Projective Spaces - part VI

Wojciech Leończuk¹ Warsaw University Białystok Krzysztof Prażmowski² Warsaw University Białystok

Summary. The article is a continuation of [4]. In the classes of projective spaces, defined in terms of collinearity, introduced in the article [3], we distinguish the subclasses of Pappian projective structures. As examples of these types of objects we consider analytical projective spaces defined over suitable real linear spaces.

MML Identifier: ANPROJ_7.

The terminology and notation used in this paper have been introduced in the following articles: [1], [5], [2], [3], and [4]. We adopt the following rules: a, b, c, d will be real numbers, V will be a non-trivial real linear space, and u, v, w, y, u_1 will be vectors of V. An at least 3 dimensional projective space defined in terms of collinearity is said to be a Pappian at least 3 dimensional projective space defined in terms of collinearity if:

- (Def.1) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq p_2$,
 - (ii) $o \neq p_3$,
 - (iii) $p_2 \neq p_3$,
 - (iv) $p_1 \neq p_2$,
 - (v) $p_1 \neq p_3$,
 - (vi) $o \neq q_2$,
 - (vii) $o \neq q_3$,
 - (viii) $q_2 \neq q_3$,
 - (ix) $q_1 \neq q_2$,
 - $(x) q_1 \neq q_3,$
 - (xi) o, p_1 and q_1 are not collinear,
 - (xii) o, p_1 and p_2 are collinear,

¹Supported by RPBP.III-24.C6.

²Supported by RPBP.III-24.C2.

- (xiii) o, p_1 and p_3 are collinear,
- o, q_1 and q_2 are collinear, (xiv)
- o, q_1 and q_3 are collinear, (xv)
- (xvi) p_1 , q_2 and r_3 are collinear,
- (xvii) q_1, p_2 and r_3 are collinear,
- (xviii) p_1 , q_3 and r_2 are collinear,
- (xix) p_3 , q_1 and r_2 are collinear,
- (xx) p_2 , q_3 and r_1 are collinear,
- p_3 , q_2 and r_1 are collinear. (xxi)

Then r_1 , r_2 and r_3 are collinear.

We now state four propositions:

- Let C_1 be an at least 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_1, p_2, p_3 $q_1, q_2, q_3, r_1, r_2, r_3$ of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $p_2 \neq q_3$ and $p_3 \neq q_4$ and $p_4 \neq p_5$ and $p_4 \neq p_5$ and $p_4 \neq p_5$ and $p_5 \neq p_6$ and $p_7 \neq p_7$ and $p_8 \neq p_8$ and $p_8 \neq p_9$ $q_1 \neq q_2$ and $q_1 \neq q_3$ and q_1 are not collinear and q_1 are not collinear and q_1 and q_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and q_1 , p_2 and r_3 are collinear and p_1 , q_3 and r_2 are collinear and p_3 , q_1 and r_2 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.
- If there exist u, v, w, u_1 such that for all a, b, c, d such that $((a \cdot u + b \cdot u))$ $(v) + c \cdot w) + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0, then the projective space over V is a Pappian at least 3 dimensional projective space defined in terms of collinearity.
- Let C_1 be a collinearity structure. Then C_1 is a Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
- for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
- for all elements p, q, r, r_1, r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
- for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
- for all elements p, p_1, p_2, r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
- there exist elements p, p_1, q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,

- (vi) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and $q_1 \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_3$ and $q_2 \neq q_3$ and $q_3 \neq q_4$ and $q_4 \neq q_5$ and $q_5 \neq q_6$ and $q_6 \neq q_6$ and $q_7 \neq q_8$ and $q_8 \neq q_8$ q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and q_1 , p_2 and r_3 are collinear and p_1 , q_3 and r_2 are collinear and p_3 , q_1 and r_2 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.
- For every C_1 being a collinearity structure holds C_1 is a Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Pappian projective space defined in terms of collinearity and there exist elements p, p_1, q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear.

