Semigroup operations on finite subsets

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. A continuation of [10]. The propositions and theorems proved in [10] are extended to finite sequences. Several additional theorems related to semigroup operations of functions not included in [10] are proved. The special notation for operations on finite sequences is introduced.

MML Identifier: SETWOP_2.

The articles [11], [1], [9], [6], [2], [12], [7], [3], [13], [8], [10], [5], and [4] provide the terminology and notation for this paper. For simplicity we adopt the following rules: x will be arbitrary, C, C^{\prime}, D, E will denote non-empty sets, c, c_{1}, c_{2}, c_{3} will denote elements of C, B, B_{1}, B_{2} will denote elements of Fin C, A will denote an element of Fin $C^{\prime}, d, d_{1}, d_{2}, d_{3}, d_{4}, e$ will denote elements of D, F, G will denote binary operations on D, u will denote a unary operation on D, f, f^{\prime} will denote functions from C into D, g will denote a function from C^{\prime} into D, H will denote a binary operation on E, h will denote a function from D into E, i, j will denote natural numbers, s will denote a function, p, p_{1}, p_{2}, q will denote finite sequences of elements of D, and T_{1}, T_{2} will denote elements of D^{i}. We now state a number of propositions:
(1) $\operatorname{Seg} i$ is an element of $\operatorname{Fin} \mathbb{N}$.
(2) $\quad i+j \longmapsto x=(i \longmapsto x)^{\wedge}(j \longmapsto x)$.
(3) If F is commutative and F is associative and $c_{1} \neq c_{2}$, then $F-\sum_{\left\{c_{1}, c_{2}\right\}} f=$ $F\left(f\left(c_{1}\right), f\left(c_{2}\right)\right)$.
(4) If F is commutative and F is associative but $B \neq \emptyset$ or F has a unity and $c \notin B$, then $F-\sum_{B \cup\{c\}} f=F\left(F-\sum_{B} f, f(c)\right)$.
(5) If F is commutative and F is associative and $c_{1} \neq c_{2}$ and $c_{1} \neq c_{3}$ and $c_{2} \neq c_{3}$, then $F-\sum_{\left\{c_{1}, c_{2}, c_{3}\right\}} f=F\left(F\left(f\left(c_{1}\right), f\left(c_{2}\right)\right), f\left(c_{3}\right)\right)$.

[^0](6) If F is commutative and F is associative but $B_{1} \neq \emptyset$ and $B_{2} \neq \emptyset$ or F has a unity and $B_{1} \cap B_{2}=\emptyset$, then $F-\sum_{B_{1} \cup B_{2}} f=F\left(F-\sum_{B_{1}} f, F-\sum_{B_{2}} f\right)$.
(7) If F is commutative and F is associative but $A \neq \emptyset$ or F has a unity and there exists s such that $\operatorname{dom} s=A$ and $\operatorname{rng} s=B$ and s is one-to-one and $g \upharpoonright A=f \cdot s$, then $F-\sum_{A} g=F-\sum_{B} f$.
(9) If F is commutative and F is associative but $B \neq \emptyset$ or F has a unity and $f \upharpoonright B=f^{\prime} \upharpoonright B$, then $F-\sum_{B} f=F-\sum_{B} f^{\prime}$.
(10) If F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$ and $f{ }^{\circ} B=\{e\}$, then $F-\sum_{B} f=e$.
Suppose F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$ and $G(e, e)=e$ and for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right)\right.$, $\left.G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}, d_{4}\right)\right)$. Then $G\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=$ $F-\sum_{B} G^{\circ}\left(f, f^{\prime}\right)$.
If F is commutative and F is associative and F has a unity, then $F\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=F-\sum_{B} F^{\circ}\left(f, f^{\prime}\right)$.
If F is commutative and F is associative and F has a unity and F has an inverse operation and $G=F \circ\left(\operatorname{id}_{D}\right.$, the inverse operation w.r.t.F $)$, then $G\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=F-\sum_{B} G^{\circ}\left(f, f^{\prime}\right)$.
(14) If F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(d, e)=e$, then $G\left(d, F-\sum_{B} f\right)=$ $F-\sum_{B}\left(G^{\circ}(d, f)\right)$.
(15) If F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(e, d)=e$, then $G\left(F-\sum_{B} f, d\right)=$ $F-\sum_{B}\left(G^{\circ}(f, d)\right)$.
(16) If F is commutative and F is associative and F has a unity and F has an inverse operation and G is distributive w.r.t. F, then $G\left(d, F-\sum_{B} f\right)=$ $F-\sum_{B}\left(G^{\circ}(d, f)\right)$.
If F is commutative and F is associative and F has a unity and F has an inverse operation and G is distributive w.r.t. F, then $G\left(F-\sum_{B} f\right.$, $d)=F-\sum_{B}\left(G^{\circ}(f, d)\right)$.
(18) Suppose F is commutative and F is associative and F has a unity and H is commutative and H is associative and H has a unity and $h\left(\mathbf{1}_{F}\right)=\mathbf{1}_{H}$ and for all d_{1}, d_{2} holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$. Then $h\left(F-\sum_{B} f\right)=H-\sum_{B}(h \cdot f)$.
(19) If F is commutative and F is associative and F has a unity and $u\left(\mathbf{1}_{F}\right)=$ $\mathbf{1}_{F}$ and u is distributive w.r.t. F, then $u\left(F-\sum_{B} f\right)=F-\sum_{B}(u \cdot f)$.
(20) If F is commutative and F is associative and F has a unity and F has an inverse operation and G is distributive w.r.t. F, then $\left(G^{\circ}\left(d, \mathrm{id}_{D}\right)\right)\left(F-\sum_{B} f\right)=F-\sum_{B}\left(G^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot f\right)$.
(21) If F is commutative and F is associative and F has a unity and F
has an inverse operation, then (the inverse operation w.r.t.F) $\left(F-\sum_{B} f\right)=$ F- $\sum_{\mathrm{B}}(($ the inverse operation w.r.t.F $) \cdot \mathrm{f})$.
Let us consider D, p, d. The functor $\Omega_{d}(p)$ yields a function from \mathbb{N} into D and is defined by:
if $i \in \operatorname{Seg}(\operatorname{len} p)$, then $\left(\Omega_{d}(p)\right)(i)=p(i)$ but if $i \notin \operatorname{Seg}(\operatorname{len} p)$, then $\left(\Omega_{d}(p)\right)(i)=$ d.

