Interpretation and Satisfiability in the First Order Logic

Edmund Woronowicz¹ Warsaw University Białystok

Summary. The main notion discussed is satisfiability. Interpretation and some auxiliary concepts are also introduced.

MML Identifier: VALUAT_1.

The articles [6], [3], [1], [5], [4], [2], and [7] provide the notation and terminology for this paper. In the sequel i, k are natural numbers and A, D are non-empty sets. Let us consider A. The functor V(A) yields a non-empty set of functions and is defined by:

 $V(A) = A^{\text{BoundVar}}.$

The following propositions are true:

- (1) $V(A) = A^{\text{BoundVar}}$.
- (2) For an arbitrary x such that x is an element of V(A) holds x is a function from BoundVar into A.

Let us consider A. Then V(A) is a non-empty set of functions from BoundVar to A.

In the sequel x, y will be bound variables and v, v_1 will be elements of V(A). Let us consider A, v, x. Then v(x) is an element of A.

We now define two new functors. Let us consider A, and let p be an element of $Boolean^A$. The functor $\neg p$ yields an element of $Boolean^A$ and is defined by:

for every element x of A holds $(\neg p)(x) = \neg(p(x))$.

Let q be an element of $Boolean^A$. The functor $p \wedge q$ yielding an element of $Boolean^A$ is defined as follows:

for every element x of A holds $(p \wedge q)(x) = (p(x)) \wedge (q(x))$.

We now state two propositions:

¹Supported by RPBP III.24 C1

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (4)² For every element p of $Boolean^A$ and for every element x of A holds $\neg p(x) = \neg(p(x))$.
- (5) For all elements p, q of $Boolean^A$ and for every element x of A holds $p \wedge q(x) = (p(x)) \wedge (q(x))$.

Let us consider A, and let f be an element of Boolean $V^{(A)}$, and let us consider v. Then f(v) is an element of Boolean.

Let us consider A, x, and let p be an element of Boolean $V^{(A)}$. The functor $\bigwedge_{x} p$ yields an element of Boolean $V^{(A)}$ and is defined as follows:

for every v holds $(\bigwedge_x p)(v) = Boolean(false \notin \{p(v') : \bigwedge_y [x \neq y \Rightarrow v'(y) = v(y)]\}).$

Next we state three propositions:

- (6) For all x, v and for every element p of Boolean $V^{(A)}$ holds $(\bigwedge_x p)(v) = Boolean(false \notin \{p(v') : \bigwedge [x \neq y \Rightarrow v'(y) = v(y)]\}).$
- (7) For every element p of Boolean $V^{(A)}$ holds $(\bigwedge_x p)(v) = false$ if and only if there exists v_1 such that $p(v_1) = false$ and for every y such that $x \neq y$ holds $v_1(y) = v(y)$.
- (8) For every element p of Boolean $V^{(A)}$ holds $(\bigwedge_x p)(v) = true$ if and only if for every v_1 such that for every y such that $x \neq y$ holds $v_1(y) = v(y)$ holds $p(v_1) = true$.

In the sequel ll is a variables list of k. Let us consider A, v, k, ll. The functor ll[v] yielding a finite sequence of elements of A is defined as follows:

len(ll[v]) = k and for every i such that $1 \leq i$ and $i \leq k$ holds (ll[v])(i) = v(ll(i)).

We now state the proposition

(9) For all v, k, ll holds $\operatorname{len}(ll[v]) = k$ and for every natural number i such that $1 \leq i$ and $i \leq k$ holds ll[v](i) = v(ll(i)).

Let us consider A, k, ll, and let r be an element of Rel(A). The functor $ll\epsilon r$ yields an element of Boolean V(A) and is defined by:

for every element v of V(A) holds if $ll[v] \in r$, then $(ll\epsilon r)(v) = true$ but if $ll[v] \notin r$, then $(ll\epsilon r)(v) = false$.

Next we state the proposition

(10) For all k, ll, v and for every element r of Rel(A) holds if $ll[v] \in r$, then $ll\epsilon r(v) = true$ but if $ll[v] \notin r$, then $ll\epsilon r(v) = false$.

Let us consider A, and let F be a function from WFF_{CQC} into Boolean $V^{(A)}$, and let p be an element of WFF_{CQC}. Then F(p) is an element of Boolean $V^{(A)}$.

