Projective Spaces - part III

Wojciech Leończuk ${ }^{1}$
Warsaw University
Białystok

Krzysztof Prażmowski ${ }^{2}$
Warsaw University
Białystok

Abstract

Summary. In the classes of projective spaces, defined in terms of collinearity, introduced in the article [3], we distinguish the subclasses of Desarguesian projective structures. As examples of these types of objects we consider analytical projective spaces defined over suitable real linear spaces; analytical counterpart of the Desargues Axiom is proved without any assumption on the dimension of the underlying linear space.

MML Identifier: ANPROJ_4.

The articles [1], [4], [2], and [3] provide the notation and terminology for this paper. We adopt the following rules: V will denote a real linear space, o, p, p_{1}, $p_{2}, p_{3}, q, q_{1}, q_{2}, q_{3}, r, r_{1}, r_{2}, r_{3}$ will denote vectors of V, and $a, b, c, a_{1}, b_{1}, a_{2}$, c_{2} will denote real numbers. Let us consider V, p_{1}, p_{2}, p_{3}. We say that p_{1}, p_{2} and p_{3} are proper vectors if and only if:
(Def.1) $\quad p_{1}$ is a proper vector and p_{2} is a proper vector and p_{3} is a proper vector.
Next we state the proposition
(1) $\quad p_{1}, p_{2}$ and p_{3} are proper vectors if and only if p_{1} is a proper vector and p_{2} is a proper vector and p_{3} is a proper vector.
Let us consider $V, p_{1}, p_{2}, p_{3}, r_{1}, r_{2}, r_{3}$. We say that $p_{1}, p_{2}, p_{3}, r_{1}, r_{2}$, and r_{3} lie on a triangle if and only if:
(Def.2) $\quad p_{1}, p_{2}$ and r_{3} are lineary dependent and p_{1}, p_{3} and r_{2} are lineary dependent and p_{2}, p_{3} and r_{1} are lineary dependent.
Next we state the proposition
(2) $\quad p_{1}, p_{2}, p_{3}, r_{1}, r_{2}$, and r_{3} lie on a triangle if and only if p_{1}, p_{2} and r_{3} are lineary dependent and p_{1}, p_{3} and r_{2} are lineary dependent and p_{2}, p_{3} and r_{1} are lineary dependent.

[^0]Let us consider $V, o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}$. We say that $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}$, and q_{3} are perspective if and only if:
(Def.3) o, p_{1} and q_{1} are lineary dependent and o, p_{2} and q_{2} are lineary dependent and o, p_{3} and q_{3} are lineary dependent.
The following propositions are true:
(3) $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}$, and q_{3} are perspective if and only if o, p_{1} and q_{1} are lineary dependent and o, p_{2} and q_{2} are lineary dependent and o, p_{3} and q_{3} are lineary dependent.
(4) Suppose o, p_{1} and q_{1} are lineary dependent and o and p_{1} are not proportional and o and q_{1} are not proportional and p_{1} and q_{1} are not proportional and o, p_{1} and q_{1} are proper vectors. Then there exist a_{1}, b_{1} such that $b_{1} \cdot q_{1}=o+a_{1} \cdot p_{1}$ and $a_{1} \neq 0$ and $b_{1} \neq 0$ and there exist a_{2}, c_{2} such that $q_{1}=c_{2} \cdot o+a_{2} \cdot p_{1}$ and $c_{2} \neq 0$ and $a_{2} \neq 0$.
(5) If p, q and r are lineary dependent and p and q are not proportional and p, q and r are proper vectors, then there exist a, b such that $r=a \cdot p+b \cdot q$.
(6) Suppose that
(i) o is a proper vector,
(ii) $\quad p_{1}, p_{2}$ and p_{3} are proper vectors,
(iii) q_{1}, q_{2} and q_{3} are proper vectors,
(iv) r_{1}, r_{2} and r_{3} are proper vectors,
(v) $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}$, and q_{3} are perspective,
(vi) $\quad o$ and q_{1} are not proportional,
(vii) o and q_{2} are not proportional,
(viii) o and q_{3} are not proportional,
(ix) p_{1} and q_{1} are not proportional,
(x) $\quad p_{2}$ and q_{2} are not proportional,
(xi) $\quad p_{3}$ and q_{3} are not proportional,
(xii) $\quad o, p_{1}$ and p_{2} are not lineary dependent,
(xiii) $\quad o, p_{1}$ and p_{3} are not lineary dependent,
(xiv) $\quad o, p_{2}$ and p_{3} are not lineary dependent,
(xv) $\quad p_{1}, p_{2}, p_{3}, r_{1}, r_{2}$, and r_{3} lie on a triangle,
(xvi) $q_{1}, q_{2}, q_{3}, r_{1}, r_{2}$, and r_{3} lie on a triangle.

