From Loops to Abelian Multiplicative Groups with Zero ${ }^{1}$

Michał Muzalewski
Warsaw University
Białystok

Wojciech Skaba
Nicolaus Copernicus University
Toruń

Abstract

Summary. Elementary axioms and theorems on the theory of algebraic structures, taken from the book [4]. First a loop structure $\langle G, 0,+\rangle$ is defined and six axioms corresponding to it are given. Group is defined by extending the set of axioms with $(a+b)+c=a+(b+c)$. At the same time an alternate approach to the set of axioms is shown and both sets are proved to yield the same algebraic structure. A trivial example of loop is used to ensure the existence of the modes being constructed. A multiplicative group is contemplated, which is quite similar to the previously defined additive group (called simply a group here), but is supposed to be of greater interest in the future considerations of algebraic structures. The final section brings a slightly more sophisticated structure i.e: a multiplicative loop/group with zero: $\langle G, \cdot, 1,0\rangle$. Here the proofs are a more challenging and the above trivial example is replaced by a more common (and comprehensive) structure built on the foundation of real numbers.

MML Identifier: ALGSTR_1.

The notation and terminology used in this paper are introduced in the following articles: [1], [2], and [3]. We consider loop structures which are systems
<a carrier, an addition, a zero〉,
where the carrier is a non-empty set, the addition is a binary operation on the carrier, and the zero is an element of the carrier. In the sequel G_{1} will denote a loop structure. Let us consider G_{1}. An element of G_{1} is an element of the carrier of G_{1}.

In the sequel a, b will denote elements of G_{1}. Let us consider G_{1}, a, b. The functor $a+b$ yielding an element of G_{1} is defined as follows:
(Def.1) $a+b=\left(\right.$ the addition of $\left.G_{1}\right)(a, b)$.
We now state the proposition

[^0](1) $a+b=\left(\right.$ the addition of $\left.G_{1}\right)(a, b)$.

Let us consider G_{1}. The functor $0_{G_{1}}$ yielding an element of G_{1} is defined as follows:
(Def.2) $\quad 0_{G_{1}}=$ the zero of G_{1}.
One can prove the following proposition
(2) $0_{G_{1}}=$ the zero of G_{1}.

Let x be arbitrary. The functor $\operatorname{Extract}(x)$ yielding an element of $\{x\}$ is defined by:
(Def.3) $\quad \operatorname{Extract}(x)=x$.
One can prove the following proposition
(3) For an arbitrary x holds $\operatorname{Extract}(x)=x$.

The trivial loop a loop structure is defined as follows:
(Def.4) the trivial loop $=\langle\{0\}, z o, \operatorname{Extract}(0)\rangle$.
One can prove the following three propositions:
(4) The trivial loop $=\langle\{0\}, z o$, Extract (0) \rangle.
(5) If a is an element of the trivial loop, then $a=0_{\text {the trivial loop. }}$.
(6) For all elements a, b of the trivial loop holds $a+b=0_{\text {the trivial loop }}$.

A loop structure is called a loop if:
(Def.5) (i) for every element a of it holds $a+0_{i t}=a$,
(ii) for every element a of it holds $0_{\mathrm{it}}+a=a$,
(iii) for every elements a, b of it there exists an element x of it such that $a+x=b$,
(iv) for every elements a, b of it there exists an element x of it such that $x+a=b$,
(v) for all elements a, x, y of it such that $a+x=a+y$ holds $x=y$,
(vi) for all elements a, x, y of it such that $x+a=y+a$ holds $x=y$.

The following proposition is true
(7) Let G_{1} be a loop structure. Then G_{1} is a loop if and only if the following conditions are satisfied:
(i) for every element a of G_{1} holds $a+0_{G_{1}}=a$,
(ii) for every element a of G_{1} holds $0_{G_{1}}+a=a$,
(iii) for every elements a, b of G_{1} there exists an element x of G_{1} such that $a+x=b$,
(iv) for every elements a, b of G_{1} there exists an element x of G_{1} such that $x+a=b$,
(v) for all elements a, x, y of G_{1} such that $a+x=a+y$ holds $x=y$,
(vi) for all elements a, x, y of G_{1} such that $x+a=y+a$ holds $x=y$.

Let us note that it makes sense to consider the following constant. Then the trivial loop is a loop.

A loop is called a group if:
(Def.6) for all elements a, b, c of it holds $(a+b)+c=a+(b+c)$.

We now state the proposition
(8) For every loop G_{1} holds G_{1} is a group if and only if for all elements a, b, c of G_{1} holds $(a+b)+c=a+(b+c)$.
We follow the rules: L will be a loop structure and a, b, c, x will be elements of L. We now state the proposition
(9) $\quad L$ is a group if and only if for every a holds $a+0_{L}=a$ and for every a there exists x such that $a+x=0_{L}$ and for all a, b, c holds $(a+b)+c=$ $a+(b+c)$.
Let us note that it makes sense to consider the following constant. Then the trivial loop is a group.

