Groups

Wojciech A. Trybulec Warsaw University

Summary. Notions of group and abelian group are introduced. The power of an element of a group, order of group and order of an element of a group are defined. Basic theorems concerning those notions are presented.

MML Identifier: GROUP_1.

The notation and terminology used in this paper are introduced in the following articles: [6], [7], [9], [2], [3], [5], [12], [11], [1], [8], [4], [10], and [13]. We follow the rules: x is arbitrary, m, n are natural numbers, and i, j are integers. Let N be a non-empty subset of \mathbb{R} , and let D be a non-empty set, and let f be a function from N into D, and let n be an element of N. Then f(n) is an element of D.

Let D be a non-empty set, and let N be a non-empty subset of \mathbb{R} , and let E be a non-empty set, and let f be a function from [D, N] into E, and let h be an element of D, and let n be an element of N. Then f(h, n) is an element of E.

Let us consider *i*. Then |i| is a natural number.

We consider half group structures which are systems

 $\langle a \text{ carrier, an operation} \rangle$,

where the carrier is a non-empty set and the operation is a binary operation on the carrier. In the sequel S denotes a half group structure. Let us consider S. An element of S is an element of the carrier of S.

In the sequel r, s, s_1, s_2, t will be elements of S. Let us consider S, x. The predicate $x \in S$ is defined as follows:

(Def.1) $x \in$ the carrier of S.

The following propositions are true:

- (1) $x \in S$ if and only if $x \in$ the carrier of S.
- (2) $s \in S$.

821

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 (3) If $x \in S$, then x is an element of S.

Let us consider S, s_1, s_2 . The functor $s_1 \cdot s_2$ yielding an element of S is defined by:

(Def.2) $s_1 \cdot s_2 = (\text{the operation of } S)(s_1, s_2).$

One can prove the following proposition

(4) $s_1 \cdot s_2 = (\text{the operation of } S)(s_1, s_2).$

A half group structure is called a group if:

(Def.3) (i) for all elements f, g, h of it holds $(f \cdot g) \cdot h = f \cdot (g \cdot h)$,

(ii) there exists an element e of it such that for every element h of it holds $h \cdot e = h$ and $e \cdot h = h$ and there exists an element g of it such that $h \cdot g = e$ and $g \cdot h = e$.

We now state three propositions:

- (5) If for all r, s, t holds $(r \cdot s) \cdot t = r \cdot (s \cdot t)$ and there exists t such that for every s_1 holds $s_1 \cdot t = s_1$ and $t \cdot s_1 = s_1$ and there exists s_2 such that $s_1 \cdot s_2 = t$ and $s_2 \cdot s_1 = t$, then S is a group.
- (6) If for all r, s, t holds $(r \cdot s) \cdot t = r \cdot (s \cdot t)$ and for all r, s holds there exists t such that $r \cdot t = s$ and there exists t such that $t \cdot r = s$, then S is a group.
- (7) $\langle \mathbb{R}, +_{\mathbb{R}} \rangle$ is a group.

We follow a convention: G denotes a group and e, f, g, h denote elements of G. Next we state two propositions:

- (8) $(h \cdot g) \cdot f = h \cdot (g \cdot f).$
- (9) There exists e such that for every h holds $h \cdot e = h$ and $e \cdot h = h$ and there exists g such that $h \cdot g = e$ and $g \cdot h = e$.

Let us consider G. The functor 1_G yielding an element of G is defined by:

(Def.4) $h \cdot (1_G) = h$ and $(1_G) \cdot h = h$.

One can prove the following two propositions:

- (10) If for every h holds $h \cdot e = h$ and $e \cdot h = h$, then $e = 1_G$.
- (11) $h \cdot (1_G) = h \text{ and } (1_G) \cdot h = h.$

Let us consider G, h. The functor h^{-1} yields an element of G and is defined as follows:

(Def.5)
$$h \cdot (h^{-1}) = 1_G$$
 and $(h^{-1}) \cdot h = 1_G$.

One can prove the following propositions:

- (12) If $h \cdot g = 1_G$ and $g \cdot h = 1_G$, then $g = h^{-1}$.
- (13) $h \cdot h^{-1} = 1_G$ and $h^{-1} \cdot h = 1_G$.
- (14) If $h \cdot g = h \cdot f$ or $g \cdot h = f \cdot h$, then g = f.
- (15) If $h \cdot g = h$ or $g \cdot h = h$, then $g = 1_G$.
- (16) $(1_G)^{-1} = 1_G.$
- (17) If $h^{-1} = g^{-1}$, then h = g.
- (18) If $h^{-1} = 1_G$, then $h = 1_G$.

