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Summary. Elementary axioms and theorems on the theory of
algebraic structures, taken from the book [4]. First a loop structure
〈G, 0, +〉 is defined and six axioms corresponding to it are given. Group
is defined by extending the set of axioms with (a+b)+c = a+(b+c). At the
same time an alternate approach to the set of axioms is shown and both
sets are proved to yield the same algebraic structure. A trivial example
of loop is used to ensure the existence of the modes being constructed.
A multiplicative group is contemplated, which is quite similar to the
previously defined additive group (called simply a group here), but is
supposed to be of greater interest in the future considerations of algebraic
structures. The final section brings a slightly more sophisticated structure
i.e: a multiplicative loop/group with zero: 〈G, ·, 1, 0〉. Here the proofs are
a more challenging and the above trivial example is replaced by a more
common (and comprehensive) structure built on the foundation of real
numbers.

MML Identifier: ALGSTR 1.

The notation and terminology used in this paper are introduced in the following
articles: [1], [2], and [3]. We consider loop structures which are systems

〈a carrier, an addition, a zero〉,
where the carrier is a non-empty set, the addition is a binary operation on the
carrier, and the zero is an element of the carrier. In the sequel G1 will denote
a loop structure. Let us consider G1. An element of G1 is an element of the
carrier of G1.

In the sequel a, b will denote elements of G1. Let us consider G1, a, b. The
functor a + b yielding an element of G1 is defined as follows:

(Def.1) a + b = (the addition of G1)(a, b).

We now state the proposition
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(1) a + b = (the addition of G1)(a, b).

Let us consider G1. The functor 0G1
yielding an element of G1 is defined as

follows:

(Def.2) 0G1
= the zero of G1.

One can prove the following proposition

(2) 0G1
= the zero of G1.

Let x be arbitrary. The functor Extract(x) yielding an element of {x} is
defined by:

(Def.3) Extract(x) = x.

One can prove the following proposition

(3) For an arbitrary x holds Extract(x) = x.

The trivial loop a loop structure is defined as follows:

(Def.4) the trivial loop = 〈{0}, zo, Extract(0)〉.

One can prove the following three propositions:

(4) The trivial loop = 〈{0}, zo, Extract(0)〉.

(5) If a is an element of the trivial loop, then a = 0the trivial loop.

(6) For all elements a, b of the trivial loop holds a + b = 0the trivial loop.

A loop structure is called a loop if:

(Def.5) (i) for every element a of it holds a + 0it = a,
(ii) for every element a of it holds 0it + a = a,
(iii) for every elements a, b of it there exists an element x of it such that

a + x = b,
(iv) for every elements a, b of it there exists an element x of it such that

x + a = b,
(v) for all elements a, x, y of it such that a + x = a + y holds x = y,
(vi) for all elements a, x, y of it such that x + a = y + a holds x = y.

The following proposition is true

(7) Let G1 be a loop structure. Then G1 is a loop if and only if the following
conditions are satisfied:

(i) for every element a of G1 holds a + 0G1
= a,

(ii) for every element a of G1 holds 0G1
+ a = a,

(iii) for every elements a, b of G1 there exists an element x of G1 such that
a + x = b,

(iv) for every elements a, b of G1 there exists an element x of G1 such that
x + a = b,

(v) for all elements a, x, y of G1 such that a + x = a + y holds x = y,
(vi) for all elements a, x, y of G1 such that x + a = y + a holds x = y.

Let us note that it makes sense to consider the following constant. Then
the trivial loop is a loop.

A loop is called a group if:

(Def.6) for all elements a, b, c of it holds (a + b) + c = a + (b + c).
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We now state the proposition

(8) For every loop G1 holds G1 is a group if and only if for all elements a,
b, c of G1 holds (a + b) + c = a + (b + c).

We follow the rules: L will be a loop structure and a, b, c, x will be elements
of L. We now state the proposition

(9) L is a group if and only if for every a holds a + 0L = a and for every a

there exists x such that a + x = 0L and for all a, b, c holds (a + b) + c =
a + (b + c).

Let us note that it makes sense to consider the following constant. Then
the trivial loop is a group.

A group is called an Abelian group if:

(Def.7) for all elements a, b of it holds a + b = b + a.

Next we state two propositions:

(10) For every group G holds G is an Abelian group if and only if for all
elements a, b of G holds a + b = b + a.

(11) L is an Abelian group if and only if the following conditions are satisfied:
(i) for every a holds a + 0L = a,
(ii) for every a there exists x such that a + x = 0L,

(iii) for all a, b, c holds (a + b) + c = a + (b + c),
(iv) for all a, b holds a + b = b + a.

Let L be a group, and let a be an element of L. The functor −a yielding an
element of L is defined by:

(Def.8) a + (−a) = 0L.

We now state the proposition

(12) For every group L and for every element a of L holds a + (−a) = 0L.

In the sequel G will denote a group and a, b will denote elements of G. One
can prove the following proposition

(13) a + (−a) = 0G and (−a) + a = 0G.

