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Summary. Filters of a lattice, maximal filters (ultrafilters), op-
eration to create a filter generating by an element or by a nonempty set
of elements of the lattice are discussed. Besides, there are introduced
implicative lattices such that for every two elements there is an element
being pseudo-complement of them. Some facts concerning these concepts
are presented too, i.e. for any proper filter there exists an ultrafilter
consists it.

MML Identifier: FILTER 0.

The articles [3], [1], [4], [7], [5], [6], and [2] provide the notation and terminology
for this paper. We adopt the following convention: L is a lattice, p, p1, q, q1, r,
r1 are elements of the carrier of L, and x is arbitrary. Let E be a non-empty
set, and let p be an element of E. Then {p} is a non-empty subset of E.

Let E be a non-empty set, and let D1, D2 be non-empty subsets of E. Then
D1 ∪ D2 is a non-empty subset of E.

The following propositions are true:

(1) If p ⊑ q, then r ⊔ p ⊑ r ⊔ q and p ⊔ r ⊑ q ⊔ r and p ⊔ r ⊑ r ⊔ q and
r ⊔ p ⊑ q ⊔ r.

(2) If p ⊑ r, then p ⊓ q ⊑ r and q ⊓ p ⊑ r.

(3) If p ⊑ r, then p ⊑ q ⊔ r and p ⊑ r ⊔ q.

(4) If p ⊑ p1 and q ⊑ q1, then p ⊔ q ⊑ p1 ⊔ q1 and p ⊔ q ⊑ q1 ⊔ p1.

(5) If p ⊑ p1 and q ⊑ q1, then p ⊓ q ⊑ p1 ⊓ q1 and p ⊓ q ⊑ q1 ⊓ p1.

(6) If p ⊑ r and q ⊑ r, then p ⊔ q ⊑ r.

(7) If r ⊑ p and r ⊑ q, then r ⊑ p ⊓ q.

Let us consider L. A non-empty subset of the carrier of L is said to be a
filter of L if:
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(Def.1) p ∈ it and q ∈ it if and only if p ⊓ q ∈ it.

One can prove the following two propositions:

(8) For every non-empty subset D of the carrier of L holds D is a filter of
L if and only if for all p, q holds p ∈ D and q ∈ D if and only if p⊓ q ∈ D.

(9) For every non-empty subset D of the carrier of L holds D is a filter of
L if and only if for all p, q such that p ∈ D and q ∈ D holds p ⊓ q ∈ D
and for all p, q such that p ∈ D and p ⊑ q holds q ∈ D.

In the sequel H, F are filters of L. We now state several propositions:

(10) If p ∈ H, then p ⊔ q ∈ H and q ⊔ p ∈ H.

(11) There exists p such that p ∈ H.

(12) If L is an upper bound lattice, then ⊤L ∈ H.

(13) If L is an upper bound lattice, then {⊤L} is a filter of L.

(14) If {p} is a filter of L, then L is an upper bound lattice.

(15) The carrier of L is a filter of L.

Let us consider L. The functor [L] yields a filter of L and is defined by:

(Def.2) [L] = the carrier of L.

One can prove the following proposition

(16) [L] = the carrier of L.

Let us consider L, p. The functor [p] yields a filter of L and is defined as
follows:

(Def.3) [p] = {q : p ⊑ q}.

One can prove the following four propositions:

(17) [p] = {q : p ⊑ q}.

(18) q ∈ [p] if and only if p ⊑ q.

(19) p ∈ [p] and p ⊔ q ∈ [p] and q ⊔ p ∈ [p].

(20) If L is a lower bound lattice, then [L] = [⊥L].

Let us consider L, F . We say that F is ultrafilter if and only if:

(Def.4) F 6= the carrier of L and for every H such that F ⊆ H and H 6= the
carrier of L holds F = H.

One can prove the following four propositions:

(21) F is ultrafilter if and only if F 6= the carrier of L and for every H such
that F ⊆ H and H 6= the carrier of L holds F = H.

(22) If L is a lower bound lattice, then for every F such that F 6= the carrier
of L there exists H such that F ⊆ H and H is ultrafilter.

(23) If there exists r such that p ⊓ r 6= p, then [p] 6= the carrier of L.

(24) If L is a lower bound lattice and p 6= ⊥L, then there exists H such that
p ∈ H and H is ultrafilter.

In the sequel D is a non-empty subset of the carrier of L. Let us consider L,
D. The functor [D] yields a filter of L and is defined by:
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(Def.5) D ⊆ [D] and for every F such that D ⊆ F holds [D] ⊆ F .

One can prove the following two propositions:

(25) D ⊆ [D] and for every F such that D ⊆ F holds [D] ⊆ F .

(26) [F ] = F .

