Projective Spaces - part IV

Wojciech Leończuk¹ Warsaw University Białystok Krzysztof Prażmowski² Warsaw University Białystok

Summary. A continuation of [4]. In the classes of projective spaces, defined in terms of collinearity, introduced in the article [3], we distinguish the subclasses of Desarguesian projective structures. As examples of these objects we consider analytical projective spaces defined over suitable real linear spaces.

MML Identifier: ANPROJ_5.

The notation and terminology used here have been introduced in the following papers: [1], [5], [2], [3], and [4]. We adopt the following convention: a, b, c, d denote real numbers, V denotes a non-trivial real linear space, and u, v, w, y, u_1 denote vectors of V. An at least 3 dimensional projective space defined in terms of collinearity is said to be a Desarguesian at least 3 dimensional projective space defined in terms of collinearity if:

- (Def.1) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq q_1$,
 - (ii) $p_1 \neq q_1$,
 - (iii) $o \neq q_2$,
 - (iv) $p_2 \neq q_2$,
 - (v) $o \neq q_3$,
 - (vi) $p_3 \neq q_3$,
 - (vii) o, p_1 and p_2 are not collinear,
 - (viii) $o, p_1 \text{ and } p_3 \text{ are not collinear},$
 - (ix) o, p_2 and p_3 are not collinear,
 - (x) p_1, p_2 and r_3 are collinear,
 - (xi) q_1, q_2 and r_3 are collinear,
 - (xii) p_2, p_3 and r_1 are collinear,

¹Supported by RPBP.III-24.C6.

²Supported by RPBP.III-24.C2.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (xiii) q_2, q_3 and r_1 are collinear,
- (xiv) p_1, p_3 and r_2 are collinear,
- (xv) q_1, q_3 and r_2 are collinear,
- (xvi) o, p_1 and q_1 are collinear,
- (xvii) o, p_2 and q_2 are collinear,
- (xviii) o, p_3 and q_3 are collinear.

Then r_1 , r_2 and r_3 are collinear.

The following propositions are true:

- (1) Let C_1 be an at least 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Desarguesian at least 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and o, p_1 and p_3 are collinear and q_1 , q_2 and r_3 are collinear and p_1 , p_2 and r_3 are collinear and q_1 , q_3 and r_1 are collinear and o, p_1 and q_1 are collinear and p_1 , p_3 and r_1 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and r_1 , r_2 and r_3 are collinear and r_1 , r_2 and r_3 are collinear and r_1 , r_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and r_1 , r_2 and r_3 are collinear and r_1 , r_2 and r_3 are collinear and r_1 , r_3 and r_2 are collinear and r_3 are collinear and r_1 , r_3 and r_3 are collinear and r_1 , r_3 are collinear and r_3 are collinear and r_3 are collinear and r_1 , r_3 are collinear and r_3 are collinear.
- (2) If there exist u, v, w, u_1 such that for all a, b, c, d such that $((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0, then the projective space over V is a Desarguesian at least 3 dimensional projective space defined in terms of collinearity.
- (3) Let C_1 be a collinearity structure. Then C_1 is a Desarguesian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
- (ii) for all elements p, q, r, r₁, r₂ of the points of C₁ such that p ≠ q and p, q and r are collinear and p, q and r₁ are collinear and p, q and r₂ are collinear holds r, r₁ and r₂ are collinear,
- (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
- (iv) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
- (v) there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,
- (vi) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and p_1 , p_2 and r_3 are collinear and q_1 , q_2

and r_3 are collinear and p_2 , p_3 and r_1 are collinear and q_2 , q_3 and r_1 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and o, p_2 and q_2 are collinear and o, p_3 and q_3 are collinear holds r_1 , r_2 and r_3 are collinear.

(4) For every C_1 being a collinearity structure holds C_1 is a Desarguesian at least 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Desarguesian projective space defined in terms of collinearity and there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear.

A Fanoian at least 3 dimensional projective space defined in terms of collinearity is called a Fano-Desarguesian at least 3 dimensional projective space defined in terms of collinearity if:

- (Def.2) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq q_1$,
 - (ii) $p_1 \neq q_1$,
 - (iii) $o \neq q_2$,
 - (iv) $p_2 \neq q_2$,
 - (v) $o \neq q_3$,
 - (vi) $p_3 \neq q_3$,
 - (vii) $o, p_1 \text{ and } p_2 \text{ are not collinear},$
 - (viii) $o, p_1 \text{ and } p_3 \text{ are not collinear},$
 - (ix) o, p_2 and p_3 are not collinear,
 - (x) p_1, p_2 and r_3 are collinear,
 - (xi) q_1, q_2 and r_3 are collinear,
 - (xii) p_2, p_3 and r_1 are collinear,
 - (xiii) q_2, q_3 and r_1 are collinear,
 - (xiv) p_1, p_3 and r_2 are collinear,
 - (xv) q_1, q_3 and r_2 are collinear,
 - (xvi) o, p_1 and q_1 are collinear,
 - (xvii) o, p_2 and q_2 are collinear,
 - (xviii) o, p_3 and q_3 are collinear.

