Projective Spaces - part V

Wojciech Leończuk¹ Warsaw University Białystok Krzysztof Prażmowski² Warsaw University Białystok

Summary. In the classes of projective spaces, defined in terms of collinearity, introduced in the article [3], we distinguish the subclasses of Pappian projective structures. As examples of these objects we consider analytical projective spaces defined over suitable real linear spaces; analytical counterpart of the Pappus Axiom is proved without any assumption on the dimension of the underlying linear space.

MML Identifier: ANPROJ_6.

The terminology and notation used in this paper are introduced in the following papers: [1], [5], [2], [3], and [4]. We follow a convention: V will denote a real linear space, $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ will denote vectors of V, and a, b, c will denote real numbers. Let us consider $V, o, p_1, p_2, p_3, q_1, q_2, q_3$. We say that $o, p_1, p_2, p_3, q_1, q_2$, and q_3 lie on an angle if and only if:

(Def.1) o, p_1 and q_1 are not lineary dependent and o, p_1 and p_2 are lineary dependent and o, p_1 and p_3 are lineary dependent and o, q_1 and q_2 are lineary dependent and o, q_1 and q_3 are lineary dependent.

One can prove the following proposition

(1) $o, p_1, p_2, p_3, q_1, q_2$, and q_3 lie on an angle if and only if o, p_1 and q_1 are not lineary dependent and o, p_1 and p_2 are lineary dependent and o, p_1 and p_3 are lineary dependent and o, q_1 and q_2 are lineary dependent and o, q_1 and q_3 are lineary dependent.

Let us consider V, o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 . We say that o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 are half-mutually not proportional if and only if:

(Def.2) o and p_2 are not proportional and o and p_3 are not proportional and oand q_2 are not proportional and o and q_3 are not proportional and p_1 and p_2 are not proportional and p_1 and p_3 are not proportional and q_1 and

929

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C6.

²Supported by RPBP.III-24.C2.

 q_2 are not proportional and q_1 and q_3 are not proportional and p_2 and p_3 are not proportional and q_2 and q_3 are not proportional.

Next we state two propositions:

- (2) $o, p_1, p_2, p_3, q_1, q_2, q_3$ are half-mutually not proportional if and only if the following conditions are satisfied:
- (i) o and p_2 are not proportional,
- (ii) o and p_3 are not proportional,
- (iii) o and q_2 are not proportional,
- (iv) o and q_3 are not proportional,
- (v) p_1 and p_2 are not proportional,
- (vi) p_1 and p_3 are not proportional,
- (vii) q_1 and q_2 are not proportional,
- (viii) q_1 and q_3 are not proportional,
- (ix) p_2 and p_3 are not proportional,
- (x) q_2 and q_3 are not proportional.
- (3) Suppose that
- (i) o is a proper vector,
- (ii) p_1, p_2 and p_3 are proper vectors,
- (iii) q_1, q_2 and q_3 are proper vectors,
- (iv) r_1, r_2 and r_3 are proper vectors,
- (v) $o, p_1, p_2, p_3, q_1, q_2$, and q_3 lie on an angle,
- (vi) $o, p_1, p_2, p_3, q_1, q_2, q_3$ are half-mutually not proportional,
- (vii) p_1, q_2 and r_3 are lineary dependent,
- (viii) q_1, p_2 and r_3 are lineary dependent,
- (ix) p_1, q_3 and r_2 are lineary dependent,
- (x) p_3 , q_1 and r_2 are lineary dependent,
- (xi) p_2, q_3 and r_1 are lineary dependent,
- (xii) p_3 , q_2 and r_1 are lineary dependent.

Then r_1 , r_2 and r_3 are lineary dependent.