Next we state several propositions:
(22) For every function h from \mathbb{N} into D holds $h=\Omega_{d}(p)$ if and only if for every i holds if $i \in \operatorname{Seg}(\operatorname{len} p)$, then $h(i)=p(i)$ but if $i \notin \operatorname{Seg}(\operatorname{len} p)$, then $h(i)=d$.

$$
\begin{array}{ll}
(23) & \Omega_{d}(p) \upharpoonright \operatorname{Seg}(\operatorname{len} p)=p \\
(24) & \Omega_{d}\left(\left(p^{\sim} q\right)\right) \upharpoonright \operatorname{Seg}(\operatorname{len} p)=p \\
(25) & \operatorname{rng}\left(\Omega_{d}(p)\right)=\operatorname{rng} p \cup\{d\} \\
(26) & h \cdot \Omega_{d}(p)=\Omega_{h(d)}((h \cdot p))
\end{array}
$$

Let us consider i. Then $\operatorname{Seg} i$ is an element of $\operatorname{Fin} \mathbb{N}$.
Let X be a non-empty subset of \mathbb{R}, and let x be an element of X. Then $\{x\}$ is an element of Fin X. Let y be an element of X. Then $\{x, y\}$ is an element of Fin X. Let z be an element of X. Then $\{x, y, z\}$ is an element of Fin X.

Let us consider D, F, p. The functor $F \circledast p$ yielding an element of D is defined by:
$F \circledast p=F-\sum_{\operatorname{Seg}(\operatorname{len} p)} \Omega_{\mathbf{1}_{F}}(p)$.
Next we state several propositions:
(27) $\quad F \circledast p=F-\sum_{\operatorname{Seg}(\operatorname{len} p)} \Omega_{\mathbf{1}_{F}}(p)$.
(28) If F is commutative and F is associative and F has a unity, then $F \circledast$ $\varepsilon_{D}=1_{F}$.
(29) If F is commutative and F is associative, then $F \circledast\langle d\rangle=d$.
(30) If F is commutative and F is associative but len $p \neq 0$ or F has a unity, then $F \circledast\left(p^{\frown}\langle d\rangle\right)=F(F \circledast p, d)$.
(31) If F is commutative and F is associative but len $p_{1} \neq 0$ and len $p_{2} \neq 0$ or F has a unity, then $F \circledast\left(p_{1} \wedge p_{2}\right)=F\left(F \circledast p_{1}, F \circledast p_{2}\right)$.
(32) If F is commutative and F is associative but len $p \neq 0$ or F has a unity, then $F \circledast\left(\langle d\rangle{ }^{\wedge} p\right)=F(d, F \circledast p)$.
Let us consider D, d_{1}, d_{2}. Then $\left\langle d_{1}, d_{2}\right\rangle$ is a finite sequence of elements of D.
One can prove the following proposition
(33) If F is commutative and F is associative, then $F \circledast\left\langle d_{1}, d_{2}\right\rangle=F\left(d_{1}, d_{2}\right)$.

