Projective Spaces - part VI

Wojciech Leończuk ${ }^{1}$
Warsaw University
Białystok

Krzysztof Prażmowski ${ }^{2}$
Warsaw University
Białystok

Abstract

Summary. The article is a continuation of [4]. In the classes of projective spaces, defined in terms of collinearity, introduced in the article [3], we distinguish the subclasses of Pappian projective structures. As examples of these types of objects we consider analytical projective spaces defined over suitable real linear spaces.

MML Identifier: ANPROJ_7.

The terminology and notation used in this paper have been introduced in the following articles: [1], [5], [2], [3], and [4]. We adopt the following rules: a, b, c, d will be real numbers, V will be a non-trivial real linear space, and u, v, w, y, u_{1} will be vectors of V. An at least 3 dimensional projective space defined in terms of collinearity is said to be a Pappian at least 3 dimensional projective space defined in terms of collinearity if:
(Def.1) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it .
Suppose that
(i) $o \neq p_{2}$,
(ii) $o \neq p_{3}$,
(iii) $p_{2} \neq p_{3}$,
(iv) $p_{1} \neq p_{2}$,
(v) $p_{1} \neq p_{3}$,
(vi) $o \neq q_{2}$,
(vii) $o \neq q_{3}$,
(viii) $q_{2} \neq q_{3}$,
(ix) $q_{1} \neq q_{2}$,
(x) $q_{1} \neq q_{3}$,
(xi) o, p_{1} and q_{1} are not collinear,
(xii) o, p_{1} and p_{2} are collinear,

[^0](xiii) o, p_{1} and p_{3} are collinear,
(xiv) o, q_{1} and q_{2} are collinear,
(xv) o, q_{1} and q_{3} are collinear,
(xvi) $\quad p_{1}, q_{2}$ and r_{3} are collinear,
(xvii) q_{1}, p_{2} and r_{3} are collinear,
(xviii) p_{1}, q_{3} and r_{2} are collinear,
(xix) $\quad p_{3}, q_{1}$ and r_{2} are collinear,
(xx) p_{2}, q_{3} and r_{1} are collinear,
(xxi) $\quad p_{3}, q_{2}$ and r_{1} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
We now state four propositions:
(1) Let C_{1} be an at least 3 dimensional projective space defined in terms of collinearity. Then C_{1} is a Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_{1}, p_{2}, p_{3}, $q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(2) If there exist u, v, w, u_{1} such that for all a, b, c, d such that $((a \cdot u+b$. $v)+c \cdot w)+d \cdot u_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$, then the projective space over V is a Pappian at least 3 dimensional projective space defined in terms of collinearity.
(3) Let C_{1} be a collinearity structure. Then C_{1} is a Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vi) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(4) For every C_{1} being a collinearity structure holds C_{1} is a Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if C_{1} is a Pappian projective space defined in terms of collinearity and there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.
A Fanoian at least 3 dimensional projective space defined in terms of collinearity is called a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if:
(Def.2) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it . Suppose that
(i) $o \neq p_{2}$,
(ii) $o \neq p_{3}$,
(iii) $p_{2} \neq p_{3}$,
(iv) $p_{1} \neq p_{2}$,
(v) $p_{1} \neq p_{3}$,
(vi) $\quad o \neq q_{2}$,
(vii) $\quad o \neq q_{3}$,
(viii) $q_{2} \neq q_{3}$,
(ix) $q_{1} \neq q_{2}$,
(x) $q_{1} \neq q_{3}$,
(xi) o, p_{1} and q_{1} are not collinear,
(xii) o, p_{1} and p_{2} are collinear,
(xiii) o, p_{1} and p_{3} are collinear,
(xiv) o, q_{1} and q_{2} are collinear,
(xv) o, q_{1} and q_{3} are collinear,
(xvi) $\quad p_{1}, q_{2}$ and r_{3} are collinear,
(xvii) q_{1}, p_{2} and r_{3} are collinear,
(xviii) $\quad p_{1}, q_{3}$ and r_{2} are collinear,
(xix) p_{3}, q_{1} and r_{2} are collinear,
(xx) $\quad p_{2}, q_{3}$ and r_{1} are collinear,
(xxi) $\quad p_{3}, q_{2}$ and r_{1} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
One can prove the following propositions:
(5) Let C_{1} be a Fanoian at least 3 dimensional projective space defined in terms of collinearity. Then C_{1} is a Fano-Pappian at least 3 dimensional
projective space defined in terms of collinearity if and only if for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(6) If there exist u, v, w, u_{1} such that for all a, b, c, d such that ($(a \cdot u+$ $b \cdot v)+c \cdot w)+d \cdot u_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$, then the projective space over V is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity.
(7) Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear,
(vi) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vii) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(8) Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) $\quad C_{1}$ is a Pappian at least 3 dimensional projective space defined in terms of collinearity,
(ii) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
(9) For every C_{1} being a collinearity structure holds C_{1} is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if C_{1} is a Fano-Pappian projective space defined in terms of collinearity and there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.
A 3 dimensional projective space defined in terms of collinearity is called a Pappian 3 dimensional projective space defined in terms of collinearity if:
(Def.3) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it . Suppose that
(i) $o \neq p_{2}$,
(ii) $o \neq p_{3}$,
(iii) $p_{2} \neq p_{3}$,
(iv) $p_{1} \neq p_{2}$,
(v) $\quad p_{1} \neq p_{3}$,
(vi) $\quad o \neq q_{2}$,
(vii) $\quad o \neq q_{3}$,
(viii) $q_{2} \neq q_{3}$,
(ix) $\quad q_{1} \neq q_{2}$,
(x) $\quad q_{1} \neq q_{3}$,
(xi) o, p_{1} and q_{1} are not collinear,
(xii) o, p_{1} and p_{2} are collinear,
(xiii) $\quad o, p_{1}$ and p_{3} are collinear,
(xiv) o, q_{1} and q_{2} are collinear,
(xv) o, q_{1} and q_{3} are collinear,
(xvi) $\quad p_{1}, q_{2}$ and r_{3} are collinear,
(xvii) $\quad q_{1}, p_{2}$ and r_{3} are collinear,
(xviii) $\quad p_{1}, q_{3}$ and r_{2} are collinear,
(xix) $\quad p_{3}, q_{1}$ and r_{2} are collinear,
(xx) $\quad p_{2}, q_{3}$ and r_{1} are collinear,
(xxi) $\quad p_{3}, q_{2}$ and r_{1} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
The following four propositions are true:
(10)

