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Summary. Notions of group and abelian group are introduced.
The power of an element of a group, order of group and order of an
element of a group are defined. Basic theorems concerning those notions
are presented.

MML Identifier: GROUP 1.

The notation and terminology used in this paper are introduced in the following
articles: [6], [7], [9], [2], [3], [5], [12], [11], [1], [8], [4], [10], and [13]. We follow
the rules: x is arbitrary, m, n are natural numbers, and i, j are integers. Let
N be a non-empty subset of � , and let D be a non-empty set, and let f be a
function from N into D, and let n be an element of N . Then f(n) is an element
of D.

Let D be a non-empty set, and let N be a non-empty subset of � , and let E

be a non-empty set, and let f be a function from [: D, N :] into E, and let h be
an element of D, and let n be an element of N . Then f(h, n) is an element of
E.

Let us consider i. Then |i| is a natural number.

We consider half group structures which are systems
〈a carrier, an operation〉,

where the carrier is a non-empty set and the operation is a binary operation on
the carrier. In the sequel S denotes a half group structure. Let us consider S.
An element of S is an element of the carrier of S.

In the sequel r, s, s1, s2, t will be elements of S. Let us consider S, x. The
predicate x ∈ S is defined as follows:

(Def.1) x ∈ the carrier of S.

The following propositions are true:

(1) x ∈ S if and only if x ∈ the carrier of S.

(2) s ∈ S.
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(3) If x ∈ S, then x is an element of S.

Let us consider S, s1, s2. The functor s1 · s2 yielding an element of S is
defined by:

(Def.2) s1 · s2 = (the operation of S)(s1, s2).

One can prove the following proposition

(4) s1 · s2 = (the operation of S)(s1, s2).

A half group structure is called a group if:

(Def.3) (i) for all elements f , g, h of it holds (f · g) · h = f · (g · h),
(ii) there exists an element e of it such that for every element h of it holds

h ·e = h and e ·h = h and there exists an element g of it such that h ·g = e

and g · h = e.

We now state three propositions:

(5) If for all r, s, t holds (r · s) · t = r · (s · t) and there exists t such that
for every s1 holds s1 · t = s1 and t · s1 = s1 and there exists s2 such that
s1 · s2 = t and s2 · s1 = t, then S is a group.

(6) If for all r, s, t holds (r · s) · t = r · (s · t) and for all r, s holds there
exists t such that r · t = s and there exists t such that t · r = s, then S is
a group.

(7) 〈 � , + � 〉 is a group.

We follow a convention: G denotes a group and e, f , g, h denote elements of
G. Next we state two propositions:

(8) (h · g) · f = h · (g · f).

(9) There exists e such that for every h holds h · e = h and e · h = h and
there exists g such that h · g = e and g · h = e.

Let us consider G. The functor 1G yielding an element of G is defined by:

(Def.4) h · (1G) = h and (1G) · h = h.

One can prove the following two propositions:

(10) If for every h holds h · e = h and e · h = h, then e = 1G.

(11) h · (1G) = h and (1G) · h = h.

Let us consider G, h. The functor h−1 yields an element of G and is defined
as follows:

(Def.5) h · (h−1) = 1G and (h−1) · h = 1G.

One can prove the following propositions:

(12) If h · g = 1G and g · h = 1G, then g = h−1.

(13) h · h−1 = 1G and h−1 · h = 1G.

(14) If h · g = h · f or g · h = f · h, then g = f .

(15) If h · g = h or g · h = h, then g = 1G.

(16) (1G)−1 = 1G.

(17) If h−1 = g−1, then h = g.

(18) If h−1 = 1G, then h = 1G.
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(19) (h−1)−1 = h.

(20) If h · g = 1G or g · h = 1G, then h = g−1 and g = h−1.

(21) h · f = g if and only if f = h−1 · g.

(22) f · h = g if and only if f = g · h−1.

(23) There exists f such that g · f = h.

(24) There exists f such that f · g = h.

(25) (h · g)−1 = g−1 · h−1.

(26) g · h = h · g if and only if (g · h)−1 = g−1 · h−1.

(27) g · h = h · g if and only if g−1 · h−1 = h−1 · g−1.

(28) g · h = h · g if and only if g · h−1 = h−1 · g.

In the sequel u is a unary operation on the carrier of G. Let us consider G.
The functor ·−1

G yields a unary operation on the carrier of G and is defined by:

(Def.6) ·−1
G (h) = h−1.

We now state several propositions:

(29) If for every h holds u(h) = h−1, then u = ·−1
G .

(30) ·−1
G (h) = h−1.

(31) The operation of G is associative.

(32) 1G is a unity w.r.t. the operation of G.

(33) 1the operation of G = 1G.

(34) The operation of G has a unity.

(35) ·−1
G is an inverse operation w.r.t. the operation of G.

(36) The operation of G has an inverse operation.

(37) The inverse operation w.r.t. (the operation of G) = ·−1
G .

Let us consider G. The functor powerG yields a function from [: the carrier
of G, � :] into the carrier of G and is defined by:

(Def.7) powerG(h, 0) = 1G and for every n holds powerG(h, n+1) = powerG(h,

n) · h.

