(G).$
- (183) If G is finite, then $|\bullet: \{\mathbf{1}\}_G|_{\mathbb{N}} = \operatorname{ord}(G)$.
- (184) If G is finite and $|\bullet: H|_{\mathbb{N}} = \operatorname{ord}(G)$, then $H = \{\mathbf{1}\}_G$.
- (185) If the left cosets of H is finite and $|\bullet: H| = \operatorname{Ord}(G)$, then G is finite and $H = \{\mathbf{1}\}_G$.
- (186) If X is finite and for every Y such that $Y \in X$ holds Y is finite and card Y = k and for every Z such that $Z \in X$ and $Y \neq Z$ holds $Y \approx Z$ and Y misses Z, then card $(\bigcup X) = k \cdot \operatorname{card} X$.
- (187) If Y is finite and $X \subseteq Y$ and card $X = \operatorname{card} Y$, then X = Y.

References

- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [6] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [11] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received July 23, 1990