Filters - Part I

Grzegorz Bancerek¹ Warsaw University Białystok

Summary. Filters of a lattice, maximal filters (ultrafilters), operation to create a filter generating by an element or by a nonempty set of elements of the lattice are discussed. Besides, there are introduced implicative lattices such that for every two elements there is an element being pseudo-complement of them. Some facts concerning these concepts are presented too, i.e. for any proper filter there exists an ultrafilter consists it.

MML Identifier: FILTER_0.

The articles [3], [1], [4], [7], [5], [6], and [2] provide the notation and terminology for this paper. We adopt the following convention: L is a lattice, p, p_1 , q, q_1 , r, r_1 are elements of the carrier of L, and x is arbitrary. Let E be a non-empty set, and let p be an element of E. Then $\{p\}$ is a non-empty subset of E.

Let E be a non-empty set, and let D_1 , D_2 be non-empty subsets of E. Then $D_1 \cup D_2$ is a non-empty subset of E.

The following propositions are true:

- (1) If $p \sqsubseteq q$, then $r \sqcup p \sqsubseteq r \sqcup q$ and $p \sqcup r \sqsubseteq q \sqcup r$ and $p \sqcup r \sqsubseteq r \sqcup q$ and $r \sqcup p \sqsubseteq q \sqcup r$.
- (2) If $p \sqsubseteq r$, then $p \sqcap q \sqsubseteq r$ and $q \sqcap p \sqsubseteq r$.
- (3) If $p \sqsubseteq r$, then $p \sqsubseteq q \sqcup r$ and $p \sqsubseteq r \sqcup q$.
- (4) If $p \sqsubseteq p_1$ and $q \sqsubseteq q_1$, then $p \sqcup q \sqsubseteq p_1 \sqcup q_1$ and $p \sqcup q \sqsubseteq q_1 \sqcup p_1$.
- (5) If $p \sqsubseteq p_1$ and $q \sqsubseteq q_1$, then $p \sqcap q \sqsubseteq p_1 \sqcap q_1$ and $p \sqcap q \sqsubseteq q_1 \sqcap p_1$.
- (6) If $p \sqsubseteq r$ and $q \sqsubseteq r$, then $p \sqcup q \sqsubseteq r$.
- (7) If $r \sqsubseteq p$ and $r \sqsubseteq q$, then $r \sqsubseteq p \sqcap q$.

Let us consider L. A non-empty subset of the carrier of L is said to be a filter of L if:

¹Supported by RPBP III-24.C1.

813

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 (Def.1) $p \in \text{it and } q \in \text{it if and only if } p \sqcap q \in \text{it.}$

One can prove the following two propositions:

- (8) For every non-empty subset D of the carrier of L holds D is a filter of L if and only if for all p, q holds $p \in D$ and $q \in D$ if and only if $p \sqcap q \in D$.
- (9) For every non-empty subset D of the carrier of L holds D is a filter of L if and only if for all p, q such that $p \in D$ and $q \in D$ holds $p \sqcap q \in D$ and for all p, q such that $p \in D$ and $p \sqsubseteq q$ holds $q \in D$.

In the sequel H, F are filters of L. We now state several propositions:

- (10) If $p \in H$, then $p \sqcup q \in H$ and $q \sqcup p \in H$.
- (11) There exists p such that $p \in H$.
- (12) If L is an upper bound lattice, then $\top_L \in H$.
- (13) If L is an upper bound lattice, then $\{\top_L\}$ is a filter of L.
- (14) If $\{p\}$ is a filter of L, then L is an upper bound lattice.
- (15) The carrier of L is a filter of L.

Let us consider L. The functor [L] yields a filter of L and is defined by:

(Def.2) [L] = the carrier of L.

One can prove the following proposition

(16) [L] =the carrier of L.

Let us consider L, p. The functor [p] yields a filter of L and is defined as follows:

 $(\text{Def.3}) \quad [p] = \{q : p \sqsubseteq q\}.$

One can prove the following four propositions:

- $(17) \quad [p] = \{q : p \sqsubseteq q\}.$
- (18) $q \in [p]$ if and only if $p \sqsubseteq q$.
- (19) $p \in [p]$ and $p \sqcup q \in [p]$ and $q \sqcup p \in [p]$.
- (20) If L is a lower bound lattice, then $[L] = [\perp_L]$.

