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Summary. We introduce relations of orthogonality of vectors and
of orthogonality of segments (considered as pairs of vectors) in real linear
space of dimension two. This enables us to show an example of (in fact
anisotropic and satisfying theorem on three perpendiculars) metric affine
space (and plane as well). These two types of objects are defined formally
as ”Mizar” modes. They are to be understood as structures consisting
of a point universe and two binary relations on segments - a parallelity
relation and orthogonality relation, satisfying appropriate axioms. With
every such structure we correlate a structure obtained as a reduct of
the given one to the parallelity relation only. Some relationships between
metric affine spaces and their affine parts are proved; they enable us to use
”affine” facts and constructions in investigating metric affine geometry.
We define the notions of line, parallelity of lines and two derived relations
of orthogonality: between segments and lines, and between lines. Some
basic properties of the introduced notions are proved.

MML Identifier: ANALMETR.

The articles [5], [1], [7], [6], [2], [3], and [4] provide the notation and terminology
for this paper. For simplicity we follow a convention: V denotes a real linear
space, u, u1, u2, v, v1, v2, w, y denote vectors of V , a, a1, a2, b, b1, b2 denote
real numbers, and x, z are arbitrary. Let us consider V , w, y. We say that w,
y span the space if and only if:

(Def.1) for every u there exist a1, a2 such that u = a1 ·w + a2 · y and for all a1,
a2 such that a1 · w + a2 · y = 0V holds a1 = 0 and a2 = 0.

One can prove the following propositions:

(1) For all w, y holds w, y span the space if and only if for every u there
exist a1, a2 such that u = a1 · w + a2 · y and for all a1, a2 such that
a1 · w + a2 · y = 0V holds a1 = 0 and a2 = 0.
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(2) If w, y span the space, then there exist a1, a2 such that u = a1 ·w+a2 ·y.

(3) If w, y span the space and a1 ·w + a2 · y = 0V , then a1 = 0 and a2 = 0.

Let us consider V , u, v, w, y. We say that u, v are orthogonal w.r.t. w, y if
and only if:

(Def.2) there exist a1, a2, b1, b2 such that u = a1 ·w+a2 ·y and v = b1 ·w+b2 ·y
and a1 · b1 + a2 · b2 = 0.

The following propositions are true:

(4) For all u, v, w, y holds u, v are orthogonal w.r.t. w, y if and only if
there exist a1, a2, b1, b2 such that u = a1 ·w + a2 · y and v = b1 ·w + b2 · y
and a1 · b1 + a2 · b2 = 0.

(5) For all w, y such that w, y span the space holds u, v are orthogonal
w.r.t. w, y if and only if for all a1, a2, b1, b2 such that u = a1 · w + a2 · y
and v = b1 · w + b2 · y holds a1 · b1 + a2 · b2 = 0.

(6) w, y are orthogonal w.r.t. w, y.

(7) There exists V and there exist w, y such that w, y span the space.

(8) If u, v are orthogonal w.r.t. w, y, then v, u are orthogonal w.r.t. w, y.

(9) If w, y span the space, then for all u, v holds u, 0V are orthogonal w.r.t.
w, y and 0V , v are orthogonal w.r.t. w, y.

(10) If u, v are orthogonal w.r.t. w, y, then a · u, b · v are orthogonal w.r.t.
w, y.

(11) If u, v are orthogonal w.r.t. w, y, then a · u, v are orthogonal w.r.t. w,
y and u, b · v are orthogonal w.r.t. w, y.

(12) If w, y span the space, then for every u there exists v such that u, v are
orthogonal w.r.t. w, y and v 6= 0V .

(13) If w, y span the space and v, u1 are orthogonal w.r.t. w, y and v, u2

are orthogonal w.r.t. w, y and v 6= 0V , then there exist a, b such that
a · u1 = b · u2 but a 6= 0 or b 6= 0.

(14) If w, y span the space and u, v1 are orthogonal w.r.t. w, y and u, v2

are orthogonal w.r.t. w, y, then u, v1 + v2 are orthogonal w.r.t. w, y and
u, v1 − v2 are orthogonal w.r.t. w, y.