Let us consider D, d_{1}, d_{2}, d_{3}. Then $\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ is a finite sequence of elements of D.

We now state a number of propositions:
(34) If F is commutative and F is associative, then $F \circledast\left\langle d_{1}, d_{2}, d_{3}\right\rangle=F\left(F\left(d_{1}\right.\right.$, $\left.\left.d_{2}\right), d_{3}\right)$.
(35) If F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$, then $F \circledast(i \longmapsto e)=e$.
(36) If F is commutative and F is associative, then $F \circledast(1 \longmapsto d)=d$.
(37) If F is commutative and F is associative but $i \neq 0$ and $j \neq 0$ or F has a unity, then $F \circledast(i+j \longmapsto d)=F(F \circledast(i \longmapsto d), F \circledast(j \longmapsto d))$.
(38) If F is commutative and F is associative but $i \neq 0$ and $j \neq 0$ or F has a unity, then $F \circledast(i \cdot j \longmapsto d)=F \circledast(j \longmapsto F \circledast(i \longmapsto d))$.
(39) Suppose F is commutative and F is associative and F has a unity and H is commutative and H is associative and H has a unity and $h\left(\mathbf{1}_{F}\right)=\mathbf{1}_{H}$ and for all d_{1}, d_{2} holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$. Then $h(F \circledast p)=$ $H \circledast(h \cdot p)$.
(40) If F is commutative and F is associative and F has a unity and $u\left(\mathbf{1}_{F}\right)=$ $\mathbf{1}_{F}$ and u is distributive w.r.t. F, then $u(F \circledast p)=F \circledast(u \cdot p)$.
(41) If F is commutative and F is associative and F has a unity and F has an inverse operation and G is distributive w.r.t. F, then $\left(G^{\circ}\left(d, \mathrm{id}_{D}\right)\right)(F \circledast$ $p)=F \circledast\left(G^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot p\right)$.
(42) If F is commutative and F is associative and F has a unity and F has an inverse operation, then (the inverse operation w.r.t.F $)(\mathrm{F} \circledast \mathrm{p})=\mathrm{F} \circledast($ (the inverse operation w.r.t.F) $\cdot p$).
(43) Suppose that
(i) F is commutative,
(ii) F is associative,
(iii) F has a unity,
(iv) $e=\mathbf{1}_{F}$,
(v) $G(e, e)=e$,
(vi) for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right)\right.$, $F\left(d_{2}, d_{4}\right)$),
(vii) $\quad \operatorname{len} p=\operatorname{len} q$.

Then $G(F \circledast p, F \circledast q)=F \circledast G^{\circ}(p, q)$.
(44) Suppose F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$ and $G(e, e)=e$ and for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}\right.\right.$, $\left.\left.d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}, d_{4}\right)\right)$. Then $G\left(F \circledast T_{1}, F \circledast T_{2}\right)=F \circledast G^{\circ}\left(T_{1}\right.$, T_{2}).
(45) If F is commutative and F is associative and F has a unity and len $p=$ len q, then $F(F \circledast p, F \circledast q)=F \circledast F^{\circ}(p, q)$.
(46) If F is commutative and F is associative and F has a unity, then $F(F \circledast$ $\left.T_{1}, F \circledast T_{2}\right)=F \circledast F^{\circ}\left(T_{1}, T_{2}\right)$.
(47) If F is commutative and F is associative and F has a unity, then $F \circledast$ $\left(i \longmapsto F\left(d_{1}, d_{2}\right)\right)=F\left(F \circledast\left(i \longmapsto d_{1}\right), F \circledast\left(i \longmapsto d_{2}\right)\right)$.
(48) If F is commutative and F is associative and F has a unity and F has an inverse operation and $G=F \circ\left(\operatorname{id}_{D}\right.$, the inverse operation w.r.t.F), then $G\left(F \circledast T_{1}, F \circledast T_{2}\right)=F \circledast G^{\circ}\left(T_{1}, T_{2}\right)$.
(49) If F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(d, e)=e$, then $G(d, F \circledast p)=$ $F \circledast\left(G^{\circ}(d, p)\right)$.
(50) If F is commutative and F is associative and F has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(e, d)=e$, then $G(F \circledast p, d)=$ $F \circledast\left(G^{\circ}(p, d)\right)$.
(51) If F is commutative and F is associative and F has a unity and F has an inverse operation and G is distributive w.r.t. F, then $G(d, F \circledast p)=$ $F \circledast\left(G^{\circ}(d, p)\right)$.
(52) If F is commutative and F is associative and F has a unity and F has an inverse operation and G is distributive w.r.t. F, then $G(F \circledast p$, $d)=F \circledast\left(G^{\circ}(p, d)\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[9] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[10] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[13] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 4, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

