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Summary. Notions of group and abelian group are introduced.
The power of an element of a group, order of group and order of an
element of a group are defined. Basic theorems concerning those notions
are presented.

MML Identifier: GROUP_1.

The notation and terminology used in this paper are introduced in the following
articles: [6], [7], [9], [2], [3], [5], [12], [11], [1], [8], [4], [10], and [13]. We follow
the rules: z is arbitrary, m, n are natural numbers, and ¢, j are integers. Let
N be a non-empty subset of R, and let D be a non-empty set, and let f be a
function from N into D, and let n be an element of N. Then f(n) is an element
of D.

Let D be a non-empty set, and let N be a non-empty subset of R, and let E
be a non-empty set, and let f be a function from [ D, N { into F, and let h be
an element of D, and let n be an element of N. Then f(h, n) is an element of
E.

Let us consider i. Then |i| is a natural number.

We consider half group structures which are systems

(a carrier, an operation),
where the carrier is a non-empty set and the operation is a binary operation on
the carrier. In the sequel S denotes a half group structure. Let us consider S.
An element of S is an element of the carrier of S.

In the sequel r, s, s1, s2, t will be elements of S. Let us consider S, z. The
predicate x € S is defined as follows:

(Def.1)  x € the carrier of S.
The following propositions are true:

(1) =z € S if and only if z € the carrier of S.
(2) ses.
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(3) Ifx €S, then x is an element of S.

Let us consider S, s1, so. The functor s; - sy yielding an element of S is
defined by:

(Def.2) 51 -89 = (the operation of S)(s1, s2).

One can prove the following proposition

(4)  s1-s2 = (the operation of S)(s1, $2).

A half group structure is called a group if:

(Det.3) (i) for all elements f, g, h of it holds (f-g)-h=f-(g-h),
(ii)  there exists an element e of it such that for every element h of it holds
h-e = h and e-h = h and there exists an element g of it such that h-g =€
and g-h=e.

We now state three propositions:

(5) If for all r, s, ¢t holds (r-s) -t =r-(s-t) and there exists ¢ such that
for every s; holds sy -t = s; and t - s; = s1 and there exists s, such that
$1-89 =t and sy -s; =t, then S is a group.

(6) If for all r, s, ¢t holds (r-s)-t =r-(s-t) and for all r, s holds there
exists ¢ such that r -t = s and there exists ¢ such that ¢ - r = s, then S is
a group.

(7)  (R,+g) is a group.

We follow a convention: G denotes a group and e, f, g, h denote elements of

G. Next we state two propositions:

@) (h-g)-f=h-(g-])
(9)  There exists e such that for every h holds h-e = h and e - h = h and
there exists g such that h-g=cand g-h =ce.

Let us consider G. The functor 14 yielding an element of G is defined by:
(Defd)  h-(lg)=hand (1g)-h = h.
One can prove the following two propositions:
(10) If for every h holds h-e =h and e - h = h, then e = 1.
(11)  h-(lg)=hand (1g)-h = h.
Let us consider G, h. The functor h~! yields an element of G and is defined
as follows:
(Def.5) h-(h7')=1g and (h71)-h = 1g.
One can prove the following propositions:
(12) Ifh-g=1gand g-h = 1¢g, then g = h~L.
(13) h-hl=1lgand h™' h=1g.
(14) Ifh-g=h-forg-h=f-h,then g=f.
(15) Ifh-g=hor g-h=h,then g =1g.
(16)  (1e)™' =1le-
(17) Ifh '=g! then h=g.
( ) If =1 = 1g, then h = 14.
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) ()t =h
) Ifh-g=1lgorg-h=1g,then h=g 'and g=h"!
) h-f=gifandonlyif f=h"1g.
) f-h=gifandonlyif f=g-h"!
23)  There exists f such that g- f = h.
) There exists f such that f-g = h.
) (h-g)t=g7"n7h
) g-h=h-gifand onlyif (g-h)"t =g71 -h7L.
) g-h=h-gifandonlyifg=!-h~t=h"1.g7 1
28) g-h=h-gifandonlyifg-h~t=h"1.g.
In the sequel u is a unary operation on the carrier of G. Let us consider G.
The functor -51 yields a unary operation on the carrier of G and is defined by:
(Def.6) -g'(h) =h7L

We now state several propositions:

(29)  If for every h holds u(h) = h~!, then u = -5*.

(30) -g'(h)=h"t

(31)  The operation of G is associative.

(32) 1¢ is a unity w.r.t. the operation of G.

(33) Lthe operation of G — lg.

(34)  The operation of G has a unity.

(35) -g'is an inverse operation w.r.t. the operation of G.
(36) The operation of G has an inverse operation.

(37)  Theinverse operation w.r.t. (the operation of G) = -(_;1.