We adopt the following convention: V will denote a non-trivial real linear space and o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 will denote elements of the points of the projective space over V. The following proposition is true

- (4) Suppose that
- (i) $o \neq p_2$,
- (ii) $o \neq p_3$,
- (iii) $p_2 \neq p_3$,
- (iv) $p_1 \neq p_2$,
- (v) $p_1 \neq p_3$,
- (vi) $o \neq q_2$,
- (vii) $o \neq q_3$,
- (viii) $q_2 \neq q_3$,
- (ix) $q_1 \neq q_2$,
- (11) q_1 / q_2
- (x) $q_1 \neq q_3$,
- (xi) o, p_1 and q_1 are not collinear,

- (xii) $o, p_1 \text{ and } p_2 \text{ are collinear},$
- (xiii) $o, p_1 \text{ and } p_3 \text{ are collinear},$
- (xiv) $o, q_1 \text{ and } q_2 \text{ are collinear},$
- (xv) $o, q_1 \text{ and } q_3 \text{ are collinear},$
- (xvi) p_1, q_2 and r_3 are collinear,
- (xvii) q_1, p_2 and r_3 are collinear,
- (xviii) p_1, q_3 and r_2 are collinear,
- (xix) p_3, q_1 and r_2 are collinear,
- $(\mathbf{x}\mathbf{x})$ p_2, q_3 and r_1 are collinear,
- (xxi) p_3 , q_2 and r_1 are collinear. Then r_1 , r_2 and r_3 are collinear.

In the sequel u, v, w, y are vectors of V. A projective space defined in terms of collinearity is said to be a Pappian projective space defined in terms of collinearity if:

(Def.3) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that

- (i) $o \neq p_2$,
- (ii) $o \neq p_3$,
- (iii) $p_2 \neq p_3$,
- (iv) $p_1 \neq p_2$,
- (v) $p_1 \neq p_3$,
- (vi) $o \neq q_2$,
- (vii) $o \neq q_3$,
- (viii) $q_2 \neq q_3$,
- (ix) $q_1 \neq q_2$,
- (x) $q_1 \neq q_3$,
- (xi) o, p_1 and q_1 are not collinear,
- (xii) $o, p_1 \text{ and } p_2 \text{ are collinear},$
- (xiii) $o, p_1 \text{ and } p_3 \text{ are collinear},$
- (xiv) o, q_1 and q_2 are collinear,
- (xv) o, q_1 and q_3 are collinear,
- (xvi) p_1, q_2 and r_3 are collinear,
- (xvii) q_1, p_2 and r_3 are collinear,
- (xviii) p_1, q_3 and r_2 are collinear,
- (xix) p_3 , q_1 and r_2 are collinear,
- (xx) p_2, q_3 and r_1 are collinear,
- (xxi) p_3 , q_2 and r_1 are collinear.

Then r_1 , r_2 and r_3 are collinear.

We now state three propositions:

(5) Let C_1 be a projective space defined in terms of collinearity. Then C_1 is a Pappian projective space defined in terms of collinearity if and only if for all elements $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 are not

collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and q_1 , p_2 and r_3 are collinear and p_1 , q_3 and r_2 are collinear and p_3 , q_1 and r_2 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.

- (6) If there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0, then the projective space over V is a Pappian projective space defined in terms of collinearity.
- (7) Let C_1 be a collinearity structure. Then C_1 is a Pappian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1, r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
- (ii) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
- (iii) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
- (iv) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
- (v) there exist elements p, q, r of the points of C_1 such that p, q and r are not collinear,
- (vi) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 and q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1, q_2 and r_3 are collinear and q_1, p_2 and r_3 are collinear and p_1, q_3 and r_2 are collinear and p_3, q_1 and r_2 are collinear and p_2, q_3 and r_1 are collinear and p_3, q_2 and r_1 are collinear holds r_1, r_2 and r_3 are collinear.

A Fanoian projective space defined in terms of collinearity is said to be a Fano-Pappian projective space defined in terms of collinearity if:

- (Def.4) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq p_2$,
 - (ii) $o \neq p_3$,
 - (iii) $p_2 \neq p_3$,
 - (iv) $p_1 \neq p_2$,
 - (v) $p_1 \neq p_3$,
 - (vi) $o \neq q_2$,
 - (vii) $o \neq q_3$,
 - (viii) $q_2 \neq q_3$,

- (ix) $q_1 \neq q_2$,
- (x) $q_1 \neq q_3$,
- (xi) o, p_1 and q_1 are not collinear,
- (xii) $o, p_1 \text{ and } p_2 \text{ are collinear},$
- (xiii) $o, p_1 \text{ and } p_3 \text{ are collinear},$
- (xiv) $o, q_1 \text{ and } q_2 \text{ are collinear},$
- (xv) $o, q_1 \text{ and } q_3 \text{ are collinear},$
- (xvi) p_1, q_2 and r_3 are collinear,
- (xvii) q_1, p_2 and r_3 are collinear,
- (xviii) p_1, q_3 and r_2 are collinear,
- (xix) p_3 , q_1 and r_2 are collinear,
- $(\mathbf{x}\mathbf{x})$ $p_2, q_3 \text{ and } r_1 \text{ are collinear,}$
- (xxi) p_3, q_2 and r_1 are collinear.

