Interpretation and Satisfiability in the First Order Logic

Edmund Woronowicz ${ }^{1}$
Warsaw University
Białystok

Summary. The main notion discussed is satisfiability. Interpretation and some auxiliary concepts are also introduced.

MML Identifier: VALUAT_1.

The articles [6], [3], [1], [5], [4], [2], and [7] provide the notation and terminology for this paper. In the sequel i, k are natural numbers and A, D are non-empty sets. Let us consider A. The functor $\boldsymbol{V}(A)$ yields a non-empty set of functions and is defined by:
$\boldsymbol{V}(A)=A^{\text {BoundVar }}$.
The following propositions are true:
(1) $\quad \boldsymbol{V}(A)=A^{\text {BoundVar }}$.
(2) For an arbitrary x such that x is an element of $\boldsymbol{V}(A)$ holds x is a function from BoundVar into A.
Let us consider A. Then $\boldsymbol{V}(A)$ is a non-empty set of functions from BoundVar to A.

In the sequel x, y will be bound variables and v, v_{1} will be elements of $\boldsymbol{V}(A)$. Let us consider A, v, x. Then $v(x)$ is an element of A.

We now define two new functors. Let us consider A, and let p be an element of Boolean ${ }^{A}$. The functor $\neg p$ yields an element of Boolean ${ }^{A}$ and is defined by:
for every element x of A holds $(\neg p)(x)=\neg(p(x))$.
Let q be an element of Boolean ${ }^{A}$. The functor $p \wedge q$ yielding an element of Boolean ${ }^{A}$ is defined as follows:
for every element x of A holds $(p \wedge q)(x)=(p(x)) \wedge(q(x))$.
We now state two propositions:

[^0](4) ${ }^{2}$ For every element p of Boolean A and for every element x of A holds $\neg p(x)=\neg(p(x))$.
(5) For all elements p, q of Boolean ${ }^{A}$ and for every element x of A holds $p \wedge q(x)=(p(x)) \wedge(q(x))$.
Let us consider A, and let f be an element of Boolean $\boldsymbol{V}^{(A)}$, and let us consider v. Then $f(v)$ is an element of Boolean.

Let us consider A, x, and let p be an element of Boolean $\boldsymbol{V}^{(A)}$. The functor $\Lambda_{x} p$ yields an element of Boolean $\boldsymbol{V}(A)$ and is defined as follows:
for every v holds $\left(\bigwedge_{x} p\right)(v)=\operatorname{Boolean}\left(\right.$ false $\notin\left\{p\left(v^{\prime}\right): \bigwedge_{y}\left[x \neq y \Rightarrow v^{\prime}(y)=\right.\right.$ $v(y)]\})$.

Next we state three propositions:
(6) For all x, v and for every element p of Boolean ${ }^{\boldsymbol{V}(A)}$ holds $\left(\bigwedge_{x} p\right)(v)=$ Boolean (false $\left.\notin\left\{p\left(v^{\prime}\right): \wedge\left[x \neq y \Rightarrow v^{\prime}(y)=v(y)\right]\right\}\right)$.
(7) For every element p of Boolean $\boldsymbol{V}(A)$ holds $\left(\bigwedge_{x} p\right)(v)=$ false if and only if there exists v_{1} such that $p\left(v_{1}\right)=$ false and for every y such that $x \neq y$ holds $v_{1}(y)=v(y)$.
(8) For every element p of Boolean $\boldsymbol{V}^{(A)}$ holds $\left(\bigwedge_{x} p\right)(v)=$ true if and only if for every v_{1} such that for every y such that $x \neq y$ holds $v_{1}(y)=v(y)$ holds $p\left(v_{1}\right)=$ true.
In the sequel $l l$ is a variables list of k. Let us consider $A, v, k, l l$. The functor $l l[v]$ yielding a finite sequence of elements of A is defined as follows:
$\operatorname{len}(l l[v])=k$ and for every i such that $1 \leq i$ and $i \leq k$ holds $(l l[v])(i)=$ $v(l l(i))$.

We now state the proposition
(9) For all $v, k, l l$ holds $\operatorname{len}(l l[v])=k$ and for every natural number i such that $1 \leq i$ and $i \leq k$ holds $l l[v](i)=v(l l(i))$.
Let us consider $A, k, l l$, and let r be an element of $\operatorname{Rel}(A)$. The functor $l l \epsilon r$ yields an element of Boolean $\boldsymbol{V}(A)$ and is defined by:
for every element v of $\boldsymbol{V}(A)$ holds if $l l[v] \in r$, then $(l l \epsilon r)(v)=$ true but if $l l[v] \notin r$, then $(l l \epsilon r)(v)=$ false.

