Groups

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. Notions of group and abelian group are introduced. The power of an element of a group, order of group and order of an element of a group are defined. Basic theorems concerning those notions are presented.

MML Identifier: GROUP_1.

The notation and terminology used in this paper are introduced in the following articles: [6], [7], [9], [2], [3], [5], [12], [11], [1], [8], [4], [10], and [13]. We follow the rules: x is arbitrary, m, n are natural numbers, and i, j are integers. Let N be a non-empty subset of \mathbb{R}, and let D be a non-empty set, and let f be a function from N into D, and let n be an element of N. Then $f(n)$ is an element of D.

Let D be a non-empty set, and let N be a non-empty subset of \mathbb{R}, and let E be a non-empty set, and let f be a function from $: D, N:$ into E, and let h be an element of D, and let n be an element of N. Then $f(h, n)$ is an element of E.

Let us consider i. Then $|i|$ is a natural number.
We consider half group structures which are systems
〈a carrier, an operation〉,
where the carrier is a non-empty set and the operation is a binary operation on the carrier. In the sequel S denotes a half group structure. Let us consider S. An element of S is an element of the carrier of S.

In the sequel r, s, s_{1}, s_{2}, t will be elements of S. Let us consider S, x. The predicate $x \in S$ is defined as follows:
(Def.1) $\quad x \in$ the carrier of S.
The following propositions are true:
(1) $x \in S$ if and only if $x \in$ the carrier of S.
(2) $s \in S$.
(3) If $x \in S$, then x is an element of S.

Let us consider S, s_{1}, s_{2}. The functor $s_{1} \cdot s_{2}$ yielding an element of S is defined by:
(Def.2) $\quad s_{1} \cdot s_{2}=($ the operation of $S)\left(s_{1}, s_{2}\right)$.
One can prove the following proposition
(4) $s_{1} \cdot s_{2}=($ the operation of $S)\left(s_{1}, s_{2}\right)$.

A half group structure is called a group if:
(Def.3) (i) for all elements f, g, h of it holds $(f \cdot g) \cdot h=f \cdot(g \cdot h)$,
(ii) there exists an element e of it such that for every element h of it holds $h \cdot e=h$ and $e \cdot h=h$ and there exists an element g of it such that $h \cdot g=e$ and $g \cdot h=e$.
We now state three propositions:
(5) If for all r, s, t holds $(r \cdot s) \cdot t=r \cdot(s \cdot t)$ and there exists t such that for every s_{1} holds $s_{1} \cdot t=s_{1}$ and $t \cdot s_{1}=s_{1}$ and there exists s_{2} such that $s_{1} \cdot s_{2}=t$ and $s_{2} \cdot s_{1}=t$, then S is a group.
(6) If for all r, s, t holds $(r \cdot s) \cdot t=r \cdot(s \cdot t)$ and for all r, s holds there exists t such that $r \cdot t=s$ and there exists t such that $t \cdot r=s$, then S is a group.
(7) $\left\langle\mathbb{R},+_{\mathbb{R}}\right\rangle$ is a group.

We follow a convention: G denotes a group and e, f, g, h denote elements of G. Next we state two propositions:
(8) $(h \cdot g) \cdot f=h \cdot(g \cdot f)$.
(9) There exists e such that for every h holds $h \cdot e=h$ and $e \cdot h=h$ and there exists g such that $h \cdot g=e$ and $g \cdot h=e$.
Let us consider G. The functor 1_{G} yielding an element of G is defined by:
(Def.4) $\quad h \cdot\left(1_{G}\right)=h$ and $\left(1_{G}\right) \cdot h=h$.
One can prove the following two propositions:
(10) If for every h holds $h \cdot e=h$ and $e \cdot h=h$, then $e=1_{G}$.
(11) $h \cdot\left(1_{G}\right)=h$ and $\left(1_{G}\right) \cdot h=h$.