(15) If w, y span the space and u, u are orthogonal w.r.t. w, y, then u = 0V .

(16) If w, y span the space and u, u1 −u2 are orthogonal w.r.t. w, y and u1,
u2 − u are orthogonal w.r.t. w, y, then u2, u − u1 are orthogonal w.r.t.
w, y.

(17) If w, y span the space and u 6= 0V , then there exists a such that v−a ·u,
u are orthogonal w.r.t. w, y.

(18) u, v 
 �
‖ u1, v1 or u, v 
 �

‖ v1, u1 if and only if there exist a, b such that
a · (v − u) = b · (v1 − u1) but a 6= 0 or b 6= 0.

(19) 〈〈〈〈u, v〉〉, 〈〈u1, v1〉〉〉〉 ∈ λ( 
 �
V ) if and only if there exist a, b such that a · (v−

u) = b · (v1 − u1) but a 6= 0 or b 6= 0.
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Let us consider V , u, u1, v, v1, w, y. We say that u, u1, v and v1 are
orthogonal w.r.t. w, y if and only if:

(Def.3) u1 − u, v1 − v are orthogonal w.r.t. w, y.

One can prove the following proposition

(20) For all u, u1, v, v1, w, y holds u, u1, v and v1 are orthogonal w.r.t. w,
y if and only if u1 − u, v1 − v are orthogonal w.r.t. w, y.

Let us consider V , w, y. The ortogonality determined by w, y in V yielding a
binary relation on [: the vectors of V, the vectors of V :] is defined as follows:

(Def.4) 〈〈x, z〉〉 ∈ the ortogonality determined by w, y inV if and only if there exist
u, u1, v, v1 such that x = 〈〈u, u1〉〉 and z = 〈〈v, v1〉〉 and u, u1, v and v1 are
orthogonal w.r.t. w, y.

We now state the proposition

(21) For every binary relation R on [: the vectors of V, the vectors of V :]
holds R = the ortogonality determined by w, y inV if and only if for all x, z

holds 〈〈x, z〉〉 ∈ R if and only if there exist u, u1, v, v1 such that x = 〈〈u, u1〉〉
and z = 〈〈v, v1〉〉 and u, u1, v and v1 are orthogonal w.r.t. w, y.

In the sequel p, p1, q, q1 will denote elements of the points of Λ(OASpace V ).
We now state three propositions:

(22) The points of Λ(OASpace V ) = the vectors of V .

(23) The congruence of Λ(OASpace V ) = λ( 
 �
V ).

(24) If p = u and q = v and p1 = u1 and q1 = v1, then p, q ‖ p1, q1 if and
only if there exist a, b such that a · (v − u) = b · (v1 − u1) but a 6= 0 or
b 6= 0.

We consider metric affine structures which are systems
〈points, a parallelity, an orthogonality〉,

where the points constitute a non-empty set, the parallelity is a binary relation
on [: the points, the points :], and the orthogonality is a binary relation on [: the
points, the points :]. In the sequel P1 will denote a metric-affine structure. We
now define two new predicates. Let us consider P1, and let a, b, c, d be elements
of the points of P1. The predicate a, b ‖ c, d is defined as follows:

(Def.5) 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the parallelity of P1.

The predicate a, b ⊥ c, d is defined as follows:

(Def.6) 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the orthogonality of P1.

One can prove the following propositions:

(25) For all elements a, b, c, d of the points of P1 holds a, b ‖ c, d if and only
if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the parallelity of P1.

(26) For all elements a, b, c, d of the points of P1 holds a, b ⊥ c, d if and only
if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the orthogonality of P1.

Let us consider V , w, y. Let us assume that w, y span the space. The functor
AMSp(V,w, y) yielding a metric-affine structure is defined by:
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(Def.7) AMSp(V,w, y) = 〈 the vectors of
V, λ( 
 �

V ), the ortogonality determined by w, y in V 〉.

Next we state two propositions:

(27) If w, y span the space, then P1 = AMSp(V,w, y) if and only if P1 = 〈
the vectors of V, λ( 
 �

V ), the ortogonality determined by w, y in V 〉.