- $(19) \quad (h^{-1})^{-1} = h.$
- (20) If $h \cdot g = 1_G$ or $g \cdot h = 1_G$, then $h = g^{-1}$ and $g = h^{-1}$.
- (21) $h \cdot f = g$ if and only if $f = h^{-1} \cdot g$.
- (22) $f \cdot h = g$ if and only if $f = g \cdot h^{-1}$.
- (23) There exists f such that $g \cdot f = h$.
- (24) There exists f such that $f \cdot g = h$.
- (25) $(h \cdot g)^{-1} = g^{-1} \cdot h^{-1}.$
- (26) $g \cdot h = h \cdot g$ if and only if $(g \cdot h)^{-1} = g^{-1} \cdot h^{-1}$.
- (27) $g \cdot h = h \cdot g$ if and only if $g^{-1} \cdot h^{-1} = h^{-1} \cdot g^{-1}$.
- (28) $g \cdot h = h \cdot g$ if and only if $g \cdot h^{-1} = h^{-1} \cdot g$.

In the sequel u is a unary operation on the carrier of G. Let us consider G. The functor \cdot_{G}^{-1} yields a unary operation on the carrier of G and is defined by: (Def.6) $\cdot_{G}^{-1}(h) = h^{-1}$.

We now state several propositions:

(29) If for every
$$h$$
 holds $u(h) = h^{-1}$, then $u = \cdot_G^{-1}$.

- (30) $\cdot_G^{-1}(h) = h^{-1}.$
- (31) The operation of G is associative.
- (32) 1_G is a unity w.r.t. the operation of G.
- (33) $\mathbf{1}_{\text{the operation of }G} = \mathbf{1}_G.$
- (34) The operation of G has a unity.
- (35) \cdot_G^{-1} is an inverse operation w.r.t. the operation of G.
- (36) The operation of G has an inverse operation.
- (37) The inverse operation w.r.t. (the operation of G) = \cdot_{G}^{-1} .

Let us consider G. The functor power_G yields a function from [: the carrier of G, \mathbb{N}] into the carrier of G and is defined by:

(Def.7) power_G(h, 0) = 1_G and for every n holds power_G(h, n+1) = power_G(h, $n) \cdot h$.

In the sequel H is a function from [: the carrier of G, \mathbb{N}] into the carrier of G. We now state three propositions:

- (38) If for every h holds $H(h, 0) = 1_G$ and for every n holds $H(h, n+1) = H(h, n) \cdot h$, then $H = \text{power}_G$.
- (39) $\operatorname{power}_G(h, 0) = 1_G.$
- (40) $\operatorname{power}_G(h, n+1) = \operatorname{power}_G(h, n) \cdot h.$

Let us consider G, n, h. The functor h^n yields an element of G and is defined as follows:

(Def.8) $h^n = \operatorname{power}_G(h, n).$

We now state a number of propositions:

- (41) $h^n = \operatorname{power}_G(h, n).$
- $(42) \quad (1_G)^n = 1_G.$

(43) $h^0 = 1_G.$ $h^1 = h$. (44) $h^2 = h \cdot h.$ (45) $h^3 = (h \cdot h) \cdot h.$ (46) $h^2 = 1_G$ if and only if $h^{-1} = h$. (47) $h^{n+m} = h^n \cdot h^m$ and $h^{m+n} = h^n \cdot h^m$. (48) $h^{n+1} = h^n \cdot h$ and $h^{n+1} = h \cdot h^n$ and $h^{1+n} = h^n \cdot h$ and $h^{1+n} = h \cdot h^n$. (49) $h^{n \cdot m} = (h^n)^m.$ (50) $(h^{-1})^n = (h^n)^{-1}.$ (51)If $g \cdot h = h \cdot g$, then $g \cdot h^n = h^n \cdot g$. (52)If $g \cdot h = h \cdot g$, then $g^n \cdot h^m = h^m \cdot g^n$. (53)If $g \cdot h = h \cdot g$, then $(g \cdot h)^n = g^n \cdot h^n$. (54)Let us consider G, i, h. The functor h^i yielding an element of G is defined by: (Def.9) $h^{i} = h^{|i|}$ if $0 \le i$, $h^{i} = (h^{|i|})^{-1}$, otherwise. The following propositions are true: If $0 \leq i$, then $h^i = h^{|i|}$. (55)If $0 \leq i$, then $h^i = (h^{|i|})^{-1}$. (56)If i < 0, then $h^i = (h^{|i|})^{-1}$. (57)If i = n, then $h^i = h^n$. (58)If i = 0, then $h^i = 1_G$. (59)If $i \leq 0$, then $h^i = (h^{|i|})^{-1}$. (60) $(1_G)^i = 1_G.$ (61) $h^{-1} = h^{-1}.$ (62) $h^{i+j} = h^i \cdot h^j.$ (63) $h^{n+j} = h^n \cdot h^j.$ (64) $h^{i+m} = h^i \cdot h^m.$ (65) $h^{j+1} = h^j \cdot h$ and $h^{j+1} = h \cdot h^j$ and $h^{1+j} = h^j \cdot h$ and $h^{1+j} = h \cdot h^j$. (66) $h^{i \cdot j} = (h^i)^j.$ (67) $h^{n \cdot j} = (h^n)^j.$ (68) $h^{i \cdot m} = (h^i)^m.$ (69)(70) $h^{-i} = (h^i)^{-1}.$ $h^{-n} = (h^n)^{-1}.$ (71) $(h^{-1})^i = (h^i)^{-1}.$ (72)If $g \cdot h = h \cdot g$, then $(g \cdot h)^i = g^i \cdot h^i$. (73)(74)If $q \cdot h = h \cdot q$, then $q^i \cdot h^j = h^j \cdot q^i$. If $g \cdot h = h \cdot g$, then $g^n \cdot h^j = h^j \cdot g^n$. (75)If $q \cdot h = h \cdot q$, then $q^i \cdot h^m = h^m \cdot q^i$. (76)(77)If $g \cdot h = h \cdot g$, then $g \cdot h^i = h^i \cdot g$.