Let us consider G, h. The functor h^{-1} yields an element of G and is defined as follows:
(Def.5) $\quad h \cdot\left(h^{-1}\right)=1_{G}$ and $\left(h^{-1}\right) \cdot h=1_{G}$.
One can prove the following propositions:
(12) If $h \cdot g=1_{G}$ and $g \cdot h=1_{G}$, then $g=h^{-1}$.
(13) $h \cdot h^{-1}=1_{G}$ and $h^{-1} \cdot h=1_{G}$.
(14) If $h \cdot g=h \cdot f$ or $g \cdot h=f \cdot h$, then $g=f$.
(15) If $h \cdot g=h$ or $g \cdot h=h$, then $g=1_{G}$.
(16) $\quad\left(1_{G}\right)^{-1}=1_{G}$.
(17) If $h^{-1}=g^{-1}$, then $h=g$.
(18) If $h^{-1}=1_{G}$, then $h=1_{G}$.
(20) If $h \cdot g=1_{G}$ or $g \cdot h=1_{G}$, then $h=g^{-1}$ and $g=h^{-1}$.
(21) $h \cdot f=g$ if and only if $f=h^{-1} \cdot g$.
(22) $f \cdot h=g$ if and only if $f=g \cdot h^{-1}$.
(23) There exists f such that $g \cdot f=h$.
(24) There exists f such that $f \cdot g=h$.
(25) $\quad(h \cdot g)^{-1}=g^{-1} \cdot h^{-1}$.
(26) $g \cdot h=h \cdot g$ if and only if $(g \cdot h)^{-1}=g^{-1} \cdot h^{-1}$.
(27) $g \cdot h=h \cdot g$ if and only if $g^{-1} \cdot h^{-1}=h^{-1} \cdot g^{-1}$.
(28) $g \cdot h=h \cdot g$ if and only if $g \cdot h^{-1}=h^{-1} \cdot g$.

In the sequel u is a unary operation on the carrier of G. Let us consider G. The functor $\cdot{ }_{G}^{-1}$ yields a unary operation on the carrier of G and is defined by: (Def.6) $\quad \cdot_{G}^{1}(h)=h^{-1}$.

We now state several propositions:
(29) If for every h holds $u(h)=h^{-1}$, then $u=\cdot{ }_{G}^{-1}$.
(30) $\quad \cdot_{G}^{-1}(h)=h^{-1}$.
(31) The operation of G is associative.
(32) 1_{G} is a unity w.r.t. the operation of G.
(33) $\mathbf{1}_{\text {the operation of } G}=1_{G}$.
(34) The operation of G has a unity.
(35) $\cdot \cdot_{G}^{1}$ is an inverse operation w.r.t. the operation of G.
(36) The operation of G has an inverse operation.
(37) The inverse operation w.r.t. (the operation of G) $=\cdot \cdot_{G}^{-1}$.

Let us consider G. The functor power $_{G}$ yields a function from : the carrier of G, \mathbb{N} : into the carrier of G and is defined by:
(Def.7) $\operatorname{power}_{G}(h, 0)=1_{G}$ and for every n holds $\operatorname{power}_{G}(h, n+1)=\operatorname{power}_{G}(h$, $n) \cdot h$.
In the sequel H is a function from : the carrier of $G, \mathbb{N}:$ into the carrier of G. We now state three propositions:
(38) If for every h holds $H(h, 0)=1_{G}$ and for every n holds $H(h, n+1)=$ $H(h, n) \cdot h$, then $H=\operatorname{power}_{G}$.

$$
\begin{equation*}
\operatorname{power}_{G}(h, 0)=1_{G} . \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{power}_{G}(h, n+1)=\operatorname{power}_{G}(h, n) \cdot h . \tag{40}
\end{equation*}
$$

