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Summary. The main notion discussed is satisfiability. Interpreta-
tion and some auxiliary concepts are also introduced.
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The articles [6], [3], [1], [5], [4], [2], and [7] provide the notation and terminology
for this paper. In the sequel i, k are natural numbers and A, D are non-empty
sets. Let us consider A. The functor V(A) yields a non-empty set of functions
and is defined by:

V(A) = ABoundVar.

The following propositions are true:

(1) V(A) = ABoundVar.

(2) For an arbitrary x such that x is an element of V(A) holds x is a function
from BoundVar into A.

Let us consider A. Then V(A) is a non-empty set of functions from BoundVar
to A.

In the sequel x, y will be bound variables and v, v1 will be elements of V(A).
Let us consider A, v, x. Then v(x) is an element of A.

We now define two new functors. Let us consider A, and let p be an element
of BooleanA. The functor ¬p yields an element of BooleanA and is defined by:

for every element x of A holds (¬p)(x) = ¬(p(x)).
Let q be an element of BooleanA. The functor p ∧ q yielding an element of
BooleanA is defined as follows:

for every element x of A holds (p ∧ q)(x) = (p(x)) ∧ (q(x)).

We now state two propositions:
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(4)2 For every element p of BooleanA and for every element x of A holds
¬p(x) = ¬(p(x)).

(5) For all elements p, q of BooleanA and for every element x of A holds
p ∧ q(x) = (p(x)) ∧ (q(x)).

Let us consider A, and let f be an element of BooleanV(A), and let us consider
v. Then f(v) is an element of Boolean .

Let us consider A, x, and let p be an element of BooleanV(A). The functor
∧

x p yields an element of BooleanV(A) and is defined as follows:
for every v holds (

∧
x p)(v) = Boolean(false /∈ {p(v′) :

∧
y[x 6= y ⇒ v′(y) =

v(y)]}).

Next we state three propositions:

(6) For all x, v and for every element p of BooleanV(A) holds (
∧

x p)(v) =
Boolean(false /∈ {p(v′) :

∧
[x 6= y ⇒ v′(y) = v(y)]}).

(7) For every element p of BooleanV(A) holds (
∧

x p)(v) = false if and only
if there exists v1 such that p(v1) = false and for every y such that x 6= y
holds v1(y) = v(y).

(8) For every element p of BooleanV(A) holds (
∧

x p)(v) = true if and only
if for every v1 such that for every y such that x 6= y holds v1(y) = v(y)
holds p(v1) = true.

In the sequel ll is a variables list of k. Let us consider A, v, k, ll. The functor
ll[v] yielding a finite sequence of elements of A is defined as follows:

len(ll[v]) = k and for every i such that 1 ≤ i and i ≤ k holds (ll[v])(i) =
v(ll(i)).

We now state the proposition

(9) For all v, k, ll holds len(ll[v]) = k and for every natural number i such
that 1 ≤ i and i ≤ k holds ll[v](i) = v(ll(i)).

Let us consider A, k, ll, and let r be an element of Rel(A). The functor llǫr

yields an element of BooleanV(A) and is defined by:
for every element v of V(A) holds if ll[v] ∈ r, then (llǫr)(v) = true but if

ll[v] /∈ r, then (llǫr)(v) = false.

Next we state the proposition

(10) For all k, ll, v and for every element r of Rel(A) holds if ll[v] ∈ r, then
llǫr(v) = true but if ll[v] /∈ r, then llǫr(v) = false.

Let us consider A, and let F be a function from WFFCQC into BooleanV(A),

and let p be an element of WFFCQC. Then F (p) is an element of BooleanV(A).

Let us consider D. A function from PredSym into Rel(D) is called an inter-
pretation of D if:

for every element P of PredSym and for every element r of Rel(D) such that
it(P ) = r holds r = � D or Arity(P ) = Arity(r).

2The proposition (3) became obvious.
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Next we state two propositions:

(11) For every non-empty set D and for every function F from PredSym into
Rel(D) such that for every element P of PredSym and for every element
r of Rel(D) such that F (P ) = r holds r = � D or Arity(P ) = Arity(r)
holds F is an interpretation of D.

(12) For every D and for every interpretation J of D and for every element
P of PredSym and for every element r of Rel(D) such that J(P ) = r
holds r = � D or Arity(P ) = Arity(r).

Let us consider A, and let J be an interpretation of A, and let p be an element
of PredSym. Then J(p) is a set.

For simplicity we adopt the following rules: p, q, t will be elements of
WFFCQC, J will be an interpretation of A, P will be a k-ary predicate symbol,
and r will be an element of Rel(A). Let us consider A, k, J , P . Then J(P ) is
an element of Rel(A).

Let us consider A, J , p. The functor Valid(p, J) yielding an element of

BooleanV(A) is defined by:

there exists a function F from WFFCQC into BooleanV(A) such that
Valid(p, J) = F (p) and for all elements p, q of WFFCQC and for every bound
variable x and for every natural number k and for every variables list ll of k and

for every k-ary predicate symbol P and for all elements p′, q′ of BooleanV(A)

such that p′ = F (p) and q′ = F (q) holds
F (VERUM) = V(A) 7−→ true

and F (P [ll]) = llǫ(J(P )) and F (¬p) = ¬p′ and F (p ∧ q) = p′ ∧ q′ and
F (∀xp) =

∧
x p′.