A Fanoian at least 3 dimensional projective space defined in terms of collinearity is called a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if:

- (Def.2)Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it. Suppose that
 - (i) $o \neq p_2$
 - (ii) $o \neq p_3$
 - (iii) $p_2 \neq p_3$
 - (iv) $p_1 \neq p_2$
 - (\mathbf{v}) $p_1 \neq p_3$
 - (vi) $o \neq q_2$
 - (vii) $o \neq q_3$
 - (viii) $q_2 \neq q_3,$
 - $q_1 \neq q_2$ (ix)

 - (x) $q_1 \neq q_3$
 - o, p_1 and q_1 are not collinear, (xi)
 - o, p_1 and p_2 are collinear, (xii)
 - (xiii) o, p_1 and p_3 are collinear,
 - o, q_1 and q_2 are collinear, (xiv)
 - (xv) o, q_1 and q_3 are collinear,
 - p_1 , q_2 and r_3 are collinear, (xvi)
 - (xvii) q_1, p_2 and r_3 are collinear,
 - p_1 , q_3 and r_2 are collinear, (xviii)
 - (xix) p_3 , q_1 and r_2 are collinear,
 - p_2 , q_3 and r_1 are collinear, (xx)
 - p_3 , q_2 and r_1 are collinear. (xxi) Then r_1 , r_2 and r_3 are collinear.

One can prove the following propositions:

Let C_1 be a Fanoian at least 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Fano-Pappian at least 3 dimensional

- projective space defined in terms of collinearity if and only if for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$
- (6) If there exist u, v, w, u_1 such that for all a, b, c, d such that $((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0, then the projective space over V is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity.
- (7) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (ii) for all elements p, q, r, r_1 , r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
- (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
- (iv) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
- (v) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , p_2 and p_3 are collinear or p_3 , p_4 and p_5 are collinear or p_4 , p_5 and p_7 are collinear or p_7 , p_7 and p_8 are collinear,
- (vi) there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,
- (vii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$ are collinear and $o \neq q_3$ an

- (8) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
- (i) C_1 is a Pappian at least 3 dimensional projective space defined in terms of collinearity,
- (ii) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , p_2 and p_3 are collinear or p_3 , p_4 and p_4 are collinear or p_4 , p_5 and p_7 are collinear or p_7 , p_7 and p_8 are collinear.
- (9) For every C_1 being a collinearity structure holds C_1 is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Fano-Pappian projective space defined in terms of collinearity and there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear.
- A 3 dimensional projective space defined in terms of collinearity is called a Pappian 3 dimensional projective space defined in terms of collinearity if:
- (Def.3) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq p_2$,
 - (ii) $o \neq p_3$,
 - (iii) $p_2 \neq p_3$,
 - (iv) $p_1 \neq p_2$,
 - (v) $p_1 \neq p_3$,
 - (vi) $o \neq q_2$,
 - (vii) $o \neq q_3$,
 - (viii) $q_2 \neq q_3$,
 - (ix) $q_1 \neq q_2$,
 - $(x) q_1 \neq q_3,$
 - (xi) o, p_1 and q_1 are not collinear,
 - (xii) o, p_1 and p_2 are collinear,
 - (xiii) o, p_1 and p_3 are collinear,
 - (xiv) o, q_1 and q_2 are collinear,
 - (xv) o, q_1 and q_3 are collinear,
 - (xvi) p_1 , q_2 and r_3 are collinear,
 - (xvii) q_1, p_2 and r_3 are collinear,
 - (xviii) p_1 , q_3 and r_2 are collinear,
 - (xix) p_3 , q_1 and r_2 are collinear,
 - (xx) p_2 , q_3 and r_1 are collinear,
 - (xxi) p_3 , q_2 and r_1 are collinear.

Then r_1 , r_2 and r_3 are collinear.