Then r_1 , r_2 and r_3 are collinear.

We now state several propositions:

(5) Let C_1 be a Fanoian at least 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Fano-Desarguesian at least 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and o, p_2 and p_3 are not collinear and p_1 , p_2 and r_3 are collinear and q_1 , q_2 and r_3 are collinear and p_2 , p_3 and r_1 are collinear and q_2 , q_3 and r_1 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and o, p_2 and q_2 are collinear and o, p_3 and q_3 are collinear holds r_1 , r_2 and r_3 are collinear.

- (6) If there exist u, v, w, u₁ such that for all a, b, c, d such that ((a · u + b · v) + c · w) + d · u₁ = 0_V holds a = 0 and b = 0 and c = 0 and d = 0, then the projective space over V is a Fano-Desarguesian at least 3 dimensional projective space defined in terms of collinearity.
- (7) Let C_1 be a collinearity structure. Then C_1 is a Fano-Desarguesian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
- (ii) for all elements p, q, r, r₁, r₂ of the points of C₁ such that p ≠ q and p, q and r are collinear and p, q and r₁ are collinear and p, q and r₂ are collinear holds r, r₁ and r₂ are collinear,
- (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
- (iv) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
- (v) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear,
- (vi) there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,
- (vii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and o, p_1 and p_3 are not collinear and p_1 , p_2 and r_3 are collinear and q_1 , q_2 and r_3 are collinear and p_2 , p_3 and r_1 are collinear and q_2 , q_3 and r_1 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and o, p_2 and r_3 are collinear and p_2 , p_3 and r_2 are collinear and q_2 , q_3 and r_1 are r_3 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_3 and q_3 are collinear holds r_1 , r_2 and r_3 are collinear.
- (8) Let C_1 be a collinearity structure. Then C_1 is a Fano-Desarguesian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) C_1 is a Desarguesian at least 3 dimensional projective space defined in terms of collinearity,
- (ii) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are

collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.

(9) For every C_1 being a collinearity structure holds

 C_1

is a Fano-Desarguesian at least 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Fano-Desarguesian projective space defined in terms of collinearity and there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear.

A 3 dimensional projective space defined in terms of collinearity is called a Desarguesian 3 dimensional projective space defined in terms of collinearity if:

- (Def.3) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that
 - (i) $o \neq q_1$,
 - (ii) $p_1 \neq q_1$,
 - (iii) $o \neq q_2$,
 - (iv) $p_2 \neq q_2$,
 - (v) $o \neq q_3$,
 - (vi) $p_3 \neq q_3$,
 - (vii) $o, p_1 \text{ and } p_2 \text{ are not collinear},$
 - (viii) $o, p_1 \text{ and } p_3 \text{ are not collinear},$
 - (ix) o, p_2 and p_3 are not collinear,
 - (x) p_1, p_2 and r_3 are collinear,
 - (xi) q_1, q_2 and r_3 are collinear,
 - (xii) p_2, p_3 and r_1 are collinear,
 - (xiii) q_2, q_3 and r_1 are collinear,
 - (xiv) p_1, p_3 and r_2 are collinear,
 - (xv) q_1, q_3 and r_2 are collinear,
 - (xvi) o, p_1 and q_1 are collinear,
 - (xvii) o, p_2 and q_2 are collinear,
 - (xviii) o, p_3 and q_3 are collinear.

Then r_1 , r_2 and r_3 are collinear.

We now state four propositions:

(10) Let C_1 be a 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Desarguesian 3 dimensional projective space defined in terms of collinearity if and only if for all elements $o, p_1, p_2, p_3, q_1, q_2, q_3,$ r_1, r_2, r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and o, p_2 and p_3 are not collinear and $p_1,$ p_2 and r_3 are collinear and q_1, q_2 and r_3 are collinear and p_2, p_3 and r_1 are collinear and q_2, q_3 and r_1 are collinear and p_1, p_3 and r_2 are collinear and q_1, q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and o, p_2 and q_2 are collinear and o, p_3 and q_3 are collinear holds r_1 , r_2 and r_3 are collinear.

- (11) Suppose that
 - (i) there exist u, v, w, u₁ such that for all a, b, c, d such that ((a · u + b · v) + c · w) + d · u₁ = 0_V holds a = 0 and b = 0 and c = 0 and d = 0 and for every y there exist a, b, c, d such that y = ((a · u + b · v) + c · w) + d · u₁. Then the projective space over V is a Desarguesian 3 dimensional projective space defined in terms of collinearity.
- (12) Let C_1 be a collinearity structure. Then C_1 is a Desarguesian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (ii) for all elements p, q, r, r_1, r_2 of the points of C_1 such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (iv) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
 - (v) there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,
 - (vi) for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear,
- (vii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and o, p_1 and p_3 are not collinear and p_1 , p_2 and r_3 are collinear and q_1 , q_2 and r_3 are collinear and p_2 , p_3 and r_1 are collinear and q_2 , q_3 and r_1 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and o, p_2 and r_3 are collinear and p_2 , p_3 and r_2 are collinear and q_2 , q_3 and r_1 are r_3 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_3 and q_3 are collinear holds r_1 , r_2 and r_3 are collinear.
- (13) For every C_1 being a collinearity structure holds C_1 is a Desarguesian 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Desarguesian at least 3 dimensional projective space defined in terms of collinearity and for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear.

