# Binary Operations on Finite Sequences 

Wojciech A. Trybulec ${ }^{1}$<br>Warsaw University


#### Abstract

Summary. We generalize the semigroup operation on finite sequences introduced in [6] for binary operations that have a unity or for non-empty finite sequences.


MML Identifier: FINSOP_1.

The papers [9], [4], [5], [2], [3], [8], [6], [7], and [1] provide the notation and terminology for this paper. For simplicity we adopt the following convention: $D$ denotes a non-empty set, $d, d_{1}, d_{2}, d_{3}$ denote elements of $D, F, G, H$ denote finite sequences of elements of $D, f$ denotes a function from $\mathbb{N}$ into $D$, $g$ denotes a binary operation on $D, k, n, l$ denote natural numbers, and $P$ denotes a permutation of $\operatorname{Seg}(\operatorname{len} F)$. Let us consider $D, n, d$. Then $n \longmapsto d$ is a finite sequence of elements of $D$.

Let us consider $D, F, g$. Let us assume that $g$ has a unity or len $F \geq 1$. The functor $g \odot F$ yields an element of $D$ and is defined by:
(Def.1) $g \odot F=\mathbf{1}_{g}$ if $g$ has a unity and len $F=0$, there exists $f$ such that $f(1)=F(1)$ and for every $n$ such that $0 \neq n$ and $n<\operatorname{len} F$ holds $f(n+1)=g(f(n), F(n+1))$ and $g \odot F=f(\operatorname{len} F)$, otherwise.
One can prove the following propositions:
(1) If $g$ has a unity and len $F=0$, then $g \odot F=\mathbf{1}_{g}$.
(2) Suppose len $F \geq 1$. Then there exists $f$ such that $f(1)=F(1)$ and for every $n$ such that $0 \neq n$ and $n<\operatorname{len} F$ holds $f(n+1)=g(f(n), F(n+1))$ and $g \odot F=f(\operatorname{len} F)$.
(3) Suppose len $F \geq 1$ and there exists $f$ such that $f(1)=F(1)$ and for every $n$ such that $0 \neq n$ and $n<\operatorname{len} F$ holds $f(n+1)=g(f(n), F(n+1))$ and $d=f(\operatorname{len} F)$. Then $d=g \odot F$.
(4) If $g$ has a unity or len $F \geq 1$ but $g$ is associative and $g$ is commutative, then $g \odot F=g \circledast F$.

[^0](5) If $g$ has a unity or len $F \geq 1$, then $g \odot F^{\wedge}\langle d\rangle=g(g \odot F, d)$.
(6) If $g$ is associative but $g$ has a unity or len $F \geq 1$ and len $G \geq 1$, then $g \odot F \frown G=g(g \odot F, g \odot G)$.
(7) If $g$ is associative but $g$ has a unity or len $F \geq 1$, then $g \odot\langle d\rangle{ }^{\wedge} F=g(d$, $g \odot F)$.
(8) If $g$ is commutative and $g$ is associative but $g$ has a unity or len $F \geq 1$ and $G=F \cdot P$, then $g \odot F=g \odot G$.
(9) If $g$ has a unity or len $F \geq 1$ but $g$ is associative and $g$ is commutative and $F$ is one-to-one and $G$ is one-to-one and $\operatorname{rng} F=\operatorname{rng} G$, then $g \odot F=$ $g \odot G$.
(10) Suppose $g$ is associative and $g$ is commutative but $g$ has a unity or len $F \geq 1$ and len $F=\operatorname{len} G$ and len $F=$ len $H$ and for every $k$ such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $F(k)=g(G(k), H(k))$. Then $g \odot F=g(g \odot G$, $g \odot H)$.
(11) If $g$ has a unity, then $g \odot \varepsilon_{D}=\mathbf{1}_{g}$.
(12) $g \odot\langle d\rangle=d$.
(13) $g \odot\left\langle d_{1}, d_{2}\right\rangle=g\left(d_{1}, d_{2}\right)$.
(14) If $g$ is commutative, then $g \odot\left\langle d_{1}, d_{2}\right\rangle=g \odot\left\langle d_{2}, d_{1}\right\rangle$.
(15) $g \odot\left\langle d_{1}, d_{2}, d_{3}\right\rangle=g\left(g\left(d_{1}, d_{2}\right), d_{3}\right)$.
(16) If $g$ is commutative, then $g \odot\left\langle d_{1}, d_{2}, d_{3}\right\rangle=g \odot\left\langle d_{2}, d_{1}, d_{3}\right\rangle$.
(17) $g \odot(1 \longmapsto d)=d$.
(18) $g \odot(2 \longmapsto d)=g(d, d)$.
(19) If $g$ is associative but $g$ has a unity or $k \neq 0$ and $l \neq 0$, then $g \odot(k+l \longmapsto$ $d)=g(g \odot(k \longmapsto d), g \odot(l \longmapsto d))$.
(20) If $g$ is associative but $g$ has a unity or $k \neq 0$ and $l \neq 0$, then $g \odot(k \cdot l \longmapsto$ $d)=g \odot(l \longmapsto g \odot(k \longmapsto d))$.
(21) If len $F=1$, then $g \odot F=F(1)$.
(22) If len $F=2$, then $g \odot F=g(F(1), F(2))$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[9] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.


[^0]:    ${ }^{1}$ Supported by RPBP.III-24.C1