We now state a number of propositions:

(13) Valid(VERUM, J) = V(A) 7−→ true.

(14) Valid(VERUM, J)(v) = true.

(15) Valid(P [ll], J) = llǫ(J(P )).

(16) If p = P [ll] and r = J(P ), then ll[v] ∈ r if and only if Valid(p, J)(v) =
true.

(17) If p = P [ll] and r = J(P ), then ll[v] /∈ r if and only if Valid(p, J)(v) =
false.

(18) If p = P [ll] and r = J(P ), then ll[v] /∈ r if and only if Valid(p, J)(v) =
false.

(19) Valid(¬p, J) = ¬Valid(p, J).

(20) Valid(¬p, J)(v) = ¬(Valid(p, J)(v)).

(21) Valid(p ∧ q, J) = Valid(p, J) ∧ Valid(q, J).

(22) Valid(p ∧ q, J)(v) = (Valid(p, J)(v)) ∧ (Valid(q, J)(v)).

(23) Valid(∀xp, J) =
∧

x Valid(p, J).

(24) Valid(p ∧ ¬p, J)(v) = false.

(25) Valid(¬(p ∧ ¬p), J)(v) = true.



742 Edmund Woronowicz

Let us consider A, p, J , v. The predicate J, v |= p is defined by:
Valid(p, J)(v) = true.

The following propositions are true:

(26) J, v |= p if and only if Valid(p, J)(v) = true.

(27) J, v |= P [ll] if and only if llǫ(J(P ))(v) = true.

(28) J, v |= ¬p if and only if J, v 6|= p.

(29) J, v |= p ∧ q if and only if J, v |= p and J, v |= q.

(30) J, v |= ∀xp if and only if (
∧

x Valid(p, J))(v) = true.

(31) J, v |= ∀xp if and only if for every v1 such that for every y such that
x 6= y holds v1(y) = v(y) holds Valid(p, J)(v1) = true.

(32) Valid(¬(¬p), J) = Valid(p, J).

(33) Valid(p ∧ p, J) = Valid(p, J).

(34) Valid(p ∧ p, J)(v) = Valid(p, J)(v).

(35) J, v |= p ⇒ q if and only if Valid(p, J)(v) = false or Valid(q, J)(v) =
true.

(36) J, v |= p ⇒ q if and only if if J, v |= p, then J, v |= q.

(37) For every element p of BooleanV(A) such that (
∧

x p)(v) = true holds
p(v) = true.

Let us consider A, J , p. The predicate J |= p is defined by:
for every v holds J, v |= p.

One can prove the following proposition

(38) J |= p if and only if for every v holds J, v |= p.

In the sequel w denotes an element of V(A). The scheme Lambda Val deals
with a non-empty set A, a bound variable B, a bound variable C, an element D
of V(A), and an element E of V(A) and states that:

there exists an element v of V(A) such that for every bound variable x such
that x 6= B holds v(x) = D(x) and v(B) = E(C)
for all values of the parameters.

One can prove the following three propositions:

(39) If x /∈ snb(p), then for all v, w such that for every y such that x 6= y
holds w(y) = v(y) holds Valid(p, J)(v) = Valid(p, J)(w).

(40) If J, v |= p and x /∈ snb(p), then for every w such that for every y such
that x 6= y holds w(y) = v(y) holds J,w |= p.

(41) J, v |= ∀xp if and only if for every w such that for every y such that
x 6= y holds w(y) = v(y) holds J,w |= p.

In the sequel s′ will be a formula. We now state a number of propositions:

(42) If x 6= y and p = s′(x) and q = s′(y), then for every v such that
v(x) = v(y) holds Valid(p, J)(v) = Valid(q, J)(v).

(43) If x 6= y and x /∈ snb(s′), then x /∈ snb(s′(y)).

(44) J, v |= VERUM.

(45) J, v |= p ∧ q ⇒ q ∧ p.
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(46) J, v |= (¬p ⇒ p) ⇒ p.

(47) J, v |= p ⇒ (¬p ⇒ q).

(48) J, v |= (p ⇒ q) ⇒ (¬(q ∧ t) ⇒ ¬(p ∧ t)).

(49) If J, v |= p and J, v |= p ⇒ q, then J, v |= q.

(50) J, v |= (∀xp) ⇒ p.

(51) J |= VERUM.

(52) J |= p ∧ q ⇒ q ∧ p.

(53) J |= (¬p ⇒ p) ⇒ p.

(54) J |= p ⇒ (¬p ⇒ q).

(55) J |= (p ⇒ q) ⇒ (¬(q ∧ t) ⇒ ¬(p ∧ t)).

(56) If J |= p and J |= p ⇒ q, then J |= q.

(57) J |= (∀xp) ⇒ p.

(58) If J |= p ⇒ q and x /∈ snb(p), then J |= p ⇒ (∀xq).

(59) For every formula s such that p = s(x) and q = s(y) and x /∈ snb(s)
and J |= p holds J |= q.
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[2] Czes law Byliński. A classical first order language. Formalized Mathematics,
1(4):669–676, 1990.
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