Let us consider G, a, b. The functor a − b yields an element of G and is
defined as follows:

(Def.9) a − b = a + (−b).

Next we state the proposition

(14) a − b = a + (−b).

We consider mutiplicative loop structures which are systems
〈a carrier, a multiplication, a unity〉,

where the carrier is a non-empty set, the multiplication is a binary operation
on the carrier, and the unity is an element of the carrier. In the sequel G1 is
a mutiplicative loop structure. Let us consider G1. An element of G1 is an
element of the carrier of G1.

In the sequel a, b are elements of G1. Let us consider G1, a, b. The functor
a · b yields an element of G1 and is defined as follows:
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(Def.10) a · b = (the multiplication of G1)(a, b).

One can prove the following proposition

(15) a · b = (the multiplication of G1)(a, b).

Let us consider G1. The functor 1G1
yields an element of G1 and is defined

by:

(Def.11) 1G1
= the unity of G1.

One can prove the following proposition

(16) 1G1
= the unity of G1.

The trivial multiplicative loop a mutiplicative loop structure is defined as
follows:

(Def.12) the trivial multiplicative loop = 〈{0}, zo, Extract(0)〉.

The following propositions are true:

(17) The trivial multiplicative loop = 〈{0}, zo, Extract(0)〉.

(18) If a is an element of the trivial multiplicative loop, then
a = 1the trivialmultiplicative loop.

(19) For all elements a, b of the trivial multiplicative loop holds a · b =
1the trivialmultiplicative loop.

A mutiplicative loop structure is said to be a multiplicative loop if:

(Def.13) (i) for every element a of it holds a · (1it) = a,
(ii) for every element a of it holds (1it) · a = a,
(iii) for every elements a, b of it there exists an element x of it such that

a · x = b,
(iv) for every elements a, b of it there exists an element x of it such that

x · a = b,
(v) for all elements a, x, y of it such that a · x = a · y holds x = y,
(vi) for all elements a, x, y of it such that x · a = y · a holds x = y.

We now state the proposition

(20) Let L be a mutiplicative loop structure. Then L is a multiplicative loop
if and only if the following conditions are satisfied:

(i) for every element a of L holds a · (1L) = a,
(ii) for every element a of L holds (1L) · a = a,
(iii) for every elements a, b of L there exists an element x of L such that

a · x = b,
(iv) for every elements a, b of L there exists an element x of L such that

x · a = b,
(v) for all elements a, x, y of L such that a · x = a · y holds x = y,
(vi) for all elements a, x, y of L such that x · a = y · a holds x = y.

Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loop is a multiplicative loop.

A multiplicative loop is said to be a multiplicative group if:

(Def.14) for all elements a, b, c of it holds (a · b) · c = a · (b · c).
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One can prove the following proposition

(21) For every multiplicative loop L holds L is a multiplicative group if and
only if for all elements a, b, c of L holds (a · b) · c = a · (b · c).

We follow the rules: L is a mutiplicative loop structure and a, b, c, x are
elements of L. One can prove the following proposition

(22) L is a multiplicative group if and only if for every a holds a · (1L) = a

and for every a there exists x such that a · x = 1L and for all a, b, c holds
(a · b) · c = a · (b · c).

Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loop is a multiplicative group.

A multiplicative group is called a multiplicative Abelian group if:

(Def.15) for all elements a, b of it holds a · b = b · a.

The following propositions are true:

(23) For every multiplicative group G holds G is a multiplicative Abelian
group if and only if for all elements a, b of G holds a · b = b · a.

(24) L is a multiplicative Abelian group if and only if the following conditions
are satisfied:

(i) for every a holds a · (1L) = a,
(ii) for every a there exists x such that a · x = 1L,

(iii) for all a, b, c holds (a · b) · c = a · (b · c),
(iv) for all a, b holds a · b = b · a.

Let L be a multiplicative group, and let a be an element of L. The functor
a−1 yields an element of L and is defined by:

(Def.16) a · (a−1) = 1L.

The following proposition is true

(25) For every multiplicative group L and for every element a of L holds
a · a−1 = 1L.

In the sequel G is a multiplicative group and a, b are elements of G. The
following proposition is true

(26) a · a−1 = 1G and a−1 · a = 1G.

Let us consider G, a, b. The functor a

b
yields an element of G and is defined

by:

(Def.17) a

b
= a · b−1.

One can prove the following proposition

(27) a

b
= a · b−1.

We consider mutiplicative loop with zero structures which are systems
〈a carrier, a multiplication, a unity, a zero〉,

where the carrier is a non-empty set, the multiplication is a binary operation
on the carrier, the unity is an element of the carrier, and the zero is an element
of the carrier. In the sequel G1 will be a mutiplicative loop with zero structure.
Let us consider G1. An element of G1 is an element of the carrier of G1.
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In the sequel a, b will denote elements of G1. Let us consider G1, a, b. The
functor a · b yielding an element of G1 is defined by:

(Def.18) a · b = (the multiplication of G1)(a, b).

The following proposition is true

(28) a · b = (the multiplication of G1)(a, b).