Let us consider L, F. We say that F is ultrafilter if and only if:

(Def.4) $F \neq$ the carrier of L and for every H such that $F \subseteq H$ and $H \neq$ the carrier of L holds F = H.

One can prove the following four propositions:

- (21) F is ultrafilter if and only if $F \neq$ the carrier of L and for every H such that $F \subseteq H$ and $H \neq$ the carrier of L holds F = H.
- (22) If L is a lower bound lattice, then for every F such that $F \neq$ the carrier of L there exists H such that $F \subseteq H$ and H is ultrafilter.
- (23) If there exists r such that $p \sqcap r \neq p$, then $[p] \neq$ the carrier of L.
- (24) If L is a lower bound lattice and $p \neq \perp_L$, then there exists H such that $p \in H$ and H is ultrafilter.

In the sequel D is a non-empty subset of the carrier of L. Let us consider L, D. The functor [D] yields a filter of L and is defined by:

(Def.5) $D \subseteq [D]$ and for every F such that $D \subseteq F$ holds $[D] \subseteq F$.

One can prove the following two propositions:

- (25) $D \subseteq [D]$ and for every F such that $D \subseteq F$ holds $[D] \subseteq F$.
- $(26) \quad [F] = F.$

In the sequel D_1 , D_2 will be non-empty subsets of the carrier of L. We now state several propositions:

- (27) If $D_1 \subseteq D_2$, then $[D_1] \subseteq [D_2]$.
- $(28) \quad [[D]] \subseteq [D].$
- (29) If $p \in D$, then $[p] \subseteq [D]$.
- (30) If $D = \{p\}$, then [D] = [p].
- (31) If L is a lower bound lattice and $\perp_L \in D$, then [D] = [L] and [D] = the carrier of L.
- (32) If L is a lower bound lattice and $\perp_L \in F$, then F = [L] and F = the carrier of L.

Let us consider L, F. We say that F is prime if and only if:

(Def.6) $p \sqcup q \in F$ if and only if $p \in F$ or $q \in F$.

One can prove the following two propositions:

- (33) F is prime if and only if for all p, q holds $p \sqcup q \in F$ if and only if $p \in F$ or $q \in F$.
- (34) If L is a boolean lattice, then for all p, q holds $p \sqcap (p^c \sqcup q) \sqsubseteq q$ and for every r such that $p \sqcap r \sqsubseteq q$ holds $r \sqsubseteq p^c \sqcup q$.

A lattice is called a implicative lattice if:

(Def.7) for every elements p, q of the carrier of it there exists an element r of the carrier of it such that $p \sqcap r \sqsubseteq q$ and for every element r_1 of the carrier of it such that $p \sqcap r_1 \sqsubseteq q$ holds $r_1 \sqsubseteq r$.

One can prove the following proposition

(35) L is a implicative lattice if and only if for every p, q there exists r such that $p \sqcap r \sqsubseteq q$ and for every r_1 such that $p \sqcap r_1 \sqsubseteq q$ holds $r_1 \sqsubseteq r$.

Let us consider L, p, q. Let us assume that L is a implicative lattice. The functor $p \Rightarrow q$ yields an element of the carrier of L and is defined as follows:

(Def.8) $p \sqcap (p \Rightarrow q) \sqsubseteq q$ and for every r such that $p \sqcap r \sqsubseteq q$ holds $r \sqsubseteq p \Rightarrow q$.

The following proposition is true

(36) If L is a implicative lattice, then for all p, q, r holds $r = p \Rightarrow q$ if and only if $p \sqcap r \sqsubseteq q$ and for every r_1 such that $p \sqcap r_1 \sqsubseteq q$ holds $r_1 \sqsubseteq r$.

In the sequel I will denote a implicative lattice and i will denote an element of the carrier of I. The following three propositions are true:

(37) I is an upper bound lattice.

 $(38) \quad i \Rightarrow i = \top_I.$

(39) I is a distributive lattice.

In the sequel B is a boolean lattice and F_1 , H_1 are filters of B. Next we state the proposition

(40) B is a implicative lattice.

We see that the implicative lattice is a distributive lattice.

For simplicity we follow the rules: I will be a implicative lattice, i, j, k will be elements of the carrier of I, D_3 will be a non-empty subset of the carrier of I, and F_2 will be a filter of I. The following propositions are true:

- (41) If $i \in F_2$ and $i \Rightarrow j \in F_2$, then $j \in F_2$.
- (42) If $j \in F_2$, then $i \Rightarrow j \in F_2$.