In the sequel H is a function from [: the carrier of G, � :] into the carrier of
G. We now state three propositions:

(38) If for every h holds H(h, 0) = 1G and for every n holds H(h, n + 1) =
H(h, n) · h, then H = powerG.

(39) powerG(h, 0) = 1G.

(40) powerG(h, n + 1) = powerG(h, n) · h.

Let us consider G, n, h. The functor hn yields an element of G and is defined
as follows:

(Def.8) hn = powerG(h, n).

We now state a number of propositions:

(41) hn = powerG(h, n).

(42) (1G)n = 1G.
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(43) h0 = 1G.

(44) h1 = h.

(45) h2 = h · h.

(46) h3 = (h · h) · h.

(47) h2 = 1G if and only if h−1 = h.

(48) hn+m = hn · hm and hm+n = hn · hm.

(49) hn+1 = hn · h and hn+1 = h · hn and h1+n = hn · h and h1+n = h · hn.

(50) hn·m = (hn)m.

(51) (h−1)n = (hn)−1.

(52) If g · h = h · g, then g · hn = hn · g.

(53) If g · h = h · g, then gn · hm = hm · gn.

(54) If g · h = h · g, then (g · h)n = gn · hn.

Let us consider G, i, h. The functor hi yielding an element of G is defined
by:

(Def.9) hi = h|i| if 0 ≤ i, hi = (h|i|)−1, otherwise.

The following propositions are true:

(55) If 0 ≤ i, then hi = h|i|.

(56) If 0 6≤ i, then hi = (h|i|)−1.

(57) If i < 0, then hi = (h|i|)−1.

(58) If i = n, then hi = hn.

(59) If i = 0, then hi = 1G.

(60) If i ≤ 0, then hi = (h|i|)−1.

(61) (1G)i = 1G.

(62) h−1 = h−1.

(63) hi+j = hi · hj .

(64) hn+j = hn · hj .

(65) hi+m = hi · hm.

(66) hj+1 = hj · h and hj+1 = h · hj and h1+j = hj · h and h1+j = h · hj .

(67) hi·j = (hi)j .

(68) hn·j = (hn)j .

(69) hi·m = (hi)m.

(70) h−i = (hi)−1.

(71) h−n = (hn)−1.

(72) (h−1)i = (hi)−1.

(73) If g · h = h · g, then (g · h)i = gi · hi.

(74) If g · h = h · g, then gi · hj = hj · gi.

(75) If g · h = h · g, then gn · hj = hj · gn.

(76) If g · h = h · g, then gi · hm = hm · gi.

(77) If g · h = h · g, then g · hi = hi · g.
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Let us consider G, h. We say that h is of order 0 if and only if:

(Def.10) if hn = 1G, then n = 0.

We now state two propositions:

(78) h is of order 0 if and only if for every n such that hn = 1G holds n = 0.

(79) 1G is not of order 0.

Let us consider G, h. The functor ord(h) yields a natural number and is
defined by:

(Def.11) ord(h) = 0 if h is of order 0, hord(h) = 1G and ord(h) 6= 0 and for every
m such that hm = 1G and m 6= 0 holds ord(h) ≤ m, otherwise.

One can prove the following propositions:

(80) If h is not of order 0 and hm = 1G and m 6= 0 and for every n such that
hn = 1G and n 6= 0 holds m ≤ n, then m = ord(h).

(81) h is of order 0 if and only if ord(h) = 0.

(82) hord(h) = 1G.

(83) If h is not of order 0 and hm = 1G and m 6= 0, then ord(h) ≤ m.

(84) ord(1G) = 1.

(85) If ord(h) = 1, then h = 1G.

(86) If hn = 1G, then ord(h) | n.

Let us consider G. The functor Ord(G) yielding a cardinal number is defined
as follows:

(Def.12) Ord(G) = the carrier of G .

We now state the proposition

(87) Ord(G) = the carrier of G .

We now define two new predicates. Let us consider G. We say that G is
finite if and only if:

(Def.13) the carrier of G is finite.

We say that G is infinite if and only if G is not finite.

The following proposition is true

(88) G is finite if and only if the carrier of G is finite.

Let us consider G. Let us assume that G is finite. The functor ord(G)
yielding a natural number is defined by:

(Def.14) ord(G) = card (the carrier of G).

Next we state two propositions:

(89) If G is finite, then ord(G) = card (the carrier of G).

(90) If G is finite, then ord(G) ≥ 1.

A group is called an Abelian group if:

(Def.15) for all elements a, b of it holds a · b = b · a.

We now state two propositions:

(91) If for all h, g holds h · g = g · h, then G is an Abelian group.
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(92) 〈 � , + � 〉 is an Abelian group.

In the sequel A is an Abelian group and a, b are elements of A. One can
prove the following propositions:

(93) a · b = b · a.

(94) (a · b)−1 = a−1 · b−1.

(95) (a · b)n = an · bn.

(96) (a · b)i = ai · bi.

(97) 〈The carrier of A, the operation of A, ·−1
A , 1A〉 is an Abelian group.

In the sequel B denotes an Abelian group. We now state two propositions:

(98) 〈The carrier of B, the addition of B〉 is an Abelian group.

(99) −1 < 0.
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