(28) If w, y span the space, then the points of AMSp(V,w, y) = the vectors
of V and the parallelity of AMSp(V,w, y) = λ( 
 �

V ) and the orthogo-
nality of AMSp(V,w, y) = the ortogonality determined by w, y in V .

Let us consider P1. The affine reduct of P1 yielding an affine structure is
defined by:

(Def.8) the affine reduct of P1 = 〈 the points of P1, the parallelity of P1〉.

We now state two propositions:

(29) For every P1 and for every A1 being an affine structure holds A1 =
the affine reduct of P1 if and only if A1 = 〈 the points of P1, the parallelity
of P1〉.

(30) If w, y span the space, then
the affine reduct of AMSp(V,w, y) = Λ(OASpace V ).

In the sequel p, p1, p2, q, q1, r, r1, r2 denote elements of the points of
AMSp(V,w, y). One can prove the following propositions:

(31) If w, y span the space and p = u and p1 = u1 and q = v and q1 = v1,
then p, q ⊥ p1, q1 if and only if u, v, u1 and v1 are orthogonal w.r.t. w, y.

(32) If w, y span the space and p = u and q = v and p1 = u1 and q1 = v1,
then p, q ‖ p1, q1 if and only if there exist a, b such that a · (v − u) =
b · (v1 − u1) but a 6= 0 or b 6= 0.

(33) If w, y span the space and p, q ⊥ p1, q1, then p1, q1 ⊥ p, q.

(34) If w, y span the space and p, q ⊥ p1, q1, then p, q ⊥ q1, p1.

(35) If w, y span the space, then for all p, q, r holds p, q ⊥ r, r.

(36) If w, y span the space and p, p1 ⊥ q, q1 and p, p1 ‖ r, r1, then p = p1 or
q, q1 ⊥ r, r1.

(37) If w, y span the space, then for every p, q, r there exists r1 such that
p, q ⊥ r, r1 and r 6= r1.

(38) If w, y span the space and p, p1 ⊥ q, q1 and p, p1 ⊥ r, r1, then p = p1 or
q, q1 ‖ r, r1.

(39) If w, y span the space and p, q ⊥ r, r1 and p, q ⊥ r, r2, then p, q ⊥ r1, r2.

(40) If w, y span the space and p, q ⊥ p, q, then p = q.

(41) If w, y span the space and p, q ⊥ p1, p2 and p1, q ⊥ p2, p, then p2, q ⊥
p, p1.

(42) If w, y span the space and p 6= p1, then for every q there exists q1 such
that p, p1 ‖ p, q1 and p, p1 ⊥ q1, q.

A metric-affine structure is called a metric affine space if:
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(Def.9) (i) 〈 the points of it, the parallelity of it〉 is an affine space,
(ii) for all elements a, b, c, d, p, q, r, s of the points of it holds if a, b ⊥ a, b,

then a = b but a, b ⊥ c, c but if a, b ⊥ c, d, then a, b ⊥ d, c and c, d ⊥ a, b

but if a, b ⊥ p, q and a, b ‖ r, s, then p, q ⊥ r, s or a = b but if a, b ⊥ p, q

and a, b ⊥ p, s, then a, b ⊥ q, s,
(iii) for all elements a, b, c of the points of it such that a 6= b there exists

an element x of the points of it such that a, b ‖ a, x and a, b ⊥ x, c,
(iv) for every elements a, b, c of the points of it there exists an element x

of the points of it such that a, b ⊥ c, x and c 6= x.

We now state two propositions:

(43) Given P1. Then P1 is a metric affine space if and only if the following
conditions are satisfied:

(i) 〈 the points of P1, the parallelity of P1〉 is an affine space,
(ii) for all elements a, b, c, d, p, q, r, s of the points of P1 holds if a, b ⊥ a, b,

then a = b but a, b ⊥ c, c but if a, b ⊥ c, d, then a, b ⊥ d, c and c, d ⊥ a, b

but if a, b ⊥ p, q and a, b ‖ r, s, then p, q ⊥ r, s or a = b but if a, b ⊥ p, q

and a, b ⊥ p, s, then a, b ⊥ q, s,
(iii) for all elements a, b, c of the points of P1 such that a 6= b there exists

an element x of the points of P1 such that a, b ‖ a, x and a, b ⊥ x, c,
(iv) for every elements a, b, c of the points of P1 there exists an element x

of the points of P1 such that a, b ⊥ c, x and c 6= x.