Then r_{1}, r_{2} and r_{3} are lineary dependent.
We adopt the following rules: V will be a non-trivial real linear space and $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ will be elements of the points of the projective space over V. The following proposition is true
(7) Suppose that
(i) $o \neq q_{1}$,
(ii) $p_{1} \neq q_{1}$,
(iii) $\quad o \neq q_{2}$,
(iv) $p_{2} \neq q_{2}$,
(v) $\quad o \neq q_{3}$,
(vi) $\quad p_{3} \neq q_{3}$,
(vii) o, p_{1} and p_{2} are not collinear,
(viii) o, p_{1} and p_{3} are not collinear,
(ix) o, p_{2} and p_{3} are not collinear,
(x) p_{1}, p_{2} and r_{3} are collinear,
(xi) q_{1}, q_{2} and r_{3} are collinear,
(xii) p_{2}, p_{3} and r_{1} are collinear,
(xiii) q_{2}, q_{3} and r_{1} are collinear,
(xiv) p_{1}, p_{3} and r_{2} are collinear,
(xv) q_{1}, q_{3} and r_{2} are collinear,
(xvi) $\quad o, p_{1}$ and q_{1} are collinear,
(xvii) o, p_{2} and q_{2} are collinear,
(xviii) $\quad o, p_{3}$ and q_{3} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
In the sequel u, v, w, y will denote vectors of V. A projective space defined in terms of collinearity is said to be a Desarguesian projective space defined in terms of collinearity if:
(Def.4) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it. Suppose that
(i) $o \neq q_{1}$,
(ii) $p_{1} \neq q_{1}$,
(iii) $o \neq q_{2}$,
(iv) $p_{2} \neq q_{2}$,
(v) $o \neq q_{3}$,
(vi) $\quad p_{3} \neq q_{3}$,
(vii) o, p_{1} and p_{2} are not collinear,
(viii) o, p_{1} and p_{3} are not collinear,
(ix) o, p_{2} and p_{3} are not collinear,
(x) p_{1}, p_{2} and r_{3} are collinear,
(xi) q_{1}, q_{2} and r_{3} are collinear,
(xii) p_{2}, p_{3} and r_{1} are collinear,
(xiii) q_{2}, q_{3} and r_{1} are collinear,
(xiv) p_{1}, p_{3} and r_{2} are collinear,
(xv) q_{1}, q_{3} and r_{2} are collinear,
(xvi) $\quad o, p_{1}$ and q_{1} are collinear,
(xvii) o, p_{2} and q_{2} are collinear,
(xviii) $\quad o, p_{3}$ and q_{3} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
We now state three propositions:
(8) Let C_{1} be a projective space defined in terms of collinearity. Then C_{1} is a Desarguesian projective space defined in terms of collinearity if and only if for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear
and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(9) If there exist u, v, w such that for all a, b, c such that $(a \cdot u+b \cdot v)+c \cdot w=$ 0_{V} holds $a=0$ and $b=0$ and $c=0$, then the projective space over V is a Desarguesian projective space defined in terms of collinearity.
(10) Let C_{1} be a collinearity structure. Then C_{1} is a Desarguesian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(ii) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(iii) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(iv) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(v) there exist elements p, q, r of the points of C_{1} such that p, q and r are not collinear,
(vi) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
A Fanoian projective space defined in terms of collinearity is called a FanoDesarguesian projective space defined in terms of collinearity if:
(Def.5) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it. Suppose that
(i) $o \neq q_{1}$,
(ii) $p_{1} \neq q_{1}$,
(iii) $o \neq q_{2}$,
(iv) $p_{2} \neq q_{2}$,
(v) $o \neq q_{3}$,
(vi) $p_{3} \neq q_{3}$,
(vii) o, p_{1} and p_{2} are not collinear,
(viii) o, p_{1} and p_{3} are not collinear,
(ix) o, p_{2} and p_{3} are not collinear,
(x) p_{1}, p_{2} and r_{3} are collinear,
(xi) q_{1}, q_{2} and r_{3} are collinear,
(xii) p_{2}, p_{3} and r_{1} are collinear,
(xiii) q_{2}, q_{3} and r_{1} are collinear,
(xiv) p_{1}, p_{3} and r_{2} are collinear,
(xv) q_{1}, q_{3} and r_{2} are collinear,
(xvi) o, p_{1} and q_{1} are collinear,
(xvii) o, p_{2} and q_{2} are collinear,
(xviii) $\quad o, p_{3}$ and q_{3} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
One can prove the following propositions:
(11) Let C_{1} be a Fanoian projective space defined in terms of collinearity. Then C_{1} is a Fano-Desarguesian projective space defined in terms of collinearity if and only if for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(12) If there exist u, v, w such that for all a, b, c such that $(a \cdot u+b \cdot v)+c \cdot w=$ 0_{V} holds $a=0$ and $b=0$ and $c=0$, then the projective space over V is a Fano-Desarguesian projective space defined in terms of collinearity.
(13) Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Desarguesian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(ii) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(iii) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(iv) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(v) there exist elements p, q, r of the points of C_{1} such that p, q and r are not collinear,
(vi) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1}
are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear,
(vii) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(14) Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Desarguesian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) C_{1} is a Desarguesian projective space defined in terms of collinearity,
(ii) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
A projective plane defined in terms of collinearity is called a Desarguesian projective plane defined in terms of collinearity if:
(Def.6) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it. Suppose that
(i) $o \neq q_{1}$,
(ii) $p_{1} \neq q_{1}$,
(iii) $o \neq q_{2}$,
(iv) $p_{2} \neq q_{2}$,
(v) $o \neq q_{3}$,
(vi) $p_{3} \neq q_{3}$,
(vii) o, p_{1} and p_{2} are not collinear,
(viii) o, p_{1} and p_{3} are not collinear,
(ix) o, p_{2} and p_{3} are not collinear,
(x) $\quad p_{1}, p_{2}$ and r_{3} are collinear,
(xi) q_{1}, q_{2} and r_{3} are collinear,
(xii) p_{2}, p_{3} and r_{1} are collinear,
(xiii) q_{2}, q_{3} and r_{1} are collinear,
(xiv) p_{1}, p_{3} and r_{2} are collinear,
(xv) q_{1}, q_{3} and r_{2} are collinear,
(xvi) $\quad o, p_{1}$ and q_{1} are collinear,
(xvii) $\quad o, p_{2}$ and q_{2} are collinear,
(xviii) $\quad o, p_{3}$ and q_{3} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
We now state four propositions:
(15)