Next we state the proposition
(10) For all $k, l l, v$ and for every element r of $\operatorname{Rel}(A)$ holds if $l l[v] \in r$, then $l l \epsilon r(v)=$ true but if $l l[v] \notin r$, then $l l \epsilon r(v)=$ false.
Let us consider A, and let F be a function from $\mathrm{WFF}_{\mathrm{CQC}}$ into Boolean $\boldsymbol{V}(A)$, and let p be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $F(p)$ is an element of Boolean $\boldsymbol{V}(A)$.

Let us consider D. A function from $\operatorname{PredSym}$ into $\operatorname{Rel}(D)$ is called an interpretation of D if:
for every element P of $\operatorname{PredSym}$ and for every element r of $\operatorname{Rel}(D)$ such that $\operatorname{it}(P)=r$ holds $r=\varnothing_{D}$ or $\operatorname{Arity}(P)=\operatorname{Arity}(r)$.

[^1]Next we state two propositions:
(11) For every non-empty set D and for every function F from PredSym into $\operatorname{Rel}(D)$ such that for every element P of PredSym and for every element r of $\operatorname{Rel}(D)$ such that $F(P)=r$ holds $r=\varnothing_{D}$ or $\operatorname{Arity}(P)=\operatorname{Arity}(r)$ holds F is an interpretation of D.
(12) For every D and for every interpretation J of D and for every element P of PredSym and for every element r of $\operatorname{Rel}(D)$ such that $J(P)=r$ holds $r=\varnothing_{D}$ or $\operatorname{Arity}(P)=\operatorname{Arity}(r)$.
Let us consider A, and let J be an interpretation of A, and let p be an element of PredSym. Then $J(p)$ is a set.

For simplicity we adopt the following rules: p, q, t will be elements of $\mathrm{WFF}_{\mathrm{CQC}}, J$ will be an interpretation of A, P will be a k-ary predicate symbol, and r will be an element of $\operatorname{Rel}(A)$. Let us consider A, k, J, P. Then $J(P)$ is an element of $\operatorname{Rel}(A)$.

Let us consider A, J, p. The functor $\operatorname{Valid}(p, J)$ yielding an element of Boolean $\boldsymbol{V}^{(A)}$ is defined by:
there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into Boolean ${ }^{\boldsymbol{V}(A)}$ such that $\operatorname{Valid}(p, J)=F(p)$ and for all elements p, q of $\mathrm{WFF}_{\mathrm{CQC}}$ and for every bound variable x and for every natural number k and for every variables list $l l$ of k and for every k-ary predicate symbol P and for all elements p^{\prime}, q^{\prime} of Boolean $\boldsymbol{V}^{(A)}$ such that $p^{\prime}=F(p)$ and $q^{\prime}=F(q)$ holds
$F($ VERUM $)=\boldsymbol{V}(A) \longmapsto$ true
and $F(P[l l])=l l \epsilon(J(P))$ and $F(\neg p)=\neg p^{\prime}$ and $F(p \wedge q)=p^{\prime} \wedge q^{\prime}$ and $F\left(\forall_{x} p\right)=\bigwedge_{x} p^{\prime}$.

We now state a number of propositions:
(13) $\operatorname{Valid}($ VERUM,$J)=V(A) \longmapsto$ true.
(14) $\operatorname{Valid}(\operatorname{VERUM}, J)(v)=$ true.
(15) $\operatorname{Valid}(P[l l], J)=l l \epsilon(J(P))$.
(16) If $p=P[l l]$ and $r=J(P)$, then $l l[v] \in r$ if and only if $\operatorname{Valid}(p, J)(v)=$ true.
If $p=P[l l]$ and $r=J(P)$, then $l l[v] \notin r$ if and only if $\operatorname{Valid}(p, J)(v)=$ false.
(18) If $p=P[l l]$ and $r=J(P)$, then $l l[v] \notin r$ if and only if $\operatorname{Valid}(p, J)(v)=$ false.
(19) $\operatorname{Valid}(\neg p, J)=\neg \operatorname{Valid}(p, J)$.
(20) $\operatorname{Valid}(\neg p, J)(v)=\neg(\operatorname{Valid}(p, J)(v))$.
(21) $\operatorname{Valid}(p \wedge q, J)=\operatorname{Valid}(p, J) \wedge \operatorname{Valid}(q, J)$.
(22) $\operatorname{Valid}(p \wedge q, J)(v)=(\operatorname{Valid}(p, J)(v)) \wedge(\operatorname{Valid}(q, J)(v))$.
(23) $\operatorname{Valid}\left(\forall_{x} p, J\right)=\bigwedge_{x} \operatorname{Valid}(p, J)$.
(24) $\operatorname{Valid}(p \wedge \neg p, J)(v)=$ false.
(25) $\operatorname{Valid}(\neg(p \wedge \neg p), J)(v)=$ true.