Let us consider D. A function from PredSym into $\operatorname{Rel}(D)$ is called an interpretation of D if:

for every element P of PredSym and for every element r of $\operatorname{Rel}(D)$ such that $\operatorname{it}(P) = r$ holds $r = \emptyset_D$ or $\operatorname{Arity}(P) = \operatorname{Arity}(r)$.

²The proposition (3) became obvious.

Next we state two propositions:

- (11) For every non-empty set D and for every function F from PredSym into $\operatorname{Rel}(D)$ such that for every element P of PredSym and for every element r of $\operatorname{Rel}(D)$ such that F(P) = r holds $r = \varnothing_D$ or $\operatorname{Arity}(P) = \operatorname{Arity}(r)$ holds F is an interpretation of D.
- (12) For every D and for every interpretation J of D and for every element P of PredSym and for every element r of $\operatorname{Rel}(D)$ such that J(P) = r holds $r = \emptyset_D$ or $\operatorname{Arity}(P) = \operatorname{Arity}(r)$.

Let us consider A, and let J be an interpretation of A, and let p be an element of PredSym. Then J(p) is a set.

For simplicity we adopt the following rules: p, q, t will be elements of WFF_{CQC}, J will be an interpretation of A, P will be a k-ary predicate symbol, and r will be an element of Rel(A). Let us consider A, k, J, P. Then J(P) is an element of Rel(A).

Let us consider A, J, p. The functor $\operatorname{Valid}(p, J)$ yielding an element of Boolean $V^{(A)}$ is defined by:

there exists a function F from WFF_{CQC} into Boolean $V^{(A)}$ such that Valid(p, J) = F(p) and for all elements p, q of WFF_{CQC} and for every bound variable x and for every natural number k and for every variables list ll of k and for every k-ary predicate symbol P and for all elements p', q' of Boolean $V^{(A)}$ such that p' = F(p) and q' = F(q) holds

 $F(\text{VERUM}) = V(A) \longmapsto true$

and $F(P[ll]) = ll\epsilon(J(P))$ and $F(\neg p) = \neg p'$ and $F(p \land q) = p' \land q'$ and $F(\forall_x p) = \bigwedge_x p'$.

We now state a number of propositions:

- (13) Valid(VERUM, J) = $V(A) \mapsto true$.
- (14) Valid(VERUM, J)(v) = true.
- (15) Valid $(P[ll], J) = ll\epsilon(J(P)).$
- (16) If p = P[ll] and r = J(P), then $ll[v] \in r$ if and only if Valid(p, J)(v) = true.
- (17) If p = P[ll] and r = J(P), then $ll[v] \notin r$ if and only if Valid(p, J)(v) = false.
- (18) If p = P[ll] and r = J(P), then $ll[v] \notin r$ if and only if Valid(p, J)(v) = false.
- (19) Valid $(\neg p, J) = \neg$ Valid(p, J).
- (20) Valid $(\neg p, J)(v) = \neg$ (Valid(p, J)(v)).
- (21) $\operatorname{Valid}(p \wedge q, J) = \operatorname{Valid}(p, J) \wedge \operatorname{Valid}(q, J).$
- (22) Valid $(p \land q, J)(v) = (Valid(p, J)(v)) \land (Valid(q, J)(v)).$
- (23) Valid $(\forall_x p, J) = \bigwedge_x \text{Valid}(p, J).$
- (24) Valid $(p \land \neg p, J)(v) = false.$
- (25) Valid $(\neg (p \land \neg p), J)(v) = true.$

Let us consider A, p, J, v. The predicate $J, v \models p$ is defined by: Valid(p, J)(v) = true.