A Fanoian 3 dimensional projective space defined in terms of collinearity is called a Fano-Desarguesian 3 dimensional projective space defined in terms of collinearity if:

(Def.4) Let $o, p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$ be elements of the points of it . Suppose that

- (i) $o \neq q_1$,
- (ii) $p_1 \neq q_1$,
- (iii) $o \neq q_2$,
- (iv) $p_2 \neq q_2$,
- (v) $o \neq q_3$,
- (vi) $p_3 \neq q_3$,
- (vii) $o, p_1 \text{ and } p_2 \text{ are not collinear},$
- (viii) $o, p_1 \text{ and } p_3 \text{ are not collinear},$
- (ix) o, p_2 and p_3 are not collinear,
- (x) p_1, p_2 and r_3 are collinear,
- (xi) q_1, q_2 and r_3 are collinear,
- (xii) p_2, p_3 and r_1 are collinear,
- (xiii) q_2, q_3 and r_1 are collinear,
- (xiv) p_1, p_3 and r_2 are collinear,
- (xv) q_1, q_3 and r_2 are collinear,
- (xvi) o, p_1 and q_1 are collinear,
- (xvii) o, p_2 and q_2 are collinear,
- (xviii) o, p_3 and q_3 are collinear.

Then r_1 , r_2 and r_3 are collinear.

We now state several propositions:

- (14) Let C_1 be a Fanoian 3 dimensional projective space defined in terms of collinearity. Then C_1 is a Fano-Desarguesian 3 dimensional projective space defined in terms of collinearity if and only if for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and p_1 , p_2 and r_3 are collinear and q_1 , q_2 and r_3 are collinear and p_2 , p_3 and r_1 are collinear and q_2 , q_3 and r_1 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and r_1 , r_2 and r_3 are collinear and r_1 , r_2 are collinear and r_1 , r_3 are collinear and r_1 , r_2 are collinear and r_3 are collinear and r_1 , r_2 are collinear and r_1 , r_3 are collinear and r_1 , r_2 are collinear and r_1 , r_2 are collinear.
- (15) Suppose that
 - (i) there exist u, v, w, u_1 such that for all a, b, c, d such that $((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0 and for every y there exist a, b, c, d such that $y = ((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1$. Then the projective space over V is a Fano-Desarguesian 3 dimensional projective space defined in terms of collinearity.
- (16) Let C_1 be a collinearity structure. Then C_1 is a Fano-Desarguesian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:

- (i) for all elements p, q, r of the points of C_1 holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
- (ii) for all elements p, q, r, r₁, r₂ of the points of C₁ such that p ≠ q and p, q and r are collinear and p, q and r₁ are collinear and p, q and r₂ are collinear holds r, r₁ and r₂ are collinear,
- (iii) for every elements p, q of the points of C_1 there exists an element r of the points of C_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
- (iv) for all elements p, p_1 , p_2 , r, r_1 of the points of C_1 such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of C_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
- (v) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear,
- (vi) there exist elements p, p_1 , q, q_1 of the points of C_1 such that for no element r of the points of C_1 holds p, p_1 and r are collinear and q, q_1 and r are collinear,
- (vii) for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear,
- (viii) for all elements o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 of the points of C_1 such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ and $p_3 \neq q_3$ and o, p_1 and p_2 are not collinear and o, p_1 and p_3 are not collinear and o, p_1 and p_3 are not collinear and p_1 , p_2 and r_3 are collinear and q_1 , q_2 and r_3 are collinear and p_2 , p_3 and r_1 are collinear and q_2 , q_3 and r_1 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_1 and q_1 are collinear and o, p_2 and r_3 are collinear and p_2 , p_3 and r_2 are collinear and q_2 , q_3 and r_1 are r_3 are collinear and p_1 , p_3 and r_2 are collinear and q_1 , q_3 and r_2 are collinear and o, p_3 and q_3 are collinear holds r_1 , r_2 and r_3 are collinear.
- (17) Let C_1 be a collinearity structure. Then C_1 is a Fano-Desarguesian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) C_1 is a Desarguesian 3 dimensional projective space defined in terms of collinearity,
 - (ii) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of C_1 such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.
- (18) For every C_1 being a collinearity structure holds C_1

is a Fano-Desarguesian 3 dimensional projective space defined in terms of collinearity if and only if C_1 is a Fano-Desarguesian at least 3 dimensional projective space defined in terms of collinearity and for every elements p, p_1 , q, q_1 , r_2 of the points of C_1 there exist elements r, r_1 of the points of C_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. *Formalized Mathematics*, 1(4):761–766, 1990.
- [3] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part II. Formalized Mathematics, 1(5):901–907, 1990.
- [4] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part III. Formalized Mathematics, 1(5):909–918, 1990.
- [5] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.

Received August 10, 1990