(44) If w, y span the space, then AMSp(V,w, y) is a metric affine space.

A metric-affine structure is said to be a metric affine plane if:

(Def.10) (i) 〈 the points of it, the parallelity of it〉 is an affine plane,
(ii) for all elements a, b, c, d, p, q, r, s of the points of it holds if a, b ⊥ a, b,

then a = b but a, b ⊥ c, c but if a, b ⊥ c, d, then a, b ⊥ d, c and c, d ⊥ a, b

but if a, b ⊥ p, q and a, b ‖ r, s, then p, q ⊥ r, s or a = b but if a, b ⊥ p, q

and a, b ⊥ r, s, then p, q ‖ r, s or a = b,
(iii) for every elements a, b, c of the points of it there exists an element x

of the points of it such that a, b ⊥ c, x and c 6= x.

Next we state four propositions:

(45) Given P1. Then P1 is a metric affine plane if and only if the following
conditions are satisfied:

(i) 〈 the points of P1, the parallelity of P1〉 is an affine plane,
(ii) for all elements a, b, c, d, p, q, r, s of the points of P1 holds if a, b ⊥ a, b,

then a = b but a, b ⊥ c, c but if a, b ⊥ c, d, then a, b ⊥ d, c and c, d ⊥ a, b

but if a, b ⊥ p, q and a, b ‖ r, s, then p, q ⊥ r, s or a = b but if a, b ⊥ p, q

and a, b ⊥ r, s, then p, q ‖ r, s or a = b,
(iii) for every elements a, b, c of the points of P1 there exists an element x

of the points of P1 such that a, b ⊥ c, x and c 6= x.

(46) If w, y span the space, then AMSp(V,w, y) is a metric affine plane.

(47) For an arbitrary x holds x is an element of the points of P1 if and only
if x is an element of the points of the affine reduct of P1.
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(48) For all elements a, b, c, d of the points of P1 and for all elements a′, b′,
c′, d′ of the points of the affine reduct of P1 such that a = a′ and b = b′

and c = c′ and d = d′ holds a, b ‖ c, d if and only if a′, b′ ‖ c′, d′.

Let P1 be a metric affine space. Then the affine reduct of P1 is an affine space.

Let P1 be a metric affine plane. Then the affine reduct of P1 is an affine plane.

The following proposition is true

(49) For every metric affine plane P1 holds P1 is a metric affine space.

We see that the metric affine plane is a metric affine space.

The following two propositions are true:

(50) For every metric affine space P1 such that the affine reduct of P1 is an
affine plane holds P1 is a metric affine plane.

(51) Let P1 be a metric-affine structure. Then P1 is a metric affine plane if
and only if the following conditions are satisfied:

(i) there exist elements a, b of the points of P1 such that a 6= b,
(ii) for all elements a, b, c, d, p, q, r, s of the points of P1 holds a, b ‖ b, a

and a, b ‖ c, c but if a, b ‖ p, q and a, b ‖ r, s, then p, q ‖ r, s or a = b but
if a, b ‖ a, c, then b, a ‖ b, c and there exists an element x of the points of
P1 such that a, b ‖ c, x and a, c ‖ b, x and there exist elements x, y, z of
the points of P1 such that x, y � x, z and there exists an element x of the
points of P1 such that a, b ‖ c, x and c 6= x but if a, b ‖ b, d and b 6= a,
then there exists an element x of the points of P1 such that c, b ‖ b, x and
c, a ‖ d, x but if a, b ⊥ a, b, then a = b and a, b ⊥ c, c but if a, b ⊥ c, d, then
a, b ⊥ d, c and c, d ⊥ a, b but if a, b ⊥ p, q and a, b ‖ r, s, then p, q ⊥ r, s or
a = b but if a, b ⊥ p, q and a, b ⊥ r, s, then p, q ‖ r, s or a = b and there
exists an element x of the points of P1 such that a, b ⊥ c, x and c 6= x but
if a, b � c, d, then there exists an element x of the points of P1 such that
a, b ‖ a, x and c, d ‖ c, x.

