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Summary. A continuation of [10]. The propositions and theorems
proved in [10] are extended to finite sequences. Several additional the-
orems related to semigroup operations of functions not included in [10]
are proved. The special notation for operations on finite sequences is
introduced.

MML Identifier: SETWOP_2.

The articles [11], [1], [9], [6], [2], [12], [7], [3], [13], [8], [10], [5], and [4] provide the
terminology and notation for this paper. For simplicity we adopt the following
rules: z will be arbitrary, C, C’, D, E will denote non-empty sets, c, c1, ca,
c3 will denote elements of C', B, By, By will denote elements of FinC, A will
denote an element of Fin C’, d, dy, da, ds, dy, e will denote elements of D, F,
G will denote binary operations on D, u will denote a unary operation on D,
f, f’ will denote functions from C into D, g will denote a function from C’ into
D, H will denote a binary operation on F, h will denote a function from D
into F, 4, j will denote natural numbers, s will denote a function, p, p1, p2, ¢
will denote finite sequences of elements of D, and 17, T5 will denote elements
of D*. We now state a number of propositions:

(1) Segiis an element of FinN.

(2) itjr—a= ()" ().

(3) If Fis commutative and F'is associative and ¢1 # ca, then F-37¢, .1 f =
F(f(c1), fle2)).

(4) If F is commutative and F is associative but B # () or F' has a unity
and ¢ ¢ B, then F- Yoo [ =F(F-2p f, f(e).

(5) If F is commutative and F is associative and ¢; # ¢z and ¢ # ¢3 and

co # c3, then F- Z{cl,cg,cg} f= F(F(f(cl)7 f(CQ))v f(Cg))
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(6) If Fis commutative and F' is associative but By # () and By # () or F
has a unity and BiNBy = 0, then F-Y"p g, f = F(F-Y 5, f, F-Yp, ).

(7) If F is commutative and F' is associative but A # () or F' has a unity
and there exists s such that doms = A and rngs = B and s is one-to-one
andg| A= f-s,then F-Y ,g=F-> 5 f.

(8) If H is commutative and H is associative but B # () or H has a unity
and f is one-to-one, then H-3"roph = H-3 p(h- f).

(9) If F is commutative and F is associative but B # () or F has a unity
and f | B=f'| B,then F-Y> 5 f = F-> g5 f.

(10) If F is commutative and F is associative and F' has a unity and e = 15
and f° B = {e}, then F-Y 5 f =e.

(11)  Suppose F' is commutative and F is associative and F' has a unity and
e = 1r and G(e, e) = e and for all d;, dg, d3, d4 holds F(G(dy, d2),
G(dg, d4)) = G(F(dl, dg), F(dg, d4)) Then G(F— ZB f, F- ZB f/) =
F'ZB Go(fv f/)

(12) If F is commutative and F' is associative and F' has a unity, then
FF-3p f, F-Xp [') = F-3Xp F°(f, ).

(13) If F is commutative and F' is associative and F' has a unity and F' has
an inverse operation and G = F o (id p, the inverse operation w.r.t.F), then
GU-Xpf F-Xpf)=F-XpG(f, f).

(14) If F is commutative and F is associative and F' has a unity and e = 15
and G is distributive w.r.t. F and G(d, e) = e, then G(d, F-> 5 f) =
F-35(G°(d, ).

(15)  If F' is commutative and F is associative and F' has a unity and e = 15
and G is distributive w.r.t. F and G(e, d) = e, then G(F->5 f,d) =
F- ZB(GO(fv d))

(16) If F is commutative and F is associative and F' has a unity and F' has
an inverse operation and G is distributive w.r.t. F, then G(d, F-Y 5 f) =
F- ZB(GO(d7 f))

(17) If F is commutative and F' is associative and F' has a unity and F'
has an inverse operation and G is distributive w.r.t. F', then G(F- > g f,
d) = F-3p(G°(f, d)).

(18)  Suppose F' is commutative and F' is associative and F' has a unity
and H is commutative and H is associative and H has a unity and
h(lp) = 1y and for all dl, do holds h(F(dl, dg)) = H(h(dl), h(dg))
Then h(F-3p f) = H->"g(h- f).

(19) If F is commutative and F is associative and F' has a unity and u(1r) =
1r and u is distributive w.r.t. F, then w(F-Y 5 f) = F->gu- f).

(20) If F'is commutative and F' is associative and F' has a unity and F' has
an inverse operation and G is distributive w.r.t. F, then
(G°(d,idp))(F- X f) = F- Y (G°(d,idp) - f).

(21) If F is commutative and F' is associative and F' has a unity and F'
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has an inverse operation, then (theinverseoperation w.r.t.F)(F- > 5f) =
F- Y p((theinverse operation w.r.t.F) - f).
Let us consider D, p, d. The functor Q4(p) yields a function from N into D
and is defined by:
if i € Seg(lenp), then (24(p))(¢) = p(¢) but if i ¢ Seg(lenp), then (24(p))(7) =
d.
Next we state several propositions:
(22)  For every function h from N into D holds h = Qg4(p) if and only if for
every ¢ holds if ¢ € Seg(lenp), then h(i) = p(i) but if i ¢ Seg(lenp), then
h(i) = d.

(23)  Qa(p) | Seg(len p) = p.

