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Summary. A continuation of [10]. The propositions and theorems
proved in [10] are extended to finite sequences. Several additional the-
orems related to semigroup operations of functions not included in [10]
are proved. The special notation for operations on finite sequences is
introduced.
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The articles [11], [1], [9], [6], [2], [12], [7], [3], [13], [8], [10], [5], and [4] provide the
terminology and notation for this paper. For simplicity we adopt the following
rules: x will be arbitrary, C, C ′, D, E will denote non-empty sets, c, c1, c2,
c3 will denote elements of C, B, B1, B2 will denote elements of Fin C, A will
denote an element of Fin C ′, d, d1, d2, d3, d4, e will denote elements of D, F ,
G will denote binary operations on D, u will denote a unary operation on D,
f , f ′ will denote functions from C into D, g will denote a function from C ′ into
D, H will denote a binary operation on E, h will denote a function from D
into E, i, j will denote natural numbers, s will denote a function, p, p1, p2, q
will denote finite sequences of elements of D, and T1, T2 will denote elements
of Di. We now state a number of propositions:

(1) Seg i is an element of Fin � .

(2) i + j 7−→ x = (i 7−→ x) � (j 7−→ x).

(3) If F is commutative and F is associative and c1 6= c2, then F -
∑

{c1,c2} f =
F (f(c1), f(c2)).

(4) If F is commutative and F is associative but B 6= ∅ or F has a unity
and c /∈ B, then F -

∑
B∪{c} f = F (F -

∑
B f, f(c)).

(5) If F is commutative and F is associative and c1 6= c2 and c1 6= c3 and
c2 6= c3, then F -

∑
{c1,c2,c3} f = F (F (f(c1), f(c2)), f(c3)).
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(6) If F is commutative and F is associative but B1 6= ∅ and B2 6= ∅ or F
has a unity and B1∩B2 = ∅, then F -

∑
B1∪B2

f = F (F -
∑

B1
f, F -

∑
B2

f).

(7) If F is commutative and F is associative but A 6= ∅ or F has a unity
and there exists s such that dom s = A and rng s = B and s is one-to-one
and g � A = f · s, then F -

∑
A g = F -

∑
B f .

(8) If H is commutative and H is associative but B 6= ∅ or H has a unity
and f is one-to-one, then H-

∑
f◦B h = H-

∑
B(h · f).

(9) If F is commutative and F is associative but B 6= ∅ or F has a unity
and f � B = f ′ � B, then F -

∑
B f = F -

∑
B f ′.

(10) If F is commutative and F is associative and F has a unity and e = 1F

and f ◦ B = {e}, then F -
∑

B f = e.

(11) Suppose F is commutative and F is associative and F has a unity and
e = 1F and G(e, e) = e and for all d1, d2, d3, d4 holds F (G(d1, d2),
G(d3, d4)) = G(F (d1, d3), F (d2, d4)). Then G(F -

∑
B f, F -

∑
B f ′) =

F -
∑

B G◦(f, f ′).

(12) If F is commutative and F is associative and F has a unity, then
F (F -

∑
B f, F -

∑
B f ′) = F -

∑
B F ◦(f, f ′).

(13) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G = F ◦(idD, the inverse operation w.r.t.F), then
G(F -

∑
B f, F -

∑
B f ′) = F -

∑
B G◦(f, f ′).

(14) If F is commutative and F is associative and F has a unity and e = 1F

and G is distributive w.r.t. F and G(d, e) = e, then G(d, F -
∑

B f) =
F -

∑
B(G◦(d, f)).

(15) If F is commutative and F is associative and F has a unity and e = 1F

and G is distributive w.r.t. F and G(e, d) = e, then G(F -
∑

B f, d) =
F -

∑
B(G◦(f, d)).

(16) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G is distributive w.r.t. F , then G(d, F -

∑
B f) =

F -
∑

B(G◦(d, f)).

(17) If F is commutative and F is associative and F has a unity and F
has an inverse operation and G is distributive w.r.t. F , then G(F -

∑
B f,

d) = F -
∑

B(G◦(f, d)).

(18) Suppose F is commutative and F is associative and F has a unity
and H is commutative and H is associative and H has a unity and
h(1F ) = 1H and for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)).
Then h(F -

∑
B f) = H-

∑
B(h · f).

(19) If F is commutative and F is associative and F has a unity and u(1F ) =

1F and u is distributive w.r.t. F , then u(F -
∑

B f) = F -
∑

B(u · f).

(20) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G is distributive w.r.t. F , then

(G◦(d, idD))(F -
∑

B f) = F -
∑

B(G◦(d, idD) · f).

(21) If F is commutative and F is associative and F has a unity and F
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has an inverse operation, then (the inverse operation w.r.t.F)(F-
∑

B f) =
F-

∑
B((the inverse operation w.r.t.F) · f).

Let us consider D, p, d. The functor Ωd(p) yields a function from � into D
and is defined by:

if i ∈ Seg(len p), then (Ωd(p))(i) = p(i) but if i /∈ Seg(len p), then (Ωd(p))(i) =
d.