In the sequel D1, D2 will be non-empty subsets of the carrier of L. We now
state several propositions:

(27) If D1 ⊆ D2, then [D1] ⊆ [D2].

(28) [[D]] ⊆ [D].

(29) If p ∈ D, then [p] ⊆ [D].

(30) If D = {p}, then [D] = [p].

(31) If L is a lower bound lattice and ⊥L ∈ D, then [D] = [L] and [D] = the
carrier of L.

(32) If L is a lower bound lattice and ⊥L ∈ F , then F = [L] and F = the
carrier of L.

Let us consider L, F . We say that F is prime if and only if:

(Def.6) p ⊔ q ∈ F if and only if p ∈ F or q ∈ F .

One can prove the following two propositions:

(33) F is prime if and only if for all p, q holds p⊔ q ∈ F if and only if p ∈ F
or q ∈ F .

(34) If L is a boolean lattice, then for all p, q holds p ⊓ (pc ⊔ q) ⊑ q and for
every r such that p ⊓ r ⊑ q holds r ⊑ pc ⊔ q.

A lattice is called a implicative lattice if:

(Def.7) for every elements p, q of the carrier of it there exists an element r of
the carrier of it such that p⊓ r ⊑ q and for every element r1 of the carrier
of it such that p ⊓ r1 ⊑ q holds r1 ⊑ r.

One can prove the following proposition

(35) L is a implicative lattice if and only if for every p, q there exists r such
that p ⊓ r ⊑ q and for every r1 such that p ⊓ r1 ⊑ q holds r1 ⊑ r.

Let us consider L, p, q. Let us assume that L is a implicative lattice. The
functor p ⇒ q yields an element of the carrier of L and is defined as follows:

(Def.8) p ⊓ (p ⇒ q) ⊑ q and for every r such that p ⊓ r ⊑ q holds r ⊑ p ⇒ q.

The following proposition is true

(36) If L is a implicative lattice, then for all p, q, r holds r = p ⇒ q if and
only if p ⊓ r ⊑ q and for every r1 such that p ⊓ r1 ⊑ q holds r1 ⊑ r.

In the sequel I will denote a implicative lattice and i will denote an element
of the carrier of I. The following three propositions are true:

(37) I is an upper bound lattice.

(38) i ⇒ i = ⊤I .

(39) I is a distributive lattice.
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In the sequel B is a boolean lattice and F1, H1 are filters of B. Next we state
the proposition

(40) B is a implicative lattice.

We see that the implicative lattice is a distributive lattice.

For simplicity we follow the rules: I will be a implicative lattice, i, j, k will
be elements of the carrier of I, D3 will be a non-empty subset of the carrier of
I, and F2 will be a filter of I. The following propositions are true:

(41) If i ∈ F2 and i ⇒ j ∈ F2, then j ∈ F2.

(42) If j ∈ F2, then i ⇒ j ∈ F2.

Let us consider L, D1, D2. The functor D1⊓D2 yielding a non-empty subset
of the carrier of L is defined as follows:

(Def.9) D1 ⊓ D2 = {p ⊓ q : p ∈ D1 ∧ q ∈ D2}.

Next we state four propositions:

(43) D1 ⊓ D2 = {p ⊓ q : p ∈ D1 ∧ q ∈ D2}.

(44) If p ∈ D1 and q ∈ D2, then p ⊓ q ∈ D1 ⊓ D2 and q ⊓ p ∈ D1 ⊓ D2.

(45) If x ∈ D1 ⊓ D2, then there exist p, q such that x = p ⊓ q and p ∈ D1

and q ∈ D2.

(46) D1 ⊓ D2 = D2 ⊓ D1.

Let L be a distributive lattice, and let F3, F4 be filters of L. Then F3 ⊓ F4

is a filter of L.

Let L be a boolean lattice, and let F3, F4 be filters of L. Then F3 ⊓ F4 is a
filter of L.

One can prove the following propositions:

(47) [D1 ∪ D2] = [[D1] ∪ D2] and [D1 ∪ D2] = [D1 ∪ [D2]].

(48) [F ∪ H] = {r :
∨

pq[p ⊓ q ⊑ r ∧ p ∈ F ∧ q ∈ H]}.

(49) F ⊆ F ⊓ H and H ⊆ F ⊓ H.

(50) [F ∪ H] = [F ⊓ H].

In the sequel F3, F4 are filters of I. The following four propositions are true:

(51) [F3 ∪ F4] = F3 ⊓ F4.

(52) [F1 ∪ H1] = F1 ⊓ H1.

(53) If j ∈ [D3 ∪ {i}], then i ⇒ j ∈ [D3].

(54) If i ⇒ j ∈ F2 and j ⇒ k ∈ F2, then i ⇒ k ∈ F2.