(24)  Qu((p~ q)) I Seg(lenp) = p.
(25)  1g(Qu(p)) = mgp U {d}.
(26)  h-Qa(p) = Qua)((h - p)).

Let us consider i. Then Segi is an element of Fin N.

Let X be a non-empty subset of R, and let x be an element of X. Then {z}
is an element of Fin X. Let y be an element of X. Then {z,y} is an element of
Fin X. Let z be an element of X. Then {z,y, z} is an element of Fin X.

Let us consider D, F, p. The functor F' ® p yielding an element of D is
defined by:

Fep=F- ZSeg(lenp) QIF (p)
Next we state several propositions:
(27)  F@®p=F-Ygeg(tenp) 17 (P)-
(28) If F'is commutative and F is associative and F' has a unity, then F' ®
ep =1r.
(29) If F is commutative and F' is associative, then F' ® (d) = d.
(30) If F is commutative and F' is associative but lenp # 0 or F' has a unity,
then F&® (p~ (d)) = F(F ®p, d).
(31) If F is commutative and F' is associative but lenp; # 0 and lenpy # 0
or F has a unity, then FF'® (p1 "~ p2) = F(F ® p1, F ® p2).
(32) If F is commutative and F' is associative but lenp # 0 or F' has a unity,
then F® ((d) ~p) = F(d, F®p).
Let us consider D, dy, da. Then (d;,ds) is a finite sequence of elements of D.
One can prove the following proposition
(33) If F is commutative and F' is associative, then F & (dy,ds) = F(dy, d2).

Let us consider D, dy, da, d3. Then (dy,ds,ds) is a finite sequence of elements
of D.

We now state a number of propositions:

(34) If F is commutative and F' is associative, then F&(d1,ds,ds) = F(F(dy,
ds), ds).
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(35)  If F is commutative and F' is associative and F' has a unity and e = 1p,
then F & (i — e) =e.
(36) If F'is commutative and F is associative, then F' & (1 — d) = d.

(37) If F is commutative and F' is associative but ¢ # 0 and j # 0 or F' has
a unity, then F® (i +j+—d)=F(F® (i~ d), F® (j — d)).

(38) If F'is commutative and F is associative but 7 # 0 and j # 0 or F' has
a unity, then F® (i-j—d)=F & (j — F ® (i — d)).

(39)  Suppose F' is commutative and F is associative and F' has a unity and
H is commutative and H is associative and H has a unity and h(1r) = 1g
and for all dy, dg holds h(F(dy, d2)) = H(h(dy), h(dz)). Then h(F ®p) =
H® (h-p).

(40) If F'is commutative and F' is associative and F has a unity and u(1r) =
1 and wu is distributive w.r.t. F, then w(F ® p) = F ® (u - p).

(41)  If F is commutative and F' is associative and F' has a unity and F' has
an inverse operation and G is distributive w.r.t. F, then (G°(d,idp))(F &
p) = F®&(G°(d,idp) - p).

(42)  If F'is commutative and F' is associative and F' has a unity and F' has an
inverse operation, then (the inverse operation w.r.t.F)(F®p) = F&((thein-
verse operation w.r.t.F) - p).

(43)  Suppose that
(i) F is commutative,
(ii)  F is associative,
(iii)  F has a unity,
) e=1p,
) Gle, e)=e,
) for all dl, dg, dg, d4 holds F(G(dl, dg), G(dg, d4)) = G(F(dl, dg),
F(da, d4))7
(vii) lenp =leng.
Then G(F@p, F®q) = F® G°(p, q).

(44)  Suppose F' is commutative and F' is associative and F' has a unity and
e =1r and G(e, ) = e and for all dy, ds, d3, d4 holds F(G(dy, dq2), G(ds,
d4)) = G(F(dl, dg), F(dg, d4)) Then G(F ®T, F® TQ) =F® GO(Tl,
T3).

(45) If F' is commutative and F' is associative and F' has a unity and lenp =
leng, then F(F®p, F®q) =F ® F°(p, q).

(46) If F is commutative and F is associative and F' has a unity, then F'(F ®
T, F@Tg) =F® FO(Tl, Tg).

(47) If F is commutative and F is associative and F' has a unity, then F' ®
(i+— F(di, d2)) =F(F® (i+—dy), F® (i — d2)).

(48)  If F is commutative and F' is associative and F' has a unity and F' has

an inverse operation and G = F o (id p, the inverse operation w.r.t.F), then
G(F@ Tl, F@Tg) =F® GO(Tl, TQ)
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(49) If F is commutative and F is associative and F' has a unity and e = 1p
and G is distributive w.r.t. F and G(d, e) = e, then G(d, F ® p) =
F®(G°(d,p)).

(50) If F'is commutative and F' is associative and F' has a unity and e = 15
and G is distributive w.r.t. F and G(e, d) = e, then G(F ® p, d) =
F® (G°(p,d)).

(51) If F is commutative and F' is associative and F' has a unity and F' has
an inverse operation and G is distributive w.r.t. F, then G(d, F ® p) =
Fe(G°(d,p)).

(52) If F' is commutative and F' is associative and F' has a unity and F

has an inverse operation and G is distributive w.r.t. F, then G(F & p,
d)=F & (G°(p,d)).
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