A Construction of an Abstract Space of Congruence of Vectors ${ }^{1}$

Grzegorz Lewandowski
Agriculture and Education School
Siedlce

Krzysztof Prażmowski
Warsaw University
Białystok

Abstract

Summary. In the class of abelian groups a subclass of two-divisiblegroups is singled out, and in the latter, a subclass of uniquely-two-divisiblegroups. With every such a group a special geometrical structure, more precisely the structure of "congruence of vectors" is correlated. The notion of "affine vector space" (denoted by AffVect) is introduced. This term is defined by means of suitable axiom system. It is proved that every structure of the congruence of vectors determined by a non trivial uniquely two divisible group is a affine vector space.

MML Identifier: TDGROUP.

The articles [5], [1], [4], [2], and [3] provide the notation and terminology for this paper. In the sequel $A G$ denotes an Abelian group and G denotes a group structure. One can prove the following propositions:
(1) \mathbb{R}_{G} is an Abelian group.
(2) If $G=\mathbb{R}_{\mathrm{G}}$, then for every element a of the carrier of G there exists an element b of the carrier of G such that (the addition of $G)(b, b)=a$.
(3) If $G=\mathbb{R}_{\mathrm{G}}$, then for every element a of the carrier of G such that (the addition of $G)(a, a)=0_{G}$ holds $a=0_{G}$.
An Abelian group is called a 2-divisible group if:
for every element a of the carrier of it there exists an element b of the carrier of it such that (the addition of it) $(b, b)=a$.

The following two propositions are true:
(4) For every $A G$ holds $A G$ is a 2-divisible group if and only if for every element a of the carrier of $A G$ there exists an element b of the carrier of $A G$ such that (the addition of $A G)(b, b)=a$.
(5) \mathbb{R}_{G} is a 2-divisible group.

[^0]A 2-divisible group is said to be a uniquely 2-divisible group if:
for every element a of the carrier of it such that (the addition of it)(a, $a)=0_{\mathrm{it}}$ holds $a=0_{\mathrm{it}}$.

One can prove the following three propositions:
(6) For every 2 -divisible group $A G$ holds $A G$ is a uniquely 2 -divisible group if and only if for every element a of the carrier of $A G$ such that (the addition of $A G)(a, a)=0_{A G}$ holds $a=0_{A G}$.
(7) For every $A G$ holds $A G$ is a uniquely 2-divisible group if and only if for every element a of the carrier of $A G$ there exists an element b of the carrier of $A G$ such that (the addition of $A G)(b, b)=a$ and for every element a of the carrier of $A G$ such that (the addition of $A G)(a, a)=0_{A G}$ holds $a=0_{A G}$.
(8) \mathbb{R}_{G} is a uniquely 2-divisible group.

We adopt the following rules: $A D G$ is a uniquely 2-divisible group and a, b, $c, d, a^{\prime}, b^{\prime}, c^{\prime}, p, q$ are elements of the carrier of $A D G$. Let us consider $A D G$, a, b. The functor $a \# b$ yielding an element of the carrier of $A D G$ is defined as follows:
$a \# b=($ the addition of $A D G)(a, b)$.
Let us consider $A D G$. The functor $\operatorname{Congr}_{A D G}$ yields a binary relation on : the carrier of $A D G$, the carrier of $A D G$: and is defined as follows:
for all a, b, c, d holds $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in \operatorname{Congr}_{A D G}$ if and only if $a \# d=b \# c$.
Let us consider $A D G$. The functor Vectors $(A D G)$ yielding an affine structure is defined by:
$\operatorname{Vectors}(A D G)=\left\langle\right.$ the carrier of $\left.A D G, \operatorname{Congr}_{A D G}\right\rangle$.
Next we state the proposition
(9) The points of $\operatorname{Vectors}(A D G)=$ the carrier of $A D G$ and the congruence of Vectors $(A D G)=\operatorname{Congr}_{A D G}$.
Let us consider $A D G, a, b, c, d$. The predicate $a, b \Rightarrow c, d$ is defined by:
$\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of Vectors $(A D G)$.
Next we state a number of propositions:
(10) $a, b \Rightarrow c, d$ if and only if $a \# d=b \# c$.
(11) If $G=\mathbb{R}_{\mathrm{G}}$, then there exist elements a, b of the carrier of G such that $a \neq b$.
(12) There exists $A D G$ and there exist a, b such that $a \neq b$.
(13) If $a, b \Rightarrow c, c$, then $a=b$.
(14) If $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$, then $a, b \Rightarrow c, d$.
(15) There exists d such that $a, b \Rightarrow c, d$.
(16) If $a, b \Rightarrow a^{\prime}, b^{\prime}$ and $a, c \Rightarrow a^{\prime}, c^{\prime}$, then $b, c \Rightarrow b^{\prime}, c^{\prime}$.
(17) There exists b such that $a, b \Rightarrow b, c$.
(18) If $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$, then $b=b^{\prime}$.
(19) If $a, b \Rightarrow c, d$, then $a, c \Rightarrow b, d$.