Let us consider L, D_1 , D_2 . The functor $D_1 \sqcap D_2$ yielding a non-empty subset of the carrier of L is defined as follows:

$$(Def.9) \quad D_1 \sqcap D_2 = \{ p \sqcap q : p \in D_1 \land q \in D_2 \}.$$

Next we state four propositions:

- $(43) \quad D_1 \sqcap D_2 = \{ p \sqcap q : p \in D_1 \land q \in D_2 \}.$
- (44) If $p \in D_1$ and $q \in D_2$, then $p \sqcap q \in D_1 \sqcap D_2$ and $q \sqcap p \in D_1 \sqcap D_2$.
- (45) If $x \in D_1 \sqcap D_2$, then there exist p, q such that $x = p \sqcap q$ and $p \in D_1$ and $q \in D_2$.
- $(46) \quad D_1 \sqcap D_2 = D_2 \sqcap D_1.$

Let L be a distributive lattice, and let F_3 , F_4 be filters of L. Then $F_3 \sqcap F_4$ is a filter of L.

Let L be a boolean lattice, and let F_3 , F_4 be filters of L. Then $F_3 \sqcap F_4$ is a filter of L.

One can prove the following propositions:

- (47) $[D_1 \cup D_2] = [[D_1] \cup D_2] \text{ and } [D_1 \cup D_2] = [D_1 \cup [D_2]].$
- (48) $[F \cup H] = \{r : \bigvee_{pq} [p \sqcap q \sqsubseteq r \land p \in F \land q \in H]\}.$
- (49) $F \subseteq F \sqcap H$ and $H \subseteq F \sqcap H$.
- $(50) \quad [F \cup H] = [F \sqcap H].$

In the sequel F_3 , F_4 are filters of I. The following four propositions are true:

- (51) $[F_3 \cup F_4] = F_3 \sqcap F_4.$
- (52) $[F_1 \cup H_1] = F_1 \sqcap H_1.$
- (53) If $j \in [D_3 \cup \{i\}]$, then $i \Rightarrow j \in [D_3]$.
- (54) If $i \Rightarrow j \in F_2$ and $j \Rightarrow k \in F_2$, then $i \Rightarrow k \in F_2$.

In the sequel a, b, c will denote elements of the carrier of B. One can prove the following propositions:

- $(55) \quad a \Rightarrow b = a^{c} \sqcup b.$
- (56) $a \sqsubseteq b$ if and only if $a \sqcap b^c = \bot_B$.
- (57) F_1 is ultrafilter if and only if $F_1 \neq$ the carrier of B and for every a holds $a \in F_1$ or $a^c \in F_1$.
- (58) $F_1 \neq [B]$ and F_1 is prime if and only if F_1 is ultrafilter.
- (59) If F_1 is ultrafilter, then for every a holds $a \in F_1$ if and only if $a^c \notin F_1$.

(60) If $a \neq b$, then there exists F_1 such that F_1 is ultrafilter but $a \in F_1$ and $b \notin F_1$ or $a \notin F_1$ and $b \in F_1$.

In the sequel o_1 , o_2 are binary operations on F. Let us consider L, F. The functor \mathbb{L}_F yielding a lattice is defined as follows:

- (Def.10) there exist o_1 , o_2 such that $o_1 = (\text{the join operation of } L) \upharpoonright [F, F]$ and $o_2 = (\text{the meet operation of } L) \upharpoonright [F, F]$ and $\mathbb{L}_F = \langle F, o_1, o_2 \rangle$.
 - In the sequel K is a lattice. Next we state a number of propositions:
 - (61) $K = \mathbb{L}_F$ if and only if there exist o_1 , o_2 such that $o_1 =$ (the join operation of L) $\upharpoonright [F, F]$ and $o_2 =$ (the meet operation of L) $\upharpoonright [F, F]$ and $K = \langle F, o_1, o_2 \rangle$.

