Projective Spaces - part II

Wojciech Leończuk ${ }^{1}$
Warsaw University
Białystok

Krzysztof Prażmowski ${ }^{2}$
Warsaw University
Białystok

Abstract

Summary. Distinction is made among several types of many dimensional projective spaces - at least three dimensional and exactly threedimensional projective structures. We prove that analytical projective spaces defined over appropiate real linear spaces may serve as examples of the introduced classes of projective spaces. Corresponding subclasses of Fano projective structures are distinguished. Note that in projective geometry the axiom which assures that the dimension is not greater than three can be formulated as the statement: there exists a plane which intersects every line.

MML Identifier: ANPROJ_3.

The terminology and notation used in this paper have been introduced in the following articles: [1], [4], [2], and [3]. We follow a convention: V will be a real linear space, $p, q, r, s, u, v, w, y, u_{1}, v_{1}$ will be vectors of V, and a, b, c, d, a_{1}, b_{1}, c_{1} will be real numbers. The following two propositions are true:
(1) Suppose that
(i) for every w there exist a, b, c, d such that $w=((a \cdot p+b \cdot q)+c \cdot r)+d \cdot s$,
(ii) for all a, b, c, d such that $((a \cdot p+b \cdot q)+c \cdot r)+d \cdot s=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$.
Then for all u, v such that u is a proper vector and v is a proper vector there exist y, w such that u, v and w are lineary dependent and q, r and y are lineary dependent and p, w and y are lineary dependent and y is a proper vector and w is a proper vector.
(2) Suppose for all a, b, a_{1}, b_{1} such that $\left((a \cdot u+b \cdot v)+a_{1} \cdot u_{1}\right)+b_{1} \cdot v_{1}=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$. Then for no y holds y is a proper vector and u, v and y are lineary dependent and u_{1}, v_{1} and y are lineary dependent.

[^0]We adopt the following rules: V will be a non-trivial real linear space, u, v, w, y, w_{1} will be vectors of V, and $p, p_{1}, q, q_{1}, q_{2}, q_{3}, r, r_{1}, r_{2}, r_{3}$ will be elements of the points of the projective space over V. We now state two propositions:
(3) If there exist p, q, r such that p, q and r are not collinear, then for all p, q such that $p \neq q$ there exists r such that p, q and r are not collinear.
(4) Suppose that
(i) there exist y, u, v, w such that for every w_{1} there exist a, b, a_{1}, b_{1} such that $w_{1}=\left((a \cdot y+b \cdot u)+a_{1} \cdot v\right)+b_{1} \cdot w$ and for all a, b, a_{1}, b_{1} such that $\left((a \cdot y+b \cdot u)+a_{1} \cdot v\right)+b_{1} \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$.
Then there exist p, q_{1}, q_{2} such that p, q_{1} and q_{2} are not collinear and for every r_{1}, r_{2} there exist q_{3}, r_{3} such that r_{1}, r_{2} and r_{3} are collinear and q_{1}, q_{2} and q_{3} are collinear and p, r_{3} and q_{3} are collinear.
Next we state the proposition
(5) Suppose that
(i) there exist p, q, r such that p, q and r are not collinear,
(ii) for every p, q there exists r such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iii) there exist p, q_{1}, q_{2} such that p, q_{1} and q_{2} are not collinear and for every r_{1}, r_{2} there exist q_{3}, r_{3} such that r_{1}, r_{2} and r_{3} are collinear and q_{1}, q_{2} and q_{3} are collinear and p, r_{3} and q_{3} are collinear.
Then for every $p, p_{1}, q, q_{1}, r_{2}$ there exist r, r_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.
In the sequel $u, v, w, y, u_{1}, v_{1}, w_{1}$ will be vectors of V. Next we state three propositions:
(6) Suppose that
(i) there exist y, u, v, w such that for every w_{1} there exist a, b, c, c_{1} such that $w_{1}=((a \cdot y+b \cdot u)+c \cdot v)+c_{1} \cdot w$ and for all a, b, a_{1}, b_{1} such that $\left((a \cdot y+b \cdot u)+a_{1} \cdot v\right)+b_{1} \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$.
Then for every $p, p_{1}, q, q_{1}, r_{2}$ there exist r, r_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.
(7) Suppose there exist u, v, u_{1}, v_{1} such that for all a, b, a_{1}, b_{1} such that $\left((a \cdot u+b \cdot v)+a_{1} \cdot u_{1}\right)+b_{1} \cdot v_{1}=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$. Then there exist p, p_{1}, q, q_{1} such that for no r holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.
(8) Suppose that
(i) there exist u, v, u_{1}, v_{1} such that for every w there exist a, b, a_{1}, b_{1} such that $w=\left((a \cdot u+b \cdot v)+a_{1} \cdot u_{1}\right)+b_{1} \cdot v_{1}$ and for all a, b, a_{1}, b_{1} such that $\left((a \cdot u+b \cdot v)+a_{1} \cdot u_{1}\right)+b_{1} \cdot v_{1}=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$.
Then
(ii) for every $p, p_{1}, q, q_{1}, r_{2}$ there exist r, r_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear,
(iii) for every p, q there exists r such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) there exist p, q, r such that p, q and r are not collinear,
(v) there exist p, p_{1}, q, q_{1} such that for no r holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.
A projective space defined in terms of collinearity is called an at least 3 dimensional projective space defined in terms of collinearity if:
(Def.1) there exist elements p, p_{1}, q, q_{1} of the points of it such that for no element r of the points of it holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.