Let us consider G, n, h. The functor h^{n} yields an element of G and is defined as follows:
(Def.8) $\quad h^{n}=\operatorname{power}_{G}(h, n)$.
We now state a number of propositions:
(41) $h^{n}=\operatorname{power}_{G}(h, n)$.
(42) $\quad\left(1_{G}\right)^{n}=1_{G}$.
(43) $h^{0}=1_{G}$.
(44) $h^{1}=h$.
(45) $h^{2}=h \cdot h$.
(46) $h^{3}=(h \cdot h) \cdot h$.
(47) $h^{2}=1_{G}$ if and only if $h^{-1}=h$.
(48) $h^{n+m}=h^{n} \cdot h^{m}$ and $h^{m+n}=h^{n} \cdot h^{m}$.
(49) $\quad h^{n+1}=h^{n} \cdot h$ and $h^{n+1}=h \cdot h^{n}$ and $h^{1+n}=h^{n} \cdot h$ and $h^{1+n}=h \cdot h^{n}$.
(50) $\quad h^{n \cdot m}=\left(h^{n}\right)^{m}$.
(51) $\quad\left(h^{-1}\right)^{n}=\left(h^{n}\right)^{-1}$.
(52) If $g \cdot h=h \cdot g$, then $g \cdot h^{n}=h^{n} \cdot g$.
(53) If $g \cdot h=h \cdot g$, then $g^{n} \cdot h^{m}=h^{m} \cdot g^{n}$.
(54) If $g \cdot h=h \cdot g$, then $(g \cdot h)^{n}=g^{n} \cdot h^{n}$.

Let us consider G, i, h. The functor h^{i} yielding an element of G is defined by:
(Def.9) $\quad h^{i}=h^{|i|}$ if $0 \leq i, h^{i}=\left(h^{|i|}\right)^{-1}$, otherwise.
The following propositions are true:
(55) If $0 \leq i$, then $h^{i}=h^{|i|}$.
(56) If $0 \not \leq i$, then $h^{i}=\left(h^{|i|}\right)^{-1}$.
(57) If $i<0$, then $h^{i}=\left(h^{|i|}\right)^{-1}$.
(58) If $i=n$, then $h^{i}=h^{n}$.
(59) If $i=0$, then $h^{i}=1_{G}$.
(60) If $i \leq 0$, then $h^{i}=\left(h^{|i|}\right)^{-1}$.
(61) $\left(1_{G}\right)^{i}=1_{G}$.
(62) $h^{-1}=h^{-1}$.
(63) $h^{i+j}=h^{i} \cdot h^{j}$.
(64) $h^{n+j}=h^{n} \cdot h^{j}$.
(65) $h^{i+m}=h^{i} \cdot h^{m}$.
(66) $\quad h^{j+1}=h^{j} \cdot h$ and $h^{j+1}=h \cdot h^{j}$ and $h^{1+j}=h^{j} \cdot h$ and $h^{1+j}=h \cdot h^{j}$.
(67) $\quad h^{i \cdot j}=\left(h^{i}\right)^{j}$.
(68) $\quad h^{n \cdot j}=\left(h^{n}\right)^{j}$.
(69) $\quad h^{i \cdot m}=\left(h^{i}\right)^{m}$.
(70) $h^{-i}=\left(h^{i}\right)^{-1}$.
(71) $\quad h^{-n}=\left(h^{n}\right)^{-1}$.
(72) $\quad\left(h^{-1}\right)^{i}=\left(h^{i}\right)^{-1}$.
(73) If $g \cdot h=h \cdot g$, then $(g \cdot h)^{i}=g^{i} \cdot h^{i}$.
(74) If $g \cdot h=h \cdot g$, then $g^{i} \cdot h^{j}=h^{j} \cdot g^{i}$.
(75) If $g \cdot h=h \cdot g$, then $g^{n} \cdot h^{j}=h^{j} \cdot g^{n}$.
(76) If $g \cdot h=h \cdot g$, then $g^{i} \cdot h^{m}=h^{m} \cdot g^{i}$.
(77) If $g \cdot h=h \cdot g$, then $g \cdot h^{i}=h^{i} \cdot g$.