Let C_{1} be a projective plane defined in terms of collinearity. Then C_{1} is a Desarguesian projective plane defined in terms of collinearity if and only if for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.

(16)
 Suppose that

(i) there exist u, v, w such that for all a, b, c such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every y there exist a, b, c such that $y=(a \cdot u+b \cdot v)+c \cdot w$.
Then the projective space over V is a Desarguesian projective plane defined in terms of collinearity.
(17) Let C_{1} be a collinearity structure. Then C_{1} is a Desarguesian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(ii) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) there exist elements p, q, r of the points of C_{1} such that p, q and r are not collinear,
(v) for every elements p, p_{1}, q, q_{1} of the points of C_{1} there exists an element r of the points of C_{1} such that p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vi) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(18) For every C_{1} being a collinearity structure holds C_{1} is a Desarguesian projective plane defined in terms of collinearity if and only if C_{1} is a Desarguesian projective space defined in terms of collinearity and for every elements p, p_{1}, q, q_{1} of the points of C_{1} there exists an element r of the points of C_{1} such that p, p_{1} and r are collinear and q, q_{1} and r are collinear.

A Fanoian projective plane defined in terms of collinearity is called a FanoDesarguesian projective plane defined in terms of collinearity if:
(Def.7) Let $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ be elements of the points of it . Suppose that
(i) $o \neq q_{1}$,
(ii) $p_{1} \neq q_{1}$,
(iii) $\quad o \neq q_{2}$,
(iv) $p_{2} \neq q_{2}$,
(v) $\quad o \neq q_{3}$,
(vi) $\quad p_{3} \neq q_{3}$,
(vii) $\quad o, p_{1}$ and p_{2} are not collinear,
(viii) $\quad o, p_{1}$ and p_{3} are not collinear,
(ix) $\quad o, p_{2}$ and p_{3} are not collinear,
(x) $\quad p_{1}, p_{2}$ and r_{3} are collinear,
(xi) $\quad q_{1}, q_{2}$ and r_{3} are collinear,
(xii) $\quad p_{2}, p_{3}$ and r_{1} are collinear,
(xiii) q_{2}, q_{3} and r_{1} are collinear,
(xiv) p_{1}, p_{3} and r_{2} are collinear,
(xv) q_{1}, q_{3} and r_{2} are collinear,
(xvi) $\quad o, p_{1}$ and q_{1} are collinear,
(xvii) o, p_{2} and q_{2} are collinear,
(xviii) $\quad o, p_{3}$ and q_{3} are collinear.

Then r_{1}, r_{2} and r_{3} are collinear.
One can prove the following propositions:
(19) Let C_{1} be a Fanoian projective plane defined in terms of collinearity. Then C_{1} is a Fano-Desarguesian projective plane defined in terms of collinearity if and only if for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(20) Suppose that
(i) there exist u, v, w such that for all a, b, c such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every y there exist a, b, c such that $y=(a \cdot u+b \cdot v)+c \cdot w$.
Then the projective space over V is a Fano-Desarguesian projective plane defined in terms of collinearity.
(21) Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Desarguesian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(ii) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) there exist elements p, q, r of the points of C_{1} such that p, q and r are not collinear,
(v) for every elements p, p_{1}, q, q_{1} of the points of C_{1} there exists an element r of the points of C_{1} such that p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vi) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear,
(vii) for all elements $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ of the points of C_{1} such that $o \neq q_{1}$ and $p_{1} \neq q_{1}$ and $o \neq q_{2}$ and $p_{2} \neq q_{2}$ and $o \neq q_{3}$ and $p_{3} \neq q_{3}$ and o, p_{1} and p_{2} are not collinear and o, p_{1} and p_{3} are not collinear and o, p_{2} and p_{3} are not collinear and p_{1}, p_{2} and r_{3} are collinear and q_{1}, q_{2} and r_{3} are collinear and p_{2}, p_{3} and r_{1} are collinear and q_{2}, q_{3} and r_{1} are collinear and p_{1}, p_{3} and r_{2} are collinear and q_{1}, q_{3} and r_{2} are collinear and o, p_{1} and q_{1} are collinear and o, p_{2} and q_{2} are collinear and o, p_{3} and q_{3} are collinear holds r_{1}, r_{2} and r_{3} are collinear.
(22) Let C_{1} be a collinearity structure. Then C_{1} is a Fano-Desarguesian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
(i) $\quad C_{1}$ is a Desarguesian projective plane defined in terms of collinearity,
(ii) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
(23) For every C_{1} being a collinearity structure holds C_{1}
is a Fano-Desarguesian projective plane defined in terms of collinearity if and only if C_{1} is a Fano-Desarguesian projective space defined in terms of collinearity and for every elements p, p_{1}, q, q_{1} of the points of C_{1} there exists an element r of the points of C_{1} such that p, p_{1} and r are collinear and q, q_{1} and r are collinear.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[3] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part I. Formalized Mathematics, 1(4):767-776, 1990.
[4] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.

Received August 10, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.
 ${ }^{2}$ Supported by RPBP.III-24.C2.