Let C_{1} be a 3 dimensional projective space defined in terms of collinearity. Then C_{1} is a Pappian 3 dimensional projective space defined in terms of collinearity if and only if for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}$, r_{2}, r_{3} of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.

(11) Suppose that

(i) there exist u, v, w, u_{1} such that for all a, b, c, d such that $((a \cdot u+b$. $v)+c \cdot w)+d \cdot u_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$ and for every y there exist a, b, c, d such that $y=((a \cdot u+b \cdot v)+c \cdot w)+d \cdot u_{1}$. Then the projective space over V is a Pappian 3 dimensional projective space defined in terms of collinearity.
(12) Let C_{1} be a collinearity structure. Then C_{1} is a Pappian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vi) for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear,
(vii) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear
and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(13) For every C_{1} being a collinearity structure holds C_{1} is a Pappian 3 dimensional projective space defined in terms of collinearity if and only if C_{1} is a Pappian at least 3 dimensional projective space defined in terms of collinearity and for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.
A Fanoian 3 dimensional projective space defined in terms of collinearity is called a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if:
(Def.4) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it. Suppose that
(i) $o \neq p_{2}$,
(ii) $o \neq p_{3}$,
(iii) $p_{2} \neq p_{3}$,
(iv) $p_{1} \neq p_{2}$,
(v) $p_{1} \neq p_{3}$,
(vi) $o \neq q_{2}$,
(vii) $o \neq q_{3}$,
(viii) $q_{2} \neq q_{3}$,
(ix) $q_{1} \neq q_{2}$,
(x) $q_{1} \neq q_{3}$,
(xi) o, p_{1} and q_{1} are not collinear,
(xii) o, p_{1} and p_{2} are collinear,
(xiii) o, p_{1} and p_{3} are collinear,
(xiv) o, q_{1} and q_{2} are collinear,
(xv) $\quad o, q_{1}$ and q_{3} are collinear,
(xvi) p_{1}, q_{2} and r_{3} are collinear,
(xvii) q_{1}, p_{2} and r_{3} are collinear,
(xviii) $\quad p_{1}, q_{3}$ and r_{2} are collinear,
(xix) $\quad p_{3}, q_{1}$ and r_{2} are collinear,
(xx) $\quad p_{2}, q_{3}$ and r_{1} are collinear,
(xxi) $\quad p_{3}, q_{2}$ and r_{1} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
The following propositions are true:
(14) Let C_{1} be a Fanoian 3 dimensional projective space defined in terms of collinearity. Then C_{1} is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_{1}, p_{2}, p_{3}, $q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are
collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(15) Suppose that
(i) there exist u, v, w, u_{1} such that for all a, b, c, d such that $((a \cdot u+b$. $v)+c \cdot w)+d \cdot u_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$ and for every y there exist a, b, c, d such that $y=((a \cdot u+b \cdot v)+c \cdot w)+d \cdot u_{1}$. Then the projective space over V is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity.
(16) Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear,
(vi) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vii) for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear,
(viii) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear holds r_{1}, r_{2} and r_{3} are collinear.

(17)

Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if the
following conditions are satisfied:
(i) $\quad C_{1}$ is a Pappian 3 dimensional projective space defined in terms of collinearity,
(ii) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
(18) For every C_{1} being a collinearity structure holds C_{1} is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if C_{1} is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity and for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[3] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part II. Formalized Mathematics, 1(5):901-907, 1990.
[4] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part V. Formalized Mathematics, 1(5):929-938, 1990.
[5] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.
 ${ }^{2}$ Supported by RPBP.III-24.C2.