We now state three propositions:
(9) For every projective space C_{1} defined in terms of collinearity holds C_{1} is an at least 3 dimensional projective space defined in terms of collinearity if and only if there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.
(10) If there exist u, v, u_{1}, v_{1} such that for all a, b, a_{1}, b_{1} such that ($(a$. $\left.u+b \cdot v)+a_{1} \cdot u_{1}\right)+b_{1} \cdot v_{1}=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$, then the projective space over V is an at least 3 dimensional projective space defined in terms of collinearity.
(11) Let C_{1} be a collinearity structure. Then C_{1} is an at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.

An at least 3 dimensional projective space defined in terms of collinearity is said to be a Fanoian at least 3 dimensional projective space defined in terms of collinearity if:
(Def.2) Let $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ be elements of the points of it . Suppose p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear. Then p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
One can prove the following propositions:
(12) Let C_{1} be an at least 3 dimensional projective space defined in terms of collinearity. Then C_{1} is a Fanoian at least 3 dimensional projective space defined in terms of collinearity if and only if for all elements p_{1}, r_{2}, q, r_{1}, q_{1}, p, r of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
(13) If there exist u, v, u_{1}, v_{1} such that for all a, b, a_{1}, b_{1} such that (a. $\left.u+b \cdot v)+a_{1} \cdot u_{1}\right)+b_{1} \cdot v_{1}=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$, then the projective space over V is a Fanoian at least 3 dimensional projective space defined in terms of collinearity.
(14) Let C_{1} be a collinearity structure. Then C_{1} is a Fanoian at least 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear,
(vi) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.
(15) For every C_{1} being a collinearity structure holds C_{1} is a Fanoian at least 3 dimensional projective space defined in terms of collinearity if and
only if C_{1} is a Fanoian projective space defined in terms of collinearity and there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear.
An at least 3 dimensional projective space defined in terms of collinearity is called a 3 dimensional projective space defined in terms of collinearity if:
(Def.3) for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of it there exist elements r, r_{1} of the points of it such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.
The following propositions are true:
(16) For every at least 3 dimensional projective space C_{1} defined in terms of collinearity holds C_{1} is a 3 dimensional projective space defined in terms of collinearity if and only if for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.
(17) Suppose that
(i) there exist u, v, w, u_{1} such that for all a, b, c, d such that $((a \cdot u+b$. $v)+c \cdot w)+d \cdot u_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$ and for every y there exist a, b, c, d such that $y=((a \cdot u+b \cdot v)+c \cdot w)+d \cdot u_{1}$. Then the projective space over V is a 3 dimensional projective space defined in terms of collinearity.
(18) Let C_{1} be a collinearity structure. Then C_{1} is a 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vi) for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.
A 3 dimensional projective space defined in terms of collinearity is called a Fanoian 3 dimensional projective space defined in terms of collinearity if:
(Def.4) Let $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ be elements of the points of it . Suppose p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear. Then p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
We now state four propositions:
(19) Let C_{1} be a 3 dimensional projective space defined in terms of collinearity. Then C_{1} is a Fanoian 3 dimensional projective space defined in terms of collinearity if and only if for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear.
(20) Suppose that
(i) there exist u, v, w, u_{1} such that for all a, b, c, d such that $((a \cdot u+b$. $v)+c \cdot w)+d \cdot u_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$ and for every y there exist a, b, c, d such that $y=((a \cdot u+b \cdot v)+c \cdot w)+d \cdot u_{1}$. Then the projective space over V is a Fanoian 3 dimensional projective space defined in terms of collinearity.
(21) Let C_{1} be a collinearity structure. Then C_{1} is a Fanoian 3 dimensional projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements p, q, r of the points of C_{1} holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
(ii) for all elements p, q, r, r_{1}, r_{2} of the points of C_{1} such that $p \neq q$ and p, q and r are collinear and p, q and r_{1} are collinear and p, q and r_{2} are collinear holds r, r_{1} and r_{2} are collinear,
(iii) for every elements p, q of the points of C_{1} there exists an element r of the points of C_{1} such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
(iv) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of C_{1} such that p, p_{1} and r are collinear and p_{1}, p_{2} and r_{1} are collinear there exists an element r_{2} of the points of C_{1} such that p, p_{2} and r_{2} are collinear and r, r_{1} and r_{2} are collinear,
(v) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of C_{1} such that p_{1}, r_{2} and q are collinear and r_{1}, q_{1} and q are collinear and p_{1}, r_{1} and p are collinear and r_{2}, q_{1} and p are collinear and p_{1}, q_{1} and r are collinear and r_{2}, r_{1} and r are collinear and p, q and r are collinear holds p_{1}, r_{2} and q_{1} are collinear or p_{1}, r_{2} and r_{1} are collinear or p_{1}, r_{1} and q_{1} are collinear or r_{2}, r_{1} and q_{1} are collinear,
(vi) there exist elements p, p_{1}, q, q_{1} of the points of C_{1} such that for no element r of the points of C_{1} holds p, p_{1} and r are collinear and q, q_{1} and r are collinear,
(vii) for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.
(22) For every C_{1} being a collinearity structure holds C_{1} is a Fanoian 3 dimensional projective space defined in terms of collinearity if and only if C_{1} is a Fanoian at least 3 dimensional projective space defined in terms of collinearity and for every elements $p, p_{1}, q, q_{1}, r_{2}$ of the points of C_{1} there exist elements r, r_{1} of the points of C_{1} such that p, q and r are collinear and p_{1}, q_{1} and r_{1} are collinear and r_{2}, r and r_{1} are collinear.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[3] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part I. Formalized Mathematics, 1(4):767-776, 1990.
[4] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.

Received August 10, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.
 ${ }^{2}$ Supported by RPBP.III-24.C2.