Then r_1 , r_2 and r_3 are collinear.

We now state four propositions:

- (8) Let C_1 be a Fanoian projective space defined in terms of collinearity. Then C_1 is a Fano-Pappian projective space defined in terms of collinearity if and only if for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 and q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and q_1 , p_2 and r_3 are collinear and p_1 , q_3 and r_2 are collinear and p_3 , q_1 and r_2 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.
- (9) If there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0, then the projective space over V is a Fano-Pappian projective space defined in terms of collinearity.
- (10) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1, r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (ii) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (iii) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
 - (iv) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (v) there exist elements p, q, r of the points of C_1 such that p, q and r are not collinear,

- (vi) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear,
- (vii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 and q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and q_1 , p_2 and r_3 are collinear and p_1 , q_3 and r_2 are collinear and p_3 , q_1 and r_2 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.
- (11) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) C_1 is a Pappian projective space defined in terms of collinearity,
 - (ii) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.

A projective plane defined in terms of collinearity is called a Pappian projective plane defined in terms of collinearity if:

- (Def.5) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq p_2$,
 - (ii) $o \neq p_3$,
 - (iii) $p_2 \neq p_3$,
 - (iv) $p_1 \neq p_2$,
 - (v) $p_1 \neq p_3$,
 - (vi) $o \neq q_2$,
 - (vii) $o \neq q_3$,
 - (viii) $q_2 \neq q_3$,
 - $\begin{array}{ccc} (\operatorname{vin}) & q_2 \neq q_3, \\ (\operatorname{ix}) & q_1 \neq q_2, \end{array}$
 - (ix) $q_1 \neq q_2$, (x) $q_1 \neq q_3$,
 - (xi) o, p_1 and q_1 are not collinear,
 - (xii) o, p_1 and p_2 are collinear,
 - (xiii) o, p_1 and p_3 are collinear,
 - (xiv) o, q_1 and q_2 are collinear,
 - (xv) o, q_1 and q_3 are collinear,
 - (xvi) p_1, q_2 and r_3 are collinear,

- (xvii) q_1, p_2 and r_3 are collinear,
- (xviii) p_1, q_3 and r_2 are collinear,
- (xix) p_3 , q_1 and r_2 are collinear,
- (xx) p_2 , q_3 and r_1 are collinear,
- (xxi) p_3 , q_2 and r_1 are collinear.

Then r_1 , r_2 and r_3 are collinear.

We now state four propositions:

- (12) Let C_1 be a projective plane defined in terms of collinearity. Then C_1 is a Pappian projective plane defined in terms of collinearity if and only if for all elements $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 and q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_2 are collinear and o, q_1 and q_3 are collinear and p_1, q_2 and r_3 are collinear and p_1, q_2 and r_1 are collinear and p_3, q_1 and r_2 are collinear and p_2, q_3 and r_1 are collinear and p_3, q_2 and r_1, r_2 and r_3 are collinear and p_3, q_2 and r_1, r_2 and r_3 are collinear and p_3, q_2 and r_1, r_2 and r_3 are collinear and p_3, q_2 and r_1 are collinear and r_1, r_2 and r_3 are collinear.
- (13) Suppose that

(i) there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.

Then the projective space over V is a Pappian projective plane defined in terms of collinearity.

- (14) Let C_1 be a collinearity structure. Then C_1 is a Pappian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1, r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (ii) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (iv) there exist elements p, q, r of the points of C_1 such that p, q and r are not collinear,
 - (v) for every elements p, p_1 , q, q_1 of the points of C_1 there exists an element r of the points of C_1 such that p, p_1 and r are collinear and q, q_1 and r are collinear,
 - (vi) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 and q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and q_1 , p_2 and r_3 are collinear and p_1 , q_3 and r_2

are collinear and p_3 , q_1 and r_2 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.

