The Sum and Product of Finite Sequences of Real Numbers

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Some operations on the set of n-tuples of real numbers are introduced. Addition, difference of such n-tuples, complement of a n -tuple and multiplication of these by real numbers are defined. In these definitions more general properties of binary operations applied to finite sequences from [3] are used. Then the fact that certain properties are satisfied by those operations is demonstrated directly from [3]. Moreover some properties can be recognized as being those of real vector space. Multiplication of n-tuples of real numbers and square power of n-tuple of real numbers using for notation of some properties of finite sums and products of real numbers are defined, followed by definitions of the finite sum and product of n-tuples of real numbers using notions and properties introduced in [7]. A number of propositions and theorems on sum and product of finite sequences of real numbers are proved. As a additional properties there are proved some properties of real numbers and set representations of binary operations on real numbers.

MML Identifier: RVSUM_1.

The papers [8], [12], [5], [6], [1], [2], [13], [10], [9], [11], [4], [3], and [7] provide the terminology and notation for this paper. For simplicity we follow the rules: i, j, k are natural numbers, $r, r^{\prime}, r_{1}, r_{2}, r_{3}$ are real numbers, x is an element of $\mathbb{R}, F, F_{1}, F_{2}$ are finite sequences of elements of \mathbb{R}, and R, R_{1}, R_{2}, R_{3} are elements of \mathbb{R}^{i}. Next we state the proposition
(1) $\quad-\left(r_{1}+r_{2}\right)=\left(-r_{1}\right)+\left(-r_{2}\right)$.

Let us consider x. The functor @ x yields a real number and is defined by:
$@ x=x$.
The following propositions are true:
(2) $@ x=x$.

[^0](3) 0 is a unity w.r.t. $+_{\mathbb{R}}$.
(4) $\mathbf{1}_{+\mathbb{R}}=0$.
(5) $\quad+_{\mathbb{R}}$ has a unity.
(6) $\quad+_{\mathbb{R}}$ is commutative.
(7) $\quad+_{\mathbb{R}}$ is associative.

The binary operation $-_{\mathbb{R}}$ on \mathbb{R} is defined as follows:
$-_{\mathbb{R}}=+_{\mathbb{R}} \circ\left(\mathrm{id}_{\mathbb{R}},-_{\mathbb{R}}\right)$.
We now state two propositions:
(8) $-_{\mathbb{R}}=+_{\mathbb{R}} \circ\left(\mathrm{id}_{\mathbb{R}},-_{\mathbb{R}}\right)$.
(9) $\quad-_{\mathbb{R}}\left(r_{1}, r_{2}\right)=r_{1}-r_{2}$.

The unary operation $\operatorname{sqr}_{\mathbb{R}}$ on \mathbb{R} is defined as follows:
for every r holds $\operatorname{sqr}_{\mathbb{R}}(r)=r^{2}$.
The following propositions are true:
(10) For every unary operation u on \mathbb{R} holds $u=\operatorname{sqr}_{\mathbb{R}}$ if and only if for every r holds $u(r)=r^{2}$.
(11) $\cdot_{\mathbb{R}}$ is commutative.
(12) $\cdot{ }^{R}$ is associative.
(13) 1 is a unity w.r.t. ${ }_{\mathbb{R}}$.
(14) $\quad \mathbf{1}_{\cdot R}=1$.
(15) ${ }^{R}$ has a unity.
(16) $\cdot_{\mathbb{R}}$ is distributive w.r.t. $+_{\mathbb{R}}$.
(17) $\quad \operatorname{sqr}_{\mathbb{R}}$ is distributive w.r.t. ${ }_{\mathbb{R}}$.

Let us consider x. The functor $\stackrel{R}{\mathbb{R}}_{x}$ yielding a unary operation on \mathbb{R} is defined by:

$$
\cdot_{\mathbb{R}}^{x}=\cdot_{\mathbb{R}}{ }^{\circ}\left(x, \operatorname{id}_{\mathbb{R}}\right) .
$$

Next we state several propositions:
(18) $\cdot_{\mathbb{R}}^{x}=\cdot_{\mathbb{R}}{ }^{\circ}\left(x, \mathrm{id}_{\mathbb{R}}\right)$.
(19) $\quad \cdot_{\mathbb{R}}^{\prime}(x)=r \cdot x$.
(20) \cdot_{R}^{r} is distributive w.r.t. $+_{R}$.
(21) $\quad-_{\mathbb{R}}$ is an inverse operation w.r.t. $+_{\mathbb{R}}$.
(22) $+_{\mathbb{R}}$ has an inverse operation.
(23) The inverse operation w.r.t. $+_{\mathbb{R}}=-_{\mathbb{R}}$.
(24) $\quad-_{\mathbb{R}}$ is distributive w.r.t. $+_{\mathbb{R}}$.