A group is called an Abelian group if:
(Def.7) for all elements a, b of it holds $a+b=b+a$.
Next we state two propositions:
(10) For every group G holds G is an Abelian group if and only if for all elements a, b of G holds $a+b=b+a$.
(11) L is an Abelian group if and only if the following conditions are satisfied:
(i) for every a holds $a+0_{L}=a$,
(ii) for every a there exists x such that $a+x=0_{L}$,
(iii) for all a, b, c holds $(a+b)+c=a+(b+c)$,
(iv) for all a, b holds $a+b=b+a$.

Let L be a group, and let a be an element of L. The functor $-a$ yielding an element of L is defined by:
(Def.8) $\quad a+(-a)=0_{L}$.
We now state the proposition
(12) For every group L and for every element a of L holds $a+(-a)=0_{L}$.

In the sequel G will denote a group and a, b will denote elements of G. One can prove the following proposition
(13) $a+(-a)=0_{G}$ and $(-a)+a=0_{G}$.

Let us consider G, a, b. The functor $a-b$ yields an element of G and is defined as follows:
(Def.9) $\quad a-b=a+(-b)$.
Next we state the proposition
(14) $a-b=a+(-b)$.

We consider mutiplicative loop structures which are systems
\langle a carrier, a multiplication, a unity〉,
where the carrier is a non-empty set, the multiplication is a binary operation on the carrier, and the unity is an element of the carrier. In the sequel G_{1} is a mutiplicative loop structure. Let us consider G_{1}. An element of G_{1} is an element of the carrier of G_{1}.

In the sequel a, b are elements of G_{1}. Let us consider G_{1}, a, b. The functor $a \cdot b$ yields an element of G_{1} and is defined as follows:
(Def.10) $\quad a \cdot b=\left(\right.$ the multiplication of $\left.G_{1}\right)(a, b)$.
One can prove the following proposition
(15) $a \cdot b=$ (the multiplication of $\left.G_{1}\right)(a, b)$.

Let us consider G_{1}. The functor $1_{G_{1}}$ yields an element of G_{1} and is defined by:
(Def.11) $1_{G_{1}}=$ the unity of G_{1}.
One can prove the following proposition
(16) $1_{G_{1}}=$ the unity of G_{1}.

The trivial multiplicative loop a mutiplicative loop structure is defined as follows:
(Def.12) the trivial multiplicative loop $=\langle\{0\}, z o$, Extract $(0)\rangle$.
The following propositions are true:
(17) The trivial multiplicative loop $=\langle\{0\}, z o$, Extract $(0)\rangle$.
(18) If a is an element of the trivial multiplicative loop, then
$a=1_{\text {the trivial multiplicative loop }}$.
(19) For all elements a, b of the trivial multiplicative loop holds $a \cdot b=$
$1_{\text {the trivial multiplicative loop }}$.
A mutiplicative loop structure is said to be a multiplicative loop if:
(Def.13) (i) for every element a of it holds $a \cdot\left(1_{\mathrm{it}}\right)=a$,
(ii) for every element a of it holds $\left(1_{\mathrm{it}}\right) \cdot a=a$,
(iii) for every elements a, b of it there exists an element x of it such that $a \cdot x=b$,
(iv) for every elements a, b of it there exists an element x of it such that $x \cdot a=b$,
(v) for all elements a, x, y of it such that $a \cdot x=a \cdot y$ holds $x=y$,
(vi) for all elements a, x, y of it such that $x \cdot a=y \cdot a$ holds $x=y$.

We now state the proposition
(20) Let L be a mutiplicative loop structure. Then L is a multiplicative loop if and only if the following conditions are satisfied:
(i) for every element a of L holds $a \cdot\left(1_{L}\right)=a$,
(ii) for every element a of L holds $\left(1_{L}\right) \cdot a=a$,
(iii) for every elements a, b of L there exists an element x of L such that $a \cdot x=b$,
(iv) for every elements a, b of L there exists an element x of L such that $x \cdot a=b$,
(v) for all elements a, x, y of L such that $a \cdot x=a \cdot y$ holds $x=y$,
(vi) for all elements a, x, y of L such that $x \cdot a=y \cdot a$ holds $x=y$.

Let us note that it makes sense to consider the following constant. Then the trivial multiplicative loop is a multiplicative loop.

A multiplicative loop is said to be a multiplicative group if:
(Def.14) for all elements a, b, c of it holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.