824

Let us consider G, h. We say that h is of order 0 if and only if:

(Def.10) if $h^n = 1_G$, then n = 0.

We now state two propositions:

- (78) h is of order 0 if and only if for every n such that $h^n = 1_G$ holds n = 0.
- (79) 1_G is not of order 0.

Let us consider G, h. The functor ord(h) yields a natural number and is defined by:

(Def.11) $\operatorname{ord}(h) = 0$ if h is of order 0, $h^{\operatorname{ord}(h)} = 1_G$ and $\operatorname{ord}(h) \neq 0$ and for every m such that $h^m = 1_G$ and $m \neq 0$ holds $\operatorname{ord}(h) \leq m$, otherwise.

One can prove the following propositions:

- (80) If h is not of order 0 and $h^m = 1_G$ and $m \neq 0$ and for every n such that $h^n = 1_G$ and $n \neq 0$ holds $m \leq n$, then $m = \operatorname{ord}(h)$.
- (81) h is of order 0 if and only if ord(h) = 0.
- (82) $h^{\operatorname{ord}(h)} = 1_G.$
- (83) If h is not of order 0 and $h^m = 1_G$ and $m \neq 0$, then $\operatorname{ord}(h) \leq m$.
- (84) $\operatorname{ord}(1_G) = 1.$
- (85) If ord(h) = 1, then $h = 1_G$.
- (86) If $h^n = 1_G$, then $\operatorname{ord}(h) \mid n$.

Let us consider G. The functor Ord(G) yielding a cardinal number is defined as follows:

(Def.12) $\operatorname{Ord}(G) = \overline{\operatorname{the carrier of } G}.$

We now state the proposition

(87) $\operatorname{Ord}(G) = \overline{\operatorname{the carrier of } G}.$

We now define two new predicates. Let us consider G. We say that G is finite if and only if:

(Def.13) the carrier of G is finite.

We say that G is infinite if and only if G is not finite.

The following proposition is true

(88) G is finite if and only if the carrier of G is finite.

Let us consider G. Let us assume that G is finite. The functor $\operatorname{ord}(G)$ yielding a natural number is defined by:

(Def.14) $\operatorname{ord}(G) = \operatorname{card}$ (the carrier of G).

Next we state two propositions:

- (89) If G is finite, then $\operatorname{ord}(G) = \operatorname{card}$ (the carrier of G).
- (90) If G is finite, then $\operatorname{ord}(G) \ge 1$.
 - A group is called an Abelian group if:
- (Def.15) for all elements a, b of it holds $a \cdot b = b \cdot a$.

We now state two propositions:

(91) If for all h, g holds $h \cdot g = g \cdot h$, then G is an Abelian group.

(92) $\langle \mathbb{R}, +_{\mathbb{R}} \rangle$ is an Abelian group.

In the sequel A is an Abelian group and a, b are elements of A. One can prove the following propositions:

- $(93) \quad a \cdot b = b \cdot a.$
- (94) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}.$
- $(95) \quad (a \cdot b)^n = a^n \cdot b^n.$
- $(96) \quad (a \cdot b)^i = a^i \cdot b^i.$
- (97) (The carrier of A, the operation of $A, \cdot_A^{-1}, 1_A$) is an Abelian group.

In the sequel B denotes an Abelian group. We now state two propositions:

- (98) \langle The carrier of *B*, the addition of *B* \rangle is an Abelian group.
- (99) -1 < 0.

References

- [1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [10] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.

- [12] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Received July 3, 1990