Next we state several propositions:

(22) For every function h from � into D holds h = Ωd(p) if and only if for
every i holds if i ∈ Seg(len p), then h(i) = p(i) but if i /∈ Seg(len p), then
h(i) = d.

(23) Ωd(p) � Seg(len p) = p.

(24) Ωd((p � q)) � Seg(len p) = p.

(25) rng(Ωd(p)) = rng p ∪ {d}.

(26) h · Ωd(p) = Ωh(d)((h · p)).

Let us consider i. Then Seg i is an element of Fin � .

Let X be a non-empty subset of � , and let x be an element of X. Then {x}
is an element of Fin X. Let y be an element of X. Then {x, y} is an element of
Fin X. Let z be an element of X. Then {x, y, z} is an element of Fin X.

Let us consider D, F , p. The functor F � p yielding an element of D is
defined by:

F � p = F -
∑

Seg(len p) Ω1F
(p).

Next we state several propositions:

(27) F � p = F -
∑

Seg(len p) Ω1F
(p).

(28) If F is commutative and F is associative and F has a unity, then F �
εD = 1F .

(29) If F is commutative and F is associative, then F � 〈d〉 = d.

(30) If F is commutative and F is associative but len p 6= 0 or F has a unity,
then F � (p � 〈d〉) = F (F � p, d).

(31) If F is commutative and F is associative but len p1 6= 0 and len p2 6= 0
or F has a unity, then F � (p1 � p2) = F (F � p1, F � p2).

(32) If F is commutative and F is associative but len p 6= 0 or F has a unity,
then F � (〈d〉 � p) = F (d, F � p).

Let us consider D, d1, d2. Then 〈d1, d2〉 is a finite sequence of elements of D.

One can prove the following proposition

(33) If F is commutative and F is associative, then F � 〈d1, d2〉 = F (d1, d2).

Let us consider D, d1, d2, d3. Then 〈d1, d2, d3〉 is a finite sequence of elements
of D.

We now state a number of propositions:

(34) If F is commutative and F is associative, then F � 〈d1, d2, d3〉 = F (F (d1,
d2), d3).
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(35) If F is commutative and F is associative and F has a unity and e = 1F ,
then F � (i 7−→ e) = e.

(36) If F is commutative and F is associative, then F � (1 7−→ d) = d.

(37) If F is commutative and F is associative but i 6= 0 and j 6= 0 or F has
a unity, then F � (i + j 7−→ d) = F (F � (i 7−→ d), F � (j 7−→ d)).

(38) If F is commutative and F is associative but i 6= 0 and j 6= 0 or F has
a unity, then F � (i · j 7−→ d) = F � (j 7−→ F � (i 7−→ d)).

(39) Suppose F is commutative and F is associative and F has a unity and
H is commutative and H is associative and H has a unity and h(1F ) = 1H

and for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)). Then h(F � p) =
H � (h · p).

(40) If F is commutative and F is associative and F has a unity and u(1F ) =

1F and u is distributive w.r.t. F , then u(F � p) = F � (u · p).

(41) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G is distributive w.r.t. F , then (G◦(d, idD))(F �
p) = F � (G◦(d, idD) · p).

(42) If F is commutative and F is associative and F has a unity and F has an
inverse operation, then (the inverse operation w.r.t.F)(F � p) = F � ((the in-
verse operation w.r.t.F) · p).

(43) Suppose that

(i) F is commutative,

(ii) F is associative,

(iii) F has a unity,

(iv) e = 1F ,

(v) G(e, e) = e,

(vi) for all d1, d2, d3, d4 holds F (G(d1, d2), G(d3, d4)) = G(F (d1, d3),
F (d2, d4)),

(vii) len p = len q.

Then G(F � p, F � q) = F � G◦(p, q).

(44) Suppose F is commutative and F is associative and F has a unity and
e = 1F and G(e, e) = e and for all d1, d2, d3, d4 holds F (G(d1, d2), G(d3,
d4)) = G(F (d1, d3), F (d2, d4)). Then G(F � T1, F � T2) = F � G◦(T1,
T2).

(45) If F is commutative and F is associative and F has a unity and len p =
len q, then F (F � p, F � q) = F � F ◦(p, q).

(46) If F is commutative and F is associative and F has a unity, then F (F �
T1, F � T2) = F � F ◦(T1, T2).

(47) If F is commutative and F is associative and F has a unity, then F �
(i 7−→ F (d1, d2)) = F (F � (i 7−→ d1), F � (i 7−→ d2)).

(48) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G = F ◦(idD, the inverse operation w.r.t.F), then
G(F � T1, F � T2) = F � G◦(T1, T2).
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(49) If F is commutative and F is associative and F has a unity and e = 1F

and G is distributive w.r.t. F and G(d, e) = e, then G(d, F � p) =
F � (G◦(d, p)).

(50) If F is commutative and F is associative and F has a unity and e = 1F

and G is distributive w.r.t. F and G(e, d) = e, then G(F � p, d) =
F � (G◦(p, d)).

(51) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G is distributive w.r.t. F , then G(d, F � p) =
F � (G◦(d, p)).

(52) If F is commutative and F is associative and F has a unity and F
has an inverse operation and G is distributive w.r.t. F , then G(F � p,
d) = F � (G◦(p, d)).
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