One can prove the following proposition
(21) For every multiplicative loop L holds L is a multiplicative group if and only if for all elements a, b, c of L holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
We follow the rules: L is a mutiplicative loop structure and a, b, c, x are elements of L. One can prove the following proposition
(22) L is a multiplicative group if and only if for every a holds $a \cdot\left(1_{L}\right)=a$ and for every a there exists x such that $a \cdot x=1_{L}$ and for all a, b, c holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
Let us note that it makes sense to consider the following constant. Then the trivial multiplicative loop is a multiplicative group.

A multiplicative group is called a multiplicative Abelian group if:
(Def.15) for all elements a, b of it holds $a \cdot b=b \cdot a$.
The following propositions are true:
(23) For every multiplicative group G holds G is a multiplicative Abelian group if and only if for all elements a, b of G holds $a \cdot b=b \cdot a$.
(24) L is a multiplicative Abelian group if and only if the following conditions are satisfied:
(i) for every a holds $a \cdot\left(1_{L}\right)=a$,
(ii) for every a there exists x such that $a \cdot x=1_{L}$,
(iii) for all a, b, c holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
(iv) for all a, b holds $a \cdot b=b \cdot a$.

Let L be a multiplicative group, and let a be an element of L. The functor a^{-1} yields an element of L and is defined by:
(Def.16) $a \cdot\left(a^{-1}\right)=1_{L}$.
The following proposition is true
(25) For every multiplicative group L and for every element a of L holds $a \cdot a^{-1}=1_{L}$.
In the sequel G is a multiplicative group and a, b are elements of G. The following proposition is true

$$
\begin{equation*}
a \cdot a^{-1}=1_{G} \text { and } a^{-1} \cdot a=1_{G} . \tag{26}
\end{equation*}
$$

Let us consider G, a, b. The functor $\frac{a}{b}$ yields an element of G and is defined by:
(Def.17) $\quad \frac{a}{b}=a \cdot b^{-1}$.
One can prove the following proposition

$$
\begin{equation*}
\frac{a}{b}=a \cdot b^{-1} . \tag{27}
\end{equation*}
$$

We consider mutiplicative loop with zero structures which are systems <a carrier, a multiplication, a unity, a zero〉,
where the carrier is a non-empty set, the multiplication is a binary operation on the carrier, the unity is an element of the carrier, and the zero is an element of the carrier. In the sequel G_{1} will be a mutiplicative loop with zero structure. Let us consider G_{1}. An element of G_{1} is an element of the carrier of G_{1}.

In the sequel a, b will denote elements of G_{1}. Let us consider G_{1}, a, b. The functor $a \cdot b$ yielding an element of G_{1} is defined by:
(Def.18) $\quad a \cdot b=\left(\right.$ the multiplication of $\left.G_{1}\right)(a, b)$.
The following proposition is true
(28) $a \cdot b=$ (the multiplication of $\left.G_{1}\right)(a, b)$.

Let us consider G_{1}. The functor $1_{G_{1}}$ yields an element of G_{1} and is defined as follows:
(Def.19) $1_{G_{1}}=$ the unity of G_{1}.
One can prove the following proposition
(29) $1_{G_{1}}=$ the unity of G_{1}.

Let us consider G_{1}. The functor $0_{G_{1}}$ yielding an element of G_{1} is defined as follows:
(Def.20) $\quad 0_{G_{1}}=$ the zero of G_{1}.
One can prove the following proposition
(30) $0_{G_{1}}=$ the zero of G_{1}.

The trivial multiplicative loop $_{0}$ a mutiplicative loop with zero structure is defined by:
(Def.21) the trivial multiplicative loop $_{0}=\left\langle\mathbb{R},{ }_{\mathbb{R}}, 1,0\right\rangle$.
One can prove the following three propositions:
(31) The trivial multiplicative loop $_{0}=\left\langle\mathbb{R}, \cdot{ }_{\mathbb{R}}, 1,0\right\rangle$.
(32) For all real numbers q, p such that $q \neq 0$ there exists a real number y such that $p=q \cdot y$.
(33) For all real numbers q, p such that $q \neq 0$ there exists a real number y such that $p=y \cdot q$.
A mutiplicative loop with zero structure is called a multiplicative loop with zero if:
(Def.22) (i) $0_{\text {it }} \neq 1_{\text {it }}$,
(ii) for every element a of it holds $a \cdot\left(1_{\text {it }}\right)=a$,
(iii) for every element a of it holds ($\left.1_{\text {it }}\right) \cdot a=a$,
(iv) for all elements a, b of it such that $a \neq 0_{\text {it }}$ there exists an element x of it such that $a \cdot x=b$,
(v) for all elements a, b of it such that $a \neq 0_{\text {it }}$ there exists an element x of it such that $x \cdot a=b$,
(vi) for all elements a, x, y of it such that $a \neq 0_{\text {it }}$ holds if $a \cdot x=a \cdot y$, then $x=y$,
(vii) for all elements a, x, y of it such that $a \neq 0_{\text {it }}$ holds if $x \cdot a=y \cdot a$, then $x=y$,
(viii) for every element a of it holds $a \cdot 0_{i t}=0_{i t}$,
(ix) for every element a of it holds $0_{i t} \cdot a=0_{i t}$.