Let us consider G1. The functor 1G1
yields an element of G1 and is defined

as follows:

(Def.19) 1G1
= the unity of G1.

One can prove the following proposition

(29) 1G1
= the unity of G1.

Let us consider G1. The functor 0G1
yielding an element of G1 is defined as

follows:

(Def.20) 0G1
= the zero of G1.

One can prove the following proposition

(30) 0G1
= the zero of G1.

The trivial multiplicative loop0 a mutiplicative loop with zero structure is
defined by:

(Def.21) the trivial multiplicative loop0 = 〈 � , · � , 1, 0〉.

One can prove the following three propositions:

(31) The trivial multiplicative loop0 = 〈 � , · � , 1, 0〉.

(32) For all real numbers q, p such that q 6= 0 there exists a real number y

such that p = q · y.

(33) For all real numbers q, p such that q 6= 0 there exists a real number y

such that p = y · q.

A mutiplicative loop with zero structure is called a multiplicative loop with
zero if:

(Def.22) (i) 0it 6= 1it,
(ii) for every element a of it holds a · (1it) = a,
(iii) for every element a of it holds (1it) · a = a,
(iv) for all elements a, b of it such that a 6= 0it there exists an element x of

it such that a · x = b,
(v) for all elements a, b of it such that a 6= 0it there exists an element x of

it such that x · a = b,
(vi) for all elements a, x, y of it such that a 6= 0it holds if a · x = a · y, then

x = y,
(vii) for all elements a, x, y of it such that a 6= 0it holds if x · a = y · a, then

x = y,
(viii) for every element a of it holds a · 0it = 0it,

(ix) for every element a of it holds 0it · a = 0it.

The following proposition is true
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(34) Let L be a mutiplicative loop with zero structure. Then L is a multi-
plicative loop with zero if and only if the following conditions are satisfied:

(i) 0L 6= 1L,
(ii) for every element a of L holds a · (1L) = a,

(iii) for every element a of L holds (1L) · a = a,
(iv) for all elements a, b of L such that a 6= 0L there exists an element x of

L such that a · x = b,
(v) for all elements a, b of L such that a 6= 0L there exists an element x of

L such that x · a = b,
(vi) for all elements a, x, y of L such that a 6= 0L holds if a · x = a · y, then

x = y,
(vii) for all elements a, x, y of L such that a 6= 0L holds if x · a = y · a, then

x = y,
(viii) for every element a of L holds a · 0L = 0L,

(ix) for every element a of L holds 0L · a = 0L.

Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loop0 is a multiplicative loop with zero.

A multiplicative loop with zero is called a multiplicative group with zero if:

(Def.23) for all elements a, b, c of it holds (a · b) · c = a · (b · c).

One can prove the following proposition

(35) For every multiplicative loop L with zero holds L is a multiplicative
group with zero if and only if for all elements a, b, c of L holds (a · b) · c =
a · (b · c).

We follow a convention: L denotes a mutiplicative loop with zero structure
and a, b, c, x denote elements of L. One can prove the following proposition

(36) L is a multiplicative group with zero if and only if the following condi-
tions are satisfied:

(i) 0L 6= 1L,
(ii) for every a holds a · (1L) = a,

(iii) for every a such that a 6= 0L there exists x such that a · x = 1L,
(iv) for all a, b, c holds (a · b) · c = a · (b · c),
(v) for every a holds a · 0L = 0L,
(vi) for every a holds 0L · a = 0L.

Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loop0 is a multiplicative group with zero.

A multiplicative group with zero is said to be a multiplicative commutative
group with zero if:

(Def.24) for all elements a, b of it holds a · b = b · a.

We now state two propositions:

(37) For every multiplicative group L with zero holds L is a multiplicative
commutative group with zero if and only if for all elements a, b of L holds
a · b = b · a.



840 Micha l Muzalewski and Wojciech Skaba

(38) L is a multiplicative commutative group with zero if and only if the
following conditions are satisfied:

(i) 0L 6= 1L,
(ii) for every a holds a · (1L) = a,
(iii) for every a such that a 6= 0L there exists x such that a · x = 1L,
(iv) for all a, b, c holds (a · b) · c = a · (b · c),
(v) for every a holds a · 0L = 0L,
(vi) for every a holds 0L · a = 0L,

(vii) for all a, b holds a · b = b · a.

Let L be a multiplicative group with zero, and let a be an element of L. Let
us assume that a 6= 0L. The functor a−1 yielding an element of L is defined as
follows:

(Def.25) a · (a−1) = 1L.

We now state the proposition

(39) For every multiplicative group L with zero and for every element a of
L such that a 6= 0L holds a · a−1 = 1L.

In the sequel G will be a multiplicative group with zero and a, b will be
elements of G. One can prove the following proposition

(40) If a 6= 0G, then a · a−1 = 1G and a−1 · a = 1G.

Let us consider G, a, b. Let us assume that b 6= 0G. The functor a

b
yields an

element of G and is defined by:

(Def.26) a

b
= a · b−1.

We now state the proposition

(41) If b 6= 0G, then a

b
= a · b−1.
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