Let us consider A, p, J, v. The predicate $J, v \models p$ is defined by:
$\operatorname{Valid}(p, J)(v)=$ true.
The following propositions are true:
(31) $J, v \models \forall_{x} p$ if and only if for every v_{1} such that for every y such that $x \neq y$ holds $v_{1}(y)=v(y)$ holds $\operatorname{Valid}(p, J)\left(v_{1}\right)=$ true.
$\operatorname{Valid}(\neg(\neg p), J)=\operatorname{Valid}(p, J)$.
$\operatorname{Valid}(p \wedge p, J)=\operatorname{Valid}(p, J)$.
$\operatorname{Valid}(p \wedge p, J)(v)=\operatorname{Valid}(p, J)(v)$.
$J, v \models p \Rightarrow q$ if and only if $\operatorname{Valid}(p, J)(v)=$ false or $\operatorname{Valid}(q, J)(v)=$ true.
$J, v \models p \Rightarrow q$ if and only if if $J, v \models p$, then $J, v \models q$.
For every element p of Boolean $\boldsymbol{V}(A)$ such that $\left(\bigwedge_{x} p\right)(v)=$ true holds $p(v)=$ true.
Let us consider A, J, p. The predicate $J \models p$ is defined by:
for every v holds $J, v \models p$.
One can prove the following proposition
(38) $\quad J \models p$ if and only if for every v holds $J, v \models p$.

In the sequel w denotes an element of $\boldsymbol{V}(A)$. The scheme $L a m b d a_{-} V a l$ deals with a non-empty set \mathcal{A}, a bound variable \mathcal{B}, a bound variable \mathcal{C}, an element \mathcal{D} of $\boldsymbol{V}(\mathcal{A})$, and an element \mathcal{E} of $\boldsymbol{V}(\mathcal{A})$ and states that:
there exists an element v of $\boldsymbol{V}(\mathcal{A})$ such that for every bound variable x such that $x \neq \mathcal{B}$ holds $v(x)=\mathcal{D}(x)$ and $v(\mathcal{B})=\mathcal{E}(\mathcal{C})$
for all values of the parameters.
One can prove the following three propositions:
(39) If $x \notin \operatorname{snb}(p)$, then for all v, w such that for every y such that $x \neq y$ holds $w(y)=v(y)$ holds $\operatorname{Valid}(p, J)(v)=\operatorname{Valid}(p, J)(w)$.
(40) If $J, v \models p$ and $x \notin \operatorname{snb}(p)$, then for every w such that for every y such that $x \neq y$ holds $w(y)=v(y)$ holds $J, w \models p$.
(41) $J, v \neq \forall_{x} p$ if and only if for every w such that for every y such that $x \neq y$ holds $w(y)=v(y)$ holds $J, w \models p$.
In the sequel s^{\prime} will be a formula. We now state a number of propositions:
(42) If $x \neq y$ and $p=s^{\prime}(x)$ and $q=s^{\prime}(y)$, then for every v such that $v(x)=v(y)$ holds $\operatorname{Valid}(p, J)(v)=\operatorname{Valid}(q, J)(v)$.
(44) $J, v \models$ VERUM.

$$
\begin{equation*}
J, v \models p \wedge q \Rightarrow q \wedge p \tag{45}
\end{equation*}
$$

(48) $J, v \models(p \Rightarrow q) \Rightarrow(\neg(q \wedge t) \Rightarrow \neg(p \wedge t))$.
(49) If $J, v \models p$ and $J, v \models p \Rightarrow q$, then $J, v \models q$.
(50) $J, v \models\left(\forall_{x} p\right) \Rightarrow p$.
(51) $J \models$ VERUM.
(52) $J \models p \wedge q \Rightarrow q \wedge p$.
(53) $J \models(\neg p \Rightarrow p) \Rightarrow p$.
(54) $J \models p \Rightarrow(\neg p \Rightarrow q)$.
(55) $\quad J \models(p \Rightarrow q) \Rightarrow(\neg(q \wedge t) \Rightarrow \neg(p \wedge t))$.
(56) If $J \models p$ and $J \models p \Rightarrow q$, then $J \models q$.
(57) $J \models\left(\forall_{x} p\right) \Rightarrow p$.
(58) If $J \models p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $J \models p \Rightarrow\left(\forall_{x} q\right)$.
(59) For every formula s such that $p=s(x)$ and $q=s(y)$ and $x \notin \operatorname{snb}(s)$ and $J \models p$ holds $J \models q$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[5] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[6] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[7] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received June 1, 1990

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C 1

[^1]: ${ }^{2}$ The proposition (3) became obvious.