The following proposition is true
(34)

Let L be a mutiplicative loop with zero structure. Then L is a multiplicative loop with zero if and only if the following conditions are satisfied:
(i) $0_{L} \neq 1_{L}$,
(ii) for every element a of L holds $a \cdot\left(1_{L}\right)=a$,
(iii) for every element a of L holds $\left(1_{L}\right) \cdot a=a$,
(iv) for all elements a, b of L such that $a \neq 0_{L}$ there exists an element x of L such that $a \cdot x=b$,
(v) for all elements a, b of L such that $a \neq 0_{L}$ there exists an element x of L such that $x \cdot a=b$,
(vi) for all elements a, x, y of L such that $a \neq 0_{L}$ holds if $a \cdot x=a \cdot y$, then $x=y$,
(vii) for all elements a, x, y of L such that $a \neq 0_{L}$ holds if $x \cdot a=y \cdot a$, then $x=y$,
(viii) for every element a of L holds $a \cdot 0_{L}=0_{L}$,
(ix) for every element a of L holds $0_{L} \cdot a=0_{L}$.

Let us note that it makes sense to consider the following constant. Then the trivial multiplicative loop_{0} is a multiplicative loop with zero.

A multiplicative loop with zero is called a multiplicative group with zero if:
(Def.23) for all elements a, b, c of it holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
One can prove the following proposition
(35) For every multiplicative loop L with zero holds L is a multiplicative group with zero if and only if for all elements a, b, c of L holds $(a \cdot b) \cdot c=$ $a \cdot(b \cdot c)$.
We follow a convention: L denotes a mutiplicative loop with zero structure and a, b, c, x denote elements of L. One can prove the following proposition
(36) L is a multiplicative group with zero if and only if the following conditions are satisfied:
(i) $0_{L} \neq 1_{L}$,
(ii) for every a holds $a \cdot\left(1_{L}\right)=a$,
(iii) for every a such that $a \neq 0_{L}$ there exists x such that $a \cdot x=1_{L}$,
(iv) for all a, b, c holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
(v) for every a holds $a \cdot 0_{L}=0_{L}$,
(vi) for every a holds $0_{L} \cdot a=0_{L}$.

Let us note that it makes sense to consider the following constant. Then the trivial multiplicative loop $_{0}$ is a multiplicative group with zero.

A multiplicative group with zero is said to be a multiplicative commutative group with zero if:
(Def.24) for all elements a, b of it holds $a \cdot b=b \cdot a$.
We now state two propositions:
(37) For every multiplicative group L with zero holds L is a multiplicative commutative group with zero if and only if for all elements a, b of L holds $a \cdot b=b \cdot a$.
(38) L is a multiplicative commutative group with zero if and only if the following conditions are satisfied:
(i) $0_{L} \neq 1_{L}$,
(ii) for every a holds $a \cdot\left(1_{L}\right)=a$,
(iii) for every a such that $a \neq 0_{L}$ there exists x such that $a \cdot x=1_{L}$,
(iv) for all a, b, c holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
(v) for every a holds $a \cdot 0_{L}=0_{L}$,
(vi) for every a holds $0_{L} \cdot a=0_{L}$,
(vii) for all a, b holds $a \cdot b=b \cdot a$.

Let L be a multiplicative group with zero, and let a be an element of L. Let us assume that $a \neq 0_{L}$. The functor a^{-1} yielding an element of L is defined as follows:
(Def.25) $a \cdot\left(a^{-1}\right)=1_{L}$.
We now state the proposition
(39) For every multiplicative group L with zero and for every element a of L such that $a \neq 0_{L}$ holds $a \cdot a^{-1}=1_{L}$.
In the sequel G will be a multiplicative group with zero and a, b will be elements of G. One can prove the following proposition
(40) If $a \neq 0_{G}$, then $a \cdot a^{-1}=1_{G}$ and $a^{-1} \cdot a=1_{G}$.

Let us consider G, a, b. Let us assume that $b \neq 0_{G}$. The functor $\frac{a}{b}$ yields an element of G and is defined by:
(Def.26) $\quad \frac{a}{b}=a \cdot b^{-1}$.
We now state the proposition
(41) If $b \neq 0_{G}$, then $\frac{a}{b}=a \cdot b^{-1}$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Michał Muzalewski. Midpoint algebras. Formalized Mathematics, 1(3):483488, 1990.
[4] Wanda Szmielew. From Affine to Euclidean Geometry. Volume 27, PWN - D.Reidel Publ. Co., Warszawa - Dordrecht, 1983.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.