Let us consider G, h. We say that h is of order 0 if and only if:
(Def.10) if $h^{n}=1_{G}$, then $n=0$.
We now state two propositions:
(78) $\quad h$ is of order 0 if and only if for every n such that $h^{n}=1_{G}$ holds $n=0$.
(79) $\quad 1_{G}$ is not of order 0 .

Let us consider G, h. The functor $\operatorname{ord}(h)$ yields a natural number and is defined by:
(Def.11) $\quad \operatorname{ord}(h)=0$ if h is of order $0, h^{\operatorname{ord}(h)}=1_{G}$ and $\operatorname{ord}(h) \neq 0$ and for every m such that $h^{m}=1_{G}$ and $m \neq 0$ holds ord $(h) \leq m$, otherwise.
One can prove the following propositions:
(80) If h is not of order 0 and $h^{m}=1_{G}$ and $m \neq 0$ and for every n such that $h^{n}=1_{G}$ and $n \neq 0$ holds $m \leq n$, then $m=\operatorname{ord}(h)$.
(81) h is of order 0 if and only if $\operatorname{ord}(h)=0$.
(82) $\quad h^{\operatorname{ord}(h)}=1_{G}$.
(83) If h is not of order 0 and $h^{m}=1_{G}$ and $m \neq 0$, then $\operatorname{ord}(h) \leq m$.
(84) $\quad \operatorname{ord}\left(1_{G}\right)=1$.
(85) If $\operatorname{ord}(h)=1$, then $h=1_{G}$.
(86) If $h^{n}=1_{G}$, then $\operatorname{ord}(h) \mid n$.

Let us consider G. The functor $\operatorname{Ord}(G)$ yielding a cardinal number is defined as follows:
(Def.12) $\operatorname{Ord}(G)=\overline{\overline{\text { the carrier of } G}}$.
We now state the proposition
(87) $\operatorname{Ord}(G)=\overline{\overline{\text { the carrier of } G}}$

We now define two new predicates. Let us consider G. We say that G is finite if and only if:
(Def.13) the carrier of G is finite.
We say that G is infinite if and only if G is not finite.
The following proposition is true
(88) G is finite if and only if the carrier of G is finite.

Let us consider G. Let us assume that G is finite. The functor $\operatorname{ord}(G)$ yielding a natural number is defined by:
(Def.14) $\operatorname{ord}(G)=$ card (the carrier of G).
Next we state two propositions:
(89) If G is finite, then $\operatorname{ord}(G)=\operatorname{card}$ (the carrier of G).
(90) If G is finite, then $\operatorname{ord}(G) \geq 1$.

A group is called an Abelian group if:
(Def.15) for all elements a, b of it holds $a \cdot b=b \cdot a$.
We now state two propositions:
(91) If for all h, g holds $h \cdot g=g \cdot h$, then G is an Abelian group.
(92) $\left\langle\mathbb{R},+_{\mathbb{R}}\right\rangle$ is an Abelian group.

In the sequel A is an Abelian group and a, b are elements of A. One can prove the following propositions:
(94) $(a \cdot b)^{-1}=a^{-1} \cdot b^{-1}$.
(95) $(a \cdot b)^{n}=a^{n} \cdot b^{n}$.
(96) $\quad(a \cdot b)^{i}=a^{i} \cdot b^{i}$.
(97) 〈The carrier of A, the operation of $\left.A, \cdot{ }_{A}^{-1}, 1_{A}\right\rangle$ is an Abelian group.

In the sequel B denotes an Abelian group. We now state two propositions:
(98) \langle The carrier of B, the addition of $B\rangle$ is an Abelian group.

$$
\begin{equation*}
-1<0 . \tag{99}
\end{equation*}
$$

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[12] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Received July 3, 1990