Let us consider F_{1}, F_{2}. The functor $F_{1}+F_{2}$ yields a finite sequence of elements of \mathbb{R} and is defined by:
$F_{1}+F_{2}=+_{\mathbb{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
We now state two propositions:
(25) $F_{1}+F_{2}=+_{\mathrm{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
(26) If $i \in \operatorname{Seg}\left(\operatorname{len}\left(F_{1}+F_{2}\right)\right)$ and $r_{1}=F_{1}(i)$ and $r_{2}=F_{2}(i)$, then $\left(F_{1}+\right.$ $\left.F_{2}\right)(i)=r_{1}+r_{2}$.

Let us consider i, R_{1}, R_{2}. Then $R_{1}+R_{2}$ is an element of \mathbb{R}^{i}.
We now state several propositions:
(27) If $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$, then $\left(R_{1}+R_{2}\right)(j)=r_{1}+r_{2}$.
(28) $\quad \varepsilon_{\mathbb{R}}+F=\varepsilon_{\mathbb{R}}$ and $F+\varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(29) $\left\langle r_{1}\right\rangle+\left\langle r_{2}\right\rangle=\left\langle r_{1}+r_{2}\right\rangle$.
(30) $\quad\left(i \longmapsto r_{1}\right)+\left(i \longmapsto r_{2}\right)=i \longmapsto r_{1}+r_{2}$.
(31) $\quad R_{1}+R_{2}=R_{2}+R_{1}$.
(32) $\quad R_{1}+\left(R_{2}+R_{3}\right)=\left(R_{1}+R_{2}\right)+R_{3}$.
(33) $\quad R+(i \longmapsto(0$ qua a real number $))=R$ and
$R=(i \longmapsto(0$ qua a real number $))+R$.
Let us consider F. The functor $-F$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:
$-F=-_{\mathbb{R}} \cdot F$.
We now state two propositions:
(34) $\quad-F=-_{\mathbb{R}} \cdot F$.
(35) If $i \in \operatorname{Seg}(\operatorname{len}(-F))$ and $r=F(i)$, then $(-F)(i)=-r$.

Let us consider i, R. Then $-R$ is an element of \mathbb{R}^{i}.
The following propositions are true:
(36) If $j \in \operatorname{Seg} i$ and $r=R(j)$, then $(-R)(j)=-r$.
(41) If $R_{1}+R_{2}=i \longmapsto 0$, then $R_{1}=-R_{2}$ and $R_{2}=-R_{1}$.
(42) $\quad-(-R)=R$.
(43) If $-R_{1}=-R_{2}$, then $R_{1}=R_{2}$.
(44) If $R_{1}+R=R_{2}+R$ or $R_{1}+R=R+R_{2}$, then $R_{1}=R_{2}$.
(45) $\quad-\left(R_{1}+R_{2}\right)=\left(-R_{1}\right)+\left(-R_{2}\right)$.