$$(62) \quad \mathbb{L}_{[L]} = L.$$

- (63) The carrier of $\mathbb{L}_F = F$ and the join operation of $\mathbb{L}_F =$ (the join operation of L) $\upharpoonright [F, F]$ and the meet operation of $\mathbb{L}_F =$ (the meet operation of L) $\upharpoonright [F, F]$.
- (64) For all p, q and for all elements p', q' of the carrier of \mathbb{L}_F such that p = p' and q = q' holds $p \sqcup q = p' \sqcup q'$ and $p \sqcap q = p' \sqcap q'$.
- (65) For all p, q and for all elements p', q' of the carrier of \mathbb{L}_F such that p = p' and q = q' holds $p \sqsubseteq q$ if and only if $p' \sqsubseteq q'$.
- (66) If L is an upper bound lattice, then \mathbb{L}_F is an upper bound lattice.
- (67) If L is a modular lattice, then \mathbb{L}_F is a modular lattice.
- (68) If L is a distributive lattice, then \mathbb{L}_F is a distributive lattice.
- (69) If L is a implicative lattice, then \mathbb{L}_F is a implicative lattice.
- (70) $\mathbb{L}_{[p]}$ is a lower bound lattice.
- (71) $\perp_{\mathbb{L}[p]} = p.$
- (72) If L is an upper bound lattice, then $\top_{\mathbb{L}_{[p]}} = \top_L$.
- (73) If L is an upper bound lattice, then $\mathbb{L}_{[p]}$ is a bound lattice.
- (74) If L is a complemented lattice and L is a modular lattice, then $\mathbb{L}_{[p]}$ is a complemented lattice.
- (75) If L is a boolean lattice, then $\mathbb{L}_{[p]}$ is a boolean lattice.

Let us consider L, p, q. The functor $p \Leftrightarrow q$ yielding an element of the carrier of L is defined by:

 $(\text{Def.11}) \quad p \Leftrightarrow q = p \Rightarrow q \sqcap q \Rightarrow p.$

Next we state three propositions:

- $(76) \quad p \Leftrightarrow q = p \Rightarrow q \sqcap q \Rightarrow p.$
- $(77) \quad p \Leftrightarrow q = q \Leftrightarrow p.$
- (78) If $i \Leftrightarrow j \in F_2$ and $j \Leftrightarrow k \in F_2$, then $i \Leftrightarrow k \in F_2$.

Let us consider L, F. The functor \equiv_F yielding a binary relation is defined as follows:

(Def.12) field $\equiv_F \subseteq$ the carrier of L and for all p, q holds $\langle p, q \rangle \in \equiv_F$ if and only if $p \Leftrightarrow q \in F$.

In the sequel R will denote a binary relation. We now state several propositions:

- (79) $R \equiv_F$ if and only if field $R \subseteq$ the carrier of L and for all p, q holds $\langle p, q \rangle \in R$ if and only if $p \Leftrightarrow q \in F$.
- (80) \equiv_F is a binary relation on the carrier of L.
- (81) If L is a implicative lattice, then \equiv_F is reflexive in the carrier of L.
- (82) \equiv_F is symmetric in the carrier of L.
- (83) If L is a implicative lattice, then \equiv_F is transitive in the carrier of L.
- (84) If L is a implicative lattice, then \equiv_F is an equivalence relation of the carrier of L.
- (85) If L is a implicative lattice, then field \equiv_F = the carrier of L.
- Let us consider I, F_2 . Then \equiv_{F_2} is an equivalence relation of the carrier of I.

Let us consider B, F_1 . Then \equiv_{F_1} is an equivalence relation of the carrier of B.

Let us consider L, F, p, q. The predicate $p \equiv_F q$ is defined by:

 $(Def.13) \quad p \Leftrightarrow q \in F.$

Next we state several propositions:

- (86) $p \equiv_F q$ if and only if $p \Leftrightarrow q \in F$.
- (87) $p \equiv_F q$ if and only if $\langle p, q \rangle \in \equiv_F$.
- (88) $i \equiv_{F_2} i \text{ and } a \equiv_{F_1} a.$
- (89) If $p \equiv_F q$, then $q \equiv_F p$.
- (90) If $i \equiv_{F_2} j$ and $j \equiv_{F_2} k$, then $i \equiv_{F_2} k$ but if $a \equiv_{F_1} b$ and $b \equiv_{F_1} c$, then $a \equiv_{F_1} c$.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(3):441–444, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [4] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [5] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [6] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

[7] Stanisław Żukowski. Introduction to lattice theory. *Formalized Mathematics*, 1(1):215–222, 1990.

Received July 3, 1990