In the sequel x, a, b, c, d, p, q will denote elements of the points of P1. Let
us consider P1, a, b, c. The predicate L(a, b, c) is defined as follows:

(Def.11) a, b ‖ a, c.

We now state the proposition

(52) For every P1 and for all a, b, c holds L(a, b, c) if and only if a, b ‖ a, c.

Let us consider P1, a, b. The functor Line(a, b) yielding a subset of the points
of P1 is defined by:

(Def.12) for every element x of the points of P1 holds x ∈ Line(a, b) if and only
if L(a, b, x).

In the sequel A, K, M denote subsets of the points of P1. The following
proposition is true

(53) A = Line(a, b) if and only if for every x holds x ∈ A if and only if
L(a, b, x).

Let us consider P1, A. We say that A is a line if and only if:

(Def.13) there exist a, b such that a 6= b and A = Line(a, b).
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Next we state several propositions:

(54) A is a line if and only if there exist a, b such that a 6= b and A =
Line(a, b).

(55) For every metric affine space P1 and for all elements a, b, c of the points
of P1 and for all elements a′, b′, c′ of the points of the affine reduct of P1

such that a = a′ and b = b′ and c = c′ holds L(a, b, c) if and only if
L(a′, b′, c′).

(56) For every metric affine space P1 and for all elements a, b of the points
of P1 and for all elements a′, b′ of the points of the affine reduct of P1 such
that a = a′ and b = b′ holds Line(a, b) = Line(a′, b′).

(57) For an arbitrary X holds X is a subset of the points of P1 if and only
if X is a subset of the points of the affine reduct of P1.

(58) For every metric affine space P1 and for every subset X of the points
of P1 and for every subset Y of the points of the affine reduct of P1 such
that X = Y holds X is a line if and only if Y is a line.

Let us consider P1, a, b, K. The predicate a, b ⊥ K is defined as follows:

(Def.14) there exist p, q such that p 6= q and K = Line(p, q) and a, b ⊥ p, q.

Let us consider P1, K, M . The predicate K ⊥ M is defined by:

(Def.15) there exist p, q such that p 6= q and K = Line(p, q) and p, q ⊥ M .

Let us consider P1, K, M . The predicate K ‖ M is defined by:

(Def.16) there exist a, b, c, d such that a 6= b and c 6= d and K = Line(a, b) and
M = Line(c, d) and a, b ‖ c, d.

One can prove the following propositions:

(59) For all a, b, K holds a, b ⊥ K if and only if there exist p, q such that
p 6= q and K = Line(p, q) and a, b ⊥ p, q.

(60) For all K, M holds K ⊥ M if and only if there exist p, q such that
p 6= q and K = Line(p, q) and p, q ⊥ M .

(61) For all K, M holds K ‖ M if and only if there exist a, b, c, d such that
a 6= b and c 6= d and K = Line(a, b) and M = Line(c, d) and a, b ‖ c, d.

(62) If a, b ⊥ K, then K is a line but if K ⊥ M , then K is a line and M is
a line.

(63) K ⊥ M if and only if there exist a, b, c, d such that a 6= b and c 6= d

and K = Line(a, b) and M = Line(c, d) and a, b ⊥ c, d.

(64) For every metric affine space P1 and for all subsets M , N of the points
of P1 and for all subsets M ′, N ′ of the points of the affine reduct of P1

such that M = M ′ and N = N ′ holds M ‖ N if and only if M ′ ‖ N ′.

We adopt the following rules: P1 denotes a metric affine space, A, K, M , N

denote subsets of the points of P1, and a, b, c, d, p, q, r, s denote elements of
the points of P1. The following propositions are true:

(65) If K is a line, then a, a ⊥ K.

(66) If a, b ⊥ K but a, b ‖ c, d or c, d ‖ a, b and a 6= b, then c, d ⊥ K.
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(67) If a, b ⊥ K, then b, a ⊥ K.