Let us consider F_{1}, F_{2}. The functor $F_{1}-F_{2}$ yielding a finite sequence of elements of \mathbb{R} is defined as follows:
$F_{1}-F_{2}=-_{\mathbb{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
The following two propositions are true:
(46) $\quad F_{1}-F_{2}=-_{\mathbb{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
(47) If $i \in \operatorname{Seg}\left(\operatorname{len}\left(F_{1}-F_{2}\right)\right)$ and $r_{1}=F_{1}(i)$ and $r_{2}=F_{2}(i)$, then $\left(F_{1}-\right.$ $\left.F_{2}\right)(i)=r_{1}-r_{2}$.
Let us consider i, R_{1}, R_{2}. Then $R_{1}-R_{2}$ is an element of \mathbb{R}^{i}.
One can prove the following propositions:
(48) If $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$, then $\left(R_{1}-R_{2}\right)(j)=r_{1}-r_{2}$.
(49) $\quad \varepsilon_{\mathbb{R}}-F=\varepsilon_{\mathbb{R}}$ and $F-\varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(50) $\left\langle r_{1}\right\rangle-\left\langle r_{2}\right\rangle=\left\langle r_{1}-r_{2}\right\rangle$.
(52) $\quad R_{1}-R_{2}=R_{1}+\left(-R_{2}\right)$.
(53) $\quad R-(i \longmapsto(0$ qua a real number $))=R$.
(54) $\quad(i \longmapsto(0$ qua a real number $))-R=-R$.
(55) $\quad R_{1}-\left(-R_{2}\right)=R_{1}+R_{2}$.
(56) $\quad-\left(R_{1}-R_{2}\right)=R_{2}-R_{1}$.
(57) $\quad-\left(R_{1}-R_{2}\right)=\left(-R_{1}\right)+R_{2}$.
(58) $\quad R-R=i \longmapsto 0$.
(59) If $R_{1}-R_{2}=i \longmapsto 0$, then $R_{1}=R_{2}$.
(60) $\quad\left(R_{1}-R_{2}\right)-R_{3}=R_{1}-\left(R_{2}+R_{3}\right)$.
(61) $\quad R_{1}+\left(R_{2}-R_{3}\right)=\left(R_{1}+R_{2}\right)-R_{3}$.
(62) $R_{1}-\left(R_{2}-R_{3}\right)=\left(R_{1}-R_{2}\right)+R_{3}$.
(63) $\quad R_{1}=\left(R_{1}+R\right)-R$.
(64) $\quad R_{1}=\left(R_{1}-R\right)+R$.

Let us consider r, F. The functor $r \cdot F$ yields a finite sequence of elements of \mathbb{R} and is defined by:
$r \cdot F=r_{\mathbb{R}}^{r} \cdot F$.
We now state two propositions:
(65) $r \cdot F=\cdot_{\mathbb{R}}^{r} \cdot F$.
(66) If $i \in \operatorname{Seg}(\operatorname{len}(r \cdot F))$ and $r^{\prime}=F(i)$, then $(r \cdot F)(i)=r \cdot r^{\prime}$.

Let us consider i, r, R. Then $r \cdot R$ is an element of \mathbb{R}^{i}.
Next we state a number of propositions:
(67) If $j \in \operatorname{Seg} i$ and $r^{\prime}=R(j)$, then $(r \cdot R)(j)=r \cdot r^{\prime}$.
(68) $r \cdot \varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(69) $r \cdot\left\langle r_{1}\right\rangle=\left\langle r \cdot r_{1}\right\rangle$.
(70) $\quad r_{1} \cdot\left(i \longmapsto r_{2}\right)=i \longmapsto r_{1} \cdot r_{2}$.
(71) $\left(r_{1} \cdot r_{2}\right) \cdot R=r_{1} \cdot\left(r_{2} \cdot R\right)$.
(72) $\quad\left(r_{1}+r_{2}\right) \cdot R=r_{1} \cdot R+r_{2} \cdot R$.
(73) $\quad r \cdot\left(R_{1}+R_{2}\right)=r \cdot R_{1}+r \cdot R_{2}$.
(74) $1 \cdot R=R$.
(75) $0 \cdot R=i \longmapsto 0$.
(76) $\quad(-1) \cdot R=-R$.

Let us consider F. The functor ${ }^{2} F$ yielding a finite sequence of elements of \mathbb{R} is defined as follows:
${ }^{2} F=\operatorname{sqr}_{\mathrm{R}} \cdot F$.
Next we state two propositions:
(77) ${ }^{2} F=\operatorname{sqr}_{\mathbb{R}} \cdot F$.

$$
\begin{equation*}
\text { If } i \in \operatorname{Seg}\left(\operatorname{len}\left({ }^{2} F\right)\right) \text { and } r=F(i) \text {, then }{ }^{2} F(i)=r^{2} \tag{78}
\end{equation*}
$$

Let us consider i, R. Then ${ }^{2} R$ is an element of \mathbb{R}^{i}.
Next we state several propositions:
(79) If $j \in \operatorname{Seg} i$ and $r=R(j)$, then ${ }^{2} R(j)=r^{2}$.
(80) ${ }^{2} \varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(81) ${ }^{2}\langle r\rangle=\left\langle r^{2}\right\rangle$.
(82) $\quad{ }^{2}(i \longmapsto r)=i \longmapsto r^{2}$.
(83) ${ }^{2}(-R)={ }^{2} R$.
(84) $\quad{ }^{2}(r \cdot R)=r^{2} \cdot{ }^{2} R$.