In the sequel $A S$ denotes an affine structure. Let us consider $A S$, and let a, b, c, d be elements of the points of $A S$. The predicate $a, b \Rightarrow c, d$ is defined by:
$\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.
One can prove the following proposition
(20) Suppose there exist elements a, b of the carrier of $A D G$ such that $a \neq b$. Then
(i) there exist elements a, b of the points of $\operatorname{Vectors}(A D G)$ such that $a \neq b$,
(ii) for all elements a, b, c of the points of Vectors $(A D G)$ such that $a, b \Rightarrow$ c, c holds $a=b$,
(iii) for all elements a, b, c, d, p, q of the points of Vectors $(A D G)$ such that $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$ holds $a, b \Rightarrow c, d$,
(iv) for every elements a, b, c of the points of Vectors $(A D G)$ there exists an element d of the points of Vectors $(A D G)$ such that $a, b \Rightarrow c, d$,
(v) for all elements $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ of the points of $\operatorname{Vectors}(A D G)$ such that $a, b \Rightarrow a^{\prime}, b^{\prime}$ and $a, c \Rightarrow a^{\prime}, c^{\prime}$ holds $b, c \Rightarrow b^{\prime}, c^{\prime}$,
(vi) for every elements a, c of the points of $\operatorname{Vectors}(A D G)$ there exists an element b of the points of Vectors $(A D G)$ such that $a, b \Rightarrow b, c$,
(vii) for all elements a, b, c, b^{\prime} of the points of Vectors $(A D G)$ such that $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$ holds $b=b^{\prime}$,
(viii) for all elements a, b, c, d of the points of $\operatorname{Vectors}(A D G)$ such that $a, b \Rightarrow c, d$ holds $a, c \Rightarrow b, d$.
An affine structure is said to be a space of free vectors if:
(i) there exist elements a, b of the points of it such that $a \neq b$,
(ii) for all elements a, b, c of the points of it such that $a, b \Rightarrow c, c$ holds $a=b$,
(iii) for all elements a, b, c, d, p, q of the points of it such that $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$ holds $a, b \Rightarrow c, d$,
(iv) for every elements a, b, c of the points of it there exists an element d of the points of it such that $a, b \Rightarrow c, d$,
(v) for all elements $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ of the points of it such that $a, b \Rightarrow a^{\prime}, b^{\prime}$ and $a, c \Rightarrow a^{\prime}, c^{\prime}$ holds $b, c \Rightarrow b^{\prime}, c^{\prime}$,
(vi) for every elements a, c of the points of it there exists an element b of the points of it such that $a, b \Rightarrow b, c$,
(vii) for all elements a, b, c, b^{\prime} of the points of it such that $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$ holds $b=b^{\prime}$,
(viii) for all elements a, b, c, d of the points of it such that $a, b \Rightarrow c, d$ holds $a, c \Rightarrow b, d$.

We now state several propositions:
(21) Given $A S$. Then the following conditions are equivalent:
(i) there exist elements a, b of the points of $A S$ such that $a \neq b$ and for all elements a, b, c of the points of $A S$ such that $a, b \Rightarrow c, c$ holds $a=b$ and for all elements a, b, c, d, p, q of the points of $A S$ such that $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$ holds $a, b \Rightarrow c, d$ and for every elements a, b, c of the points of $A S$ there exists an element d of the points of $A S$ such that $a, b \Rightarrow c, d$ and for all elements $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ of the points of $A S$ such that $a, b \Rightarrow a^{\prime}, b^{\prime}$
and $a, c \Rightarrow a^{\prime}, c^{\prime}$ holds $b, c \Rightarrow b^{\prime}, c^{\prime}$ and for every elements a, c of the points of $A S$ there exists an element b of the points of $A S$ such that $a, b \Rightarrow b, c$ and for all elements a, b, c, b^{\prime} of the points of $A S$ such that $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$ holds $b=b^{\prime}$ and for all elements a, b, c, d of the points of $A S$ such that $a, b \Rightarrow c, d$ holds $a, c \Rightarrow b, d$,
(ii) $A S$ is a space of free vectors.
(22) If there exist elements a, b of the carrier of $A D G$ such that $a \neq b$, then Vectors $(A D G)$ is a space of free vectors.
(23) For every $A D G$ and for all elements a, b of the carrier of $A D G$ holds $a \# b=($ the addition of $A D G)(a, b)$.
(24) For every $A D G$ and for every binary relation R on $:$ the carrier of $A D G$, the carrier of $A D G$: holds $R=\operatorname{Congr}_{A D G}$ if and only if for all elements a, b, c, d of the carrier of $A D G$ holds $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in R$ if and only if $a \# d=b \# c$.
(25) For every $A D G$ and for every $A S$ being an affine structure holds $A S=$ Vectors $(A D G)$ if and only if $A S=\left\langle\right.$ the carrier of $A D G$, Congr $\left._{A D G}\right\rangle$.
(26) For every $A D G$ and for all elements a, b, c, d of the carrier of $A D G$ holds $a, b \Rightarrow c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of Vectors $(A D G)$.
(27) For every $A S$ being an affine structure and for all elements a, b, c, d of the points of $A S$ holds $a, b \Rightarrow c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C3.