The following propositions are true:

- (26) $J, v \models p$ if and only if Valid(p, J)(v) = true.
- (27) $J, v \models P[ll]$ if and only if $ll\epsilon(J(P))(v) = true$.
- (28) $J, v \models \neg p$ if and only if $J, v \not\models p$.
- (29) $J, v \models p \land q$ if and only if $J, v \models p$ and $J, v \models q$.
- (30) $J, v \models \forall_x p$ if and only if $(\bigwedge_x \text{Valid}(p, J))(v) = true$.
- (31) $J, v \models \forall_x p$ if and only if for every v_1 such that for every y such that $x \neq y$ holds $v_1(y) = v(y)$ holds $\operatorname{Valid}(p, J)(v_1) = true$.
- (32) Valid $(\neg(\neg p), J) =$ Valid(p, J).
- (33) Valid $(p \land p, J) =$ Valid(p, J).
- (34) Valid $(p \wedge p, J)(v) =$ Valid(p, J)(v).
- (35) $J, v \models p \Rightarrow q$ if and only if Valid(p, J)(v) = false or Valid(q, J)(v) = true.
- (36) $J, v \models p \Rightarrow q$ if and only if if $J, v \models p$, then $J, v \models q$.
- (37) For every element p of Boolean V(A) such that $(\bigwedge_x p)(v) = true$ holds p(v) = true.

Let us consider A, J, p. The predicate $J \models p$ is defined by: for every v holds $J, v \models p$.

One can prove the following proposition

(38) $J \models p$ if and only if for every v holds $J, v \models p$.

In the sequel w denotes an element of V(A). The scheme Lambda_Val deals with a non-empty set \mathcal{A} , a bound variable \mathcal{B} , a bound variable \mathcal{C} , an element \mathcal{D} of $V(\mathcal{A})$, and an element \mathcal{E} of $V(\mathcal{A})$ and states that:

there exists an element v of $V(\mathcal{A})$ such that for every bound variable x such that $x \neq \mathcal{B}$ holds $v(x) = \mathcal{D}(x)$ and $v(\mathcal{B}) = \mathcal{E}(\mathcal{C})$

for all values of the parameters.

One can prove the following three propositions:

- (39) If $x \notin \operatorname{snb}(p)$, then for all v, w such that for every y such that $x \neq y$ holds w(y) = v(y) holds $\operatorname{Valid}(p, J)(v) = \operatorname{Valid}(p, J)(w)$.
- (40) If $J, v \models p$ and $x \notin \operatorname{snb}(p)$, then for every w such that for every y such that $x \neq y$ holds w(y) = v(y) holds $J, w \models p$.
- (41) $J, v \models \forall_x p$ if and only if for every w such that for every y such that $x \neq y$ holds w(y) = v(y) holds $J, w \models p$.

In the sequel s' will be a formula. We now state a number of propositions:

- (42) If $x \neq y$ and p = s'(x) and q = s'(y), then for every v such that v(x) = v(y) holds $\operatorname{Valid}(p, J)(v) = \operatorname{Valid}(q, J)(v)$.
- (43) If $x \neq y$ and $x \notin \operatorname{snb}(s')$, then $x \notin \operatorname{snb}(s'(y))$.
- (44) $J, v \models \text{VERUM}.$
- (45) $J, v \models p \land q \Rightarrow q \land p.$

- $(46) \quad J,v \models (\neg p \Rightarrow p) \Rightarrow p.$
- $(47) \qquad J,v \models p \Rightarrow (\neg p \Rightarrow q).$
- (48) $J, v \models (p \Rightarrow q) \Rightarrow (\neg (q \land t) \Rightarrow \neg (p \land t)).$
- (49) If $J, v \models p$ and $J, v \models p \Rightarrow q$, then $J, v \models q$.
- (50) $J, v \models (\forall_x p) \Rightarrow p.$
- (51) $J \models \text{VERUM}.$
- (52) $J \models p \land q \Rightarrow q \land p.$
- $(53) \quad J \models (\neg p \Rightarrow p) \Rightarrow p.$
- (54) $J \models p \Rightarrow (\neg p \Rightarrow q).$
- $(55) \quad J \models (p \Rightarrow q) \Rightarrow (\neg (q \land t) \Rightarrow \neg (p \land t)).$
- (56) If $J \models p$ and $J \models p \Rightarrow q$, then $J \models q$.
- (57) $J \models (\forall_x p) \Rightarrow p.$
- (58) If $J \models p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $J \models p \Rightarrow (\forall_x q)$.
- (59) For every formula s such that p = s(x) and q = s(y) and $x \notin \operatorname{snb}(s)$ and $J \models p$ holds $J \models q$.

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303–311, 1990.
- [5] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [6] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [7] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received June 1, 1990