In the sequel a, b, c will denote elements of the carrier of B. One can prove
the following propositions:

(55) a ⇒ b = ac ⊔ b.

(56) a ⊑ b if and only if a ⊓ bc = ⊥B.

(57) F1 is ultrafilter if and only if F1 6= the carrier of B and for every a holds
a ∈ F1 or ac ∈ F1.

(58) F1 6= [B] and F1 is prime if and only if F1 is ultrafilter.

(59) If F1 is ultrafilter, then for every a holds a ∈ F1 if and only if ac /∈ F1.
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(60) If a 6= b, then there exists F1 such that F1 is ultrafilter but a ∈ F1 and
b /∈ F1 or a /∈ F1 and b ∈ F1.

In the sequel o1, o2 are binary operations on F . Let us consider L, F . The
functor � F yielding a lattice is defined as follows:

(Def.10) there exist o1, o2 such that o1 = (the join operation of L)
�
[: F, F :] and

o2 = (the meet operation of L)
�
[: F, F :] and � F = 〈F, o1, o2〉.

In the sequel K is a lattice. Next we state a number of propositions:

(61) K = � F if and only if there exist o1, o2 such that o1 = (the join
operation of L)

�
[: F, F :] and o2 = (the meet operation of L)

�
[: F, F :]

and K = 〈F, o1, o2〉.

(62) � [L] = L.

(63) The carrier of � F = F and the join operation of � F = (the join opera-
tion of L)

�
[: F, F :] and the meet operation of � F = (the meet operation

of L)
�
[: F, F :].

(64) For all p, q and for all elements p′, q′ of the carrier of � F such that
p = p′ and q = q′ holds p ⊔ q = p′ ⊔ q′ and p ⊓ q = p′ ⊓ q′.

(65) For all p, q and for all elements p′, q′ of the carrier of � F such that
p = p′ and q = q′ holds p ⊑ q if and only if p′ ⊑ q′.

(66) If L is an upper bound lattice, then � F is an upper bound lattice.

(67) If L is a modular lattice, then � F is a modular lattice.

(68) If L is a distributive lattice, then � F is a distributive lattice.

(69) If L is a implicative lattice, then � F is a implicative lattice.

(70) � [p] is a lower bound lattice.

(71) ⊥ �
[p]

= p.

(72) If L is an upper bound lattice, then ⊤ �
[p]

= ⊤L.

(73) If L is an upper bound lattice, then � [p] is a bound lattice.

(74) If L is a complemented lattice and L is a modular lattice, then � [p] is a
complemented lattice.

(75) If L is a boolean lattice, then � [p] is a boolean lattice.

Let us consider L, p, q. The functor p ⇔ q yielding an element of the carrier
of L is defined by:

(Def.11) p ⇔ q = p ⇒ q ⊓ q ⇒ p.

Next we state three propositions:

(76) p ⇔ q = p ⇒ q ⊓ q ⇒ p.

(77) p ⇔ q = q ⇔ p.

(78) If i ⇔ j ∈ F2 and j ⇔ k ∈ F2, then i ⇔ k ∈ F2.

Let us consider L, F . The functor ≡F yielding a binary relation is defined
as follows:

(Def.12) field≡F ⊆ the carrier of L and for all p, q holds 〈〈p, q〉〉 ∈ ≡F if and only
if p ⇔ q ∈ F .
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In the sequel R will denote a binary relation. We now state several proposi-
tions:

(79) R = ≡F if and only if field R ⊆ the carrier of L and for all p, q holds
〈〈p, q〉〉 ∈ R if and only if p ⇔ q ∈ F .

(80) ≡F is a binary relation on the carrier of L.

(81) If L is a implicative lattice, then ≡F is reflexive in the carrier of L.

(82) ≡F is symmetric in the carrier of L.

(83) If L is a implicative lattice, then ≡F is transitive in the carrier of L.

(84) If L is a implicative lattice, then ≡F is an equivalence relation of the
carrier of L.

(85) If L is a implicative lattice, then field≡F = the carrier of L.

Let us consider I, F2. Then ≡F2 is an equivalence relation of the carrier of
I.

Let us consider B, F1. Then ≡F1 is an equivalence relation of the carrier of
B.

Let us consider L, F , p, q. The predicate p ≡F q is defined by:

(Def.13) p ⇔ q ∈ F .

Next we state several propositions:

(86) p ≡F q if and only if p ⇔ q ∈ F .

(87) p ≡F q if and only if 〈〈p, q〉〉 ∈ ≡F .

(88) i ≡F2 i and a ≡F1 a.

(89) If p ≡F q, then q ≡F p.

(90) If i ≡F2 j and j ≡F2 k, then i ≡F2 k but if a ≡F1 b and b ≡F1 c, then
a ≡F1 c.

References
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