(15) For every C_1 being a collinearity structure holds C_1 is a Pappian projective plane defined in terms of collinearity if and only if C_1 is a Pappian projective space defined in terms of collinearity and for every elements p, p_1 , q, q_1 of the points of C_1 there exists an element r of the points of C_1 such that p, p_1 and r are collinear and q, q_1 and r are collinear.

A Fanoian projective plane defined in terms of collinearity is called a Fano-Pappian projective plane defined in terms of collinearity if:

- (Def.6) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq p_2$,
 - (ii) $o \neq p_3$,
 - (iii) $p_2 \neq p_3$,
 - (iv) $p_1 \neq p_2$,
 - (v) $p_1 \neq p_3$,
 - (vi) $o \neq q_2$,
 - (vii) $o \neq q_3$,
 - (viii) $q_2 \neq q_3$,
 - (ix) $q_1 \neq q_2$,
 - (x) $q_1 \neq q_3$,
 - (xi) o, p_1 and q_1 are not collinear,
 - (xii) o, p_1 and p_2 are collinear,
 - (xiii) $o, p_1 \text{ and } p_3 \text{ are collinear},$
 - (xiv) $o, q_1 \text{ and } q_2 \text{ are collinear},$
 - (xv) $o, q_1 \text{ and } q_3 \text{ are collinear},$
 - (xvi) p_1, q_2 and r_3 are collinear,
 - (xvii) q_1, p_2 and r_3 are collinear,
 - (xviii) p_1, q_3 and r_2 are collinear,
 - (xix) p_3 , q_1 and r_2 are collinear,
 - (xx) p_2, q_3 and r_1 are collinear,
 - (xxi) p_3 , q_2 and r_1 are collinear.

Then r_1 , r_2 and r_3 are collinear.

We now state several propositions:

(16) Let C_1 be a Fanoian projective plane defined in terms of collinearity. Then C_1 is a Fano-Pappian projective plane defined in terms of collinearity if and only if for all elements $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 and q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1, q_2 and r_3 are collinear and q_1, p_2 and r_3 are collinear and p_1, q_3 and r_2 are collinear and p_3, q_1 and r_2 are collinear and p_2, q_3 and r_1 are collinear and p_3, q_2 and r_1 are collinear holds r_1, r_2 and r_3 are collinear.

- (17) Suppose that
 - (i) there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.

Then the projective space over V is a Fano-Pappian projective plane defined in terms of collinearity.

- (18) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1 , r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (ii) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (iv) there exist elements p, q, r of the points of C_1 such that p, q and r are not collinear,
 - (v) for every elements p, p_1 , q, q_1 of the points of C_1 there exists an element r of the points of C_1 such that p, p_1 and r are collinear and q, q_1 and r are collinear,
 - (vi) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear,
- (vii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and o, p_1 and q_1 are not collinear and o, p_1 and p_2 are collinear and o, p_1 and p_3 are collinear and o, q_1 and q_2 are collinear and o, q_1 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and q_1 , p_2 and r_3 are collinear and p_1 , q_3 and r_2 are collinear and p_3 , q_1 and r_2 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear holds r_1 , r_2 and r_3 are collinear.
- (19) Let C_1 be a collinearity structure. Then C_1 is a Fano-Pappian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) C_1 is a Pappian projective plane defined in terms of collinearity,
 - (ii) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or

 r_2, r_1 and q_1 are collinear.

(20) For every C_1 being a collinearity structure holds C_1 is a Fano-Pappian projective plane defined in terms of collinearity if and only if C_1 is a Fano-Pappian projective space defined in terms of collinearity and for every elements p, p_1 , q, q_1 of the points of C_1 there exists an element rof the points of C_1 such that p, p_1 and r are collinear and q, q_1 and r are collinear.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. *Formalized Mathematics*, 1(4):761–766, 1990.
- [3] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part I. Formalized Mathematics, 1(4):767–776, 1990.
- [4] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part III. Formalized Mathematics, 1(5):909–918, 1990.
- [5] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.

Received August 10, 1990