Let us consider G. The functor power; yields a function from [ the carrier
of G, N{ into the carrier of G and is defined by:

(Def.7)  powerg(h, 0) = 1¢ and for every n holds power(h, n+1) = powerg(h,
n) - h.
In the sequel H is a function from [ the carrier of G, N into the carrier of
G. We now state three propositions:
(38)  If for every h holds H(h, 0) = 1¢ and for every n holds H(h, n+1) =
H(h, n) - h, then H = power,;.
(39) powerg(h, 0) = 1¢.
(40)  powerg(h, n+ 1) = powerg(h, n) - h.
Let us consider G, n, h. The functor A" yields an element of G and is defined
as follows:
(Def.8) A" = powerg(h, n).
We now state a number of propositions:
(41) A" = powerg(h, n).
42) (1g)" =1g.
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43) KW =1q.

44)  h!' = h.

45)  h®>=h-h.

46)  h3=(h-h)-h.

N
\]

h? = 1¢ if and only if =% = h.
Rt = ™. B™ and AT = p™ . A
R"t1 = p" . h and h"t! = h- A" and A" = A" - h and BT = h - B".
R = (h™)™.
(R~ = (h") 71
Ifg-h=h-g,theng-h" =h"-g.
Ifg-h=nh-g, then g"-h"™ =h" - g".
Ifg-h=~h-g, then (g-h)" =g"-h"™
Let us consider G, i, h. The functor h? yielding an element of G is defined
by:
(Def.9) k' =Rl if 0 <4, h* = (W)=, otherwise.
The following propositions are true:
If 0 <4, then h' = hlil,
If 0 £ 4, then h? = (hl1)~1.
If i < 0, then h? = (hl1)~1.
If i = n, then h* = h".

o e s e N e N N S e e e e
Ut Ot Ot Ot O =
=~ W N = O ©
N’ N e e e e e e e N N N

v Ot ot Ot
0 ~J O Ot

(55)

(56)

(57)

(58) |

(59) Ifi=0, then h' = 1.

(60) If i <0, then h* = (Rlh)~1,

(61) (1G)i =1g.

(62) h~t=hn""

(63) At =h'-hl.

(64) A"t =h"- R

(65) At =h'.p™.

(66) hitl=hi.-hand kit =h-hI and K1 = hI - h and KT = h - .
(67)  h¥J = (R%)I.

(68)  h™I = (h™)I.

(69)  A'™ = (R')™.

(70) A7 =(hH)"L

(71) A" = (k™)L

(12)  (h71)" = ()~

(73) TIfg-h=h-g, then (g-h)' =g - h.
(74) Ifg-h=h-g, then g'-hi = h - g'.
(75) Ifg-h=h-g, then g" - h/ =h' - g".
(76) If g-h=h-g, then g' - h™ = h™ . g
(77) Ifg-h=h-g, theng-hi =h'g.
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Let us consider GG, h. We say that h is of order O if and only if:
(Def.10)  if A" = 1¢, then n = 0.
We now state two propositions:
(78)  his of order 0 if and only if for every n such that h"™ = 15 holds n = 0.
(79)  1¢ is not of order 0.

Let us consider G, h. The functor ord(h) yields a natural number and is
defined by:

(Def.11)  ord(h) = 0 if h is of order 0, h°"4") = 15 and ord(h) # 0 and for every
m such that h™ = 1 and m # 0 holds ord(h) < m, otherwise.
One can prove the following propositions:

(80)  If h is not of order 0 and "™ = 15 and m # 0 and for every n such that
h™ =1¢ and n # 0 holds m < n, then m = ord(h).

85) If ord(h) =1, then h = 14.
86) If h™ = 1¢, then ord(h) | n.

Let us consider G. The functor Ord(G) yielding a cardinal number is defined
as follows:

(Def.12)  Ord(G) = the carrier of G.
We now state the proposition

(87)  Ord(G) = the carrier of G.

We now define two new predicates. Let us consider G. We say that G is
finite if and only if:

(Def.13)  the carrier of G is finite.
We say that G is infinite if and only if G is not finite.
The following proposition is true
(88) @ is finite if and only if the carrier of G is finite.

Let us consider G. Let us assume that G is finite. The functor ord(G)
yielding a natural number is defined by:

(Def.14)  ord(G) = card (the carrier of G).

Next we state two propositions:
(89) If G is finite, then ord(G) = card (the carrier of G).
(90)  If G is finite, then ord(G) > 1.
A group is called an Abelian group if:
(Def.15)  for all elements a, b of it holds a-b=1b- a.
We now state two propositions:
(91) If for all h, g holds h- g = g - h, then G is an Abelian group.

(81)  h is of order 0 if and only if ord(h) = 0.

(82)  hordh) = 14,

(83) If h is not of order 0 and h"™ = 1 and m # 0, then ord(h) < m.
(84) ord(lg) =1.

(85)

(86)
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(R, +g) is an Abelian group.

In the sequel A is an Abelian group and a, b are elements of A. One can
prove the following propositions:

(93)
94)
5)
96)
7)

Ne)

A~~~ I~ —~
Ne)

a-b=">b-a.
(a-b)"t=at b1
(a-b)" =a™-b"

)
(a-b)' =a® b
(The carrier of A, the operation of A, -Zl, 14) is an Abelian group.

In the sequel B denotes an Abelian group. We now state two propositions:

(98)
(99)

(The carrier of B, the addition of B) is an Abelian group.
-1 <0.
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