The following four propositions are true:

- (10) Let C_1 be a 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Pappian 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_4$ are collinear and $o \neq q_4$ and $o \neq q_4$ are collinear and $o \neq q_4$ and $o \neq q_4$ are collinear and $o \neq q_4$ and $o \neq q_4$ and $o \neq q_4$ are collinear and $o \neq q_4$ and $o \neq q_4$ and $o \neq q_4$ are collinear and $o \neq q_4$ are collinear and $o \neq q_4$ are collinear and $o \neq q_4$ an
- (11) Suppose that
 - (i) there exist u, v, w, u_1 such that for all a, b, c, d such that $((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0 and for every y there exist a, b, c, d such that $y = ((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1$. Then the projective space over V is a Pappian 3 dimensional projective space defined in terms of collinearity.
- (12) Let C_1 be a collinearity structure. Then C_1 is a Pappian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (ii) for all elements p, q, r, r_1 , r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (iv) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
 - (v) there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,
 - (vi) for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear,
 - (vii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ are collinear and $o \neq q_3$ an

and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.

(13) For every C_1 being a collinearity structure holds C_1 is a Pappian 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Pappian at least 3 dimensional projective space defined in terms of collinearity and for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear.

A Fanoian 3 dimensional projective space defined in terms of collinearity is called a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if:

- (Def.4) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq p_2$,
 - (ii) $o \neq p_3$,
 - (iii) $p_2 \neq p_3$,
 - (iv) $p_1 \neq p_2$,
 - (v) $p_1 \neq p_3$,
 - (vi) $o \neq q_2$,
 - (vii) $o \neq q_3$,
 - (viii) $q_2 \neq q_3$,
 - (ix) $q_1 \neq q_2$,
 - $(x) q_1 \neq q_3,$
 - (xi) o, p_1 and q_1 are not collinear,
 - (xii) o, p_1 and p_2 are collinear,
 - (xiii) $o, p_1 \text{ and } p_3 \text{ are collinear},$
 - (xiv) o, q_1 and q_2 are collinear,
 - (xv) o, q_1 and q_3 are collinear,
 - (xvi) p_1 , q_2 and r_3 are collinear,
 - (xvii) q_1, p_2 and r_3 are collinear,
 - (xviii) p_1 , q_3 and r_2 are collinear,
 - (xix) p_3 , q_1 and r_2 are collinear,
 - (xx) p_2 , q_3 and r_1 are collinear,
 - (xxi) p_3 , q_2 and r_1 are collinear. Then r_1 , r_2 and r_3 are collinear.

The following propositions are true:

(14) Let C_1 be a Fanoian 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $p_2 \neq q_3$ and $p_3 \neq q_3$ are collinear and $p_3 \neq q_3$ and $p_3 \neq q_3$ are collinear and $p_3 \neq q_3$ are collinear and $p_3 \neq q_3$ and

collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.

- (15) Suppose that
 - (i) there exist u, v, w, u_1 such that for all a, b, c, d such that $((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0 and for every y there exist a, b, c, d such that $y = ((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1$. Then the projective space over V is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity.
- (16) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (ii) for all elements p, q, r, r_1 , r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (iv) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
 - (v) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , p_2 and p_3 are collinear or p_3 , p_4 and p_4 are collinear or p_4 , p_5 and p_7 are collinear or p_7 , p_7 and p_8 are collinear,
 - (vi) there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,
- (vii) for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear,
- (viii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_3$ are collinear and $o \neq q_3$ are collinear and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_3$ and $o \neq q_3$ are collinear and $o \neq q_3$ a
- (17) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if the

following conditions are satisfied:

- (i) C_1 is a Pappian 3 dimensional projective space defined in terms of collinearity,
- (ii) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , p_2 and p_3 are collinear or p_3 , p_4 and p_4 are collinear or p_4 , p_5 and p_7 are collinear or p_7 , p_7 and p_8 are collinear.
- (18) For every C_1 being a collinearity structure holds C_1 is a Fano-Pappian 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Fano-Pappian at least 3 dimensional projective space defined in terms of collinearity and for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear.

References

- [1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.
- [3] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part II. Formalized Mathematics, 1(5):901–907, 1990.
- [4] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part V. Formalized Mathematics, 1(5):929–938, 1990.
- [5] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657–659, 1990.

Received August 10, 1990