(68) If K ‖ M , then M ‖ K.

(69) If r, s ⊥ K but K ‖ M or M ‖ K, then r, s ⊥ M .

(70) If K ⊥ M , then M ⊥ K.

(71) If a ∈ K and b ∈ K and a, b ⊥ K, then a = b.

(72) If K is a line, then K 6⊥ K.

(73) If K ⊥ M or M ⊥ K but K ‖ N or N ‖ K, then M ⊥ N and N ⊥ M .

(74) If K ‖ N , then K 6⊥ N .

(75) If a ∈ K and b ∈ K and c, d ⊥ K, then c, d ⊥ a, b and a, b ⊥ c, d.

(76) If a ∈ K and b ∈ K and a 6= b and K is a line, then K = Line(a, b).

(77) If a ∈ K and b ∈ K and a 6= b and K is a line but a, b ⊥ c, d or
c, d ⊥ a, b, then c, d ⊥ K.

(78) If a ∈ M and b ∈ M and c ∈ N and d ∈ N and M ⊥ N , then a, b ⊥ c, d.

(79) If p ∈ M and p ∈ N and a ∈ M and b ∈ N and a 6= b and a ∈ K and
b ∈ K and A ⊥ M and A ⊥ N and K is a line, then A ⊥ K.

(80) b, c ⊥ a, a and a, a ⊥ b, c and b, c ‖ a, a and a, a ‖ b, c.

(81) If a, b ‖ c, d, then a, b ‖ d, c and b, a ‖ c, d and b, a ‖ d, c and c, d ‖ a, b

and c, d ‖ b, a and d, c ‖ a, b and d, c ‖ b, a.

(82) Suppose that
(i) p 6= q,
(ii) p, q ‖ a, b and p, q ‖ c, d or p, q ‖ a, b and c, d ‖ p, q or a, b ‖ p, q and

c, d ‖ p, q or a, b ‖ p, q and p, q ‖ c, d.
Then a, b ‖ c, d.

(83) If a, b ⊥ c, d, then a, b ⊥ d, c and b, a ⊥ c, d and b, a ⊥ d, c and c, d ⊥ a, b

and c, d ⊥ b, a and d, c ⊥ a, b and d, c ⊥ b, a.

(84) Suppose that
(i) p 6= q,
(ii) p, q ‖ a, b and p, q ⊥ c, d or p, q ‖ c, d and p, q ⊥ a, b or p, q ‖ a, b and

c, d ⊥ p, q or p, q ‖ c, d and a, b ⊥ p, q or a, b ‖ p, q and c, d ⊥ p, q or
c, d ‖ p, q and a, b ⊥ p, q or a, b ‖ p, q and p, q ⊥ c, d or c, d ‖ p, q and
p, q ⊥ a, b.
Then a, b ⊥ c, d.

We follow the rules: P1 is a metric affine plane, K, M , N are subsets of
the points of P1, and x, a, b, c, d, p, q are elements of the points of P1. The
following propositions are true:

(85) Suppose that
(i) p 6= q,
(ii) p, q ⊥ a, b and p, q ⊥ c, d or p, q ⊥ a, b and c, d ⊥ p, q or a, b ⊥ p, q and

c, d ⊥ p, q or a, b ⊥ p, q and p, q ⊥ c, d.
Then a, b ‖ c, d.

(86) If a ∈ M and b ∈ M and a 6= b and M is a line and c ∈ N and d ∈ N

and c 6= d and N is a line and a, b ‖ c, d, then M ‖ N .



Analytical Metric Affine Spaces . . . 899

(87) If K ⊥ M or M ⊥ K but K ⊥ N or N ⊥ K, then M ‖ N and N ‖ M .

(88) If M ⊥ N , then there exists p such that p ∈ M and p ∈ N .

(89) If a, b ⊥ c, d, then there exists p such that L(a, b, p) and L(c, d, p).

(90) If a, b ⊥ K, then there exists p such that L(a, b, p) and p ∈ K.

(91) There exists x such that a, x ⊥ p, q and L(p, q, x).

(92) If K is a line, then there exists x such that a, x ⊥ K and x ∈ K.
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