Let us consider F_{1}, F_{2}. The functor $F_{1} \bullet F_{2}$ yields a finite sequence of elements of \mathbb{R} and is defined by:
$F_{1} \bullet F_{2}=\cdot_{\mathrm{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
One can prove the following two propositions:

```
        \(F_{1} \bullet F_{2}=\cdot^{\circ}{ }^{\circ}\left(F_{1}, F_{2}\right)\).
    (86) If \(i \in \operatorname{Seg}\left(\operatorname{len}\left(F_{1} \bullet F_{2}\right)\right)\) and \(r_{1}=F_{1}(i)\) and \(r_{2}=F_{2}(i)\), then \(F_{1} \bullet F_{2}(i)=\)
        \(r_{1} \cdot r_{2}\).
```

 Let us consider \(i, R_{1}, R_{2}\). Then \(R_{1} \bullet R_{2}\) is an element of \(\mathbb{R}^{i}\).
 The following propositions are true:
(87) If $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$, then $R_{1} \bullet R_{2}(j)=r_{1} \cdot r_{2}$.
(88) $\quad \varepsilon_{\mathbb{R}} \bullet F=\varepsilon_{\mathbb{R}}$ and $F \bullet \varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(89) $\left\langle r_{1}\right\rangle \bullet\left\langle r_{2}\right\rangle=\left\langle r_{1} \cdot r_{2}\right\rangle$.
(90) $\quad R_{1} \bullet R_{2}=R_{2} \bullet R_{1}$.
(91) $\quad R_{1} \bullet\left(R_{2} \bullet R_{3}\right)=\left(R_{1} \bullet R_{2}\right) \bullet R_{3}$.
(92) $\quad(i \longmapsto r) \bullet R=r \cdot R$ and $R \bullet(i \longmapsto r)=r \cdot R$.
(93) $\quad\left(i \longmapsto r_{1}\right) \bullet\left(i \longmapsto r_{2}\right)=i \longmapsto r_{1} \cdot r_{2}$.
(94) $r \cdot R_{1} \bullet R_{2}=\left(r \cdot R_{1}\right) \bullet R_{2}$.
(95) $\quad r \cdot R_{1} \bullet R_{2}=\left(r \cdot R_{1}\right) \bullet R_{2}$ and $r \cdot R_{1} \bullet R_{2}=R_{1} \bullet\left(r \cdot R_{2}\right)$.
(96) $r \cdot R=(i \longmapsto r) \bullet R$.
(97) ${ }^{2} R=R \bullet R$.
(98) $\quad{ }^{2}\left(R_{1}+R_{2}\right)=\left({ }^{2} R_{1}+2 \cdot R_{1} \bullet R_{2}\right)+{ }^{2} R_{2}$.
(99) $\quad{ }^{2}\left(R_{1}-R_{2}\right)=\left({ }^{2} R_{1}-2 \cdot R_{1} \bullet R_{2}\right)+{ }^{2} R_{2}$.
(100) $\quad{ }^{2}\left(R_{1} \bullet R_{2}\right)=\left({ }^{2} R_{1}\right) \bullet\left({ }^{2} R_{2}\right)$.

Let F be a finite sequence of elements of \mathbb{R}. The functor $\sum F$ yields a real number and is defined by:

$$
\sum F=+_{\mathbb{R}} \circledast F
$$

One can prove the following propositions:
(101) $\quad \sum F=+_{\mathbb{R}} \circledast F$.
(102) $\quad \sum \varepsilon_{\mathbb{R}}=0$.
(103) $\sum\langle r\rangle=r$.
(104) $\quad \sum(F \frown\langle r\rangle)=\sum F+r$.
(106) $\quad \sum\left(\langle r\rangle^{\wedge} F\right)=r+\sum F$.
(107) $\quad \sum\left\langle r_{1}, r_{2}\right\rangle=r_{1}+r_{2}$.
(108) $\sum\left\langle r_{1}, r_{2}, r_{3}\right\rangle=\left(r_{1}+r_{2}\right)+r_{3}$.
(109) For every element R of \mathbb{R}^{0} holds $\sum R=0$.
(110) $\quad \sum(i \longmapsto r)=i \cdot r$.
(111) $\quad \sum(i \longmapsto(0$ qua a real number $))=0$.
(112) If for all j, r_{1}, r_{2} such that $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$ holds $r_{1} \leq r_{2}$, then $\sum R_{1} \leq \sum R_{2}$.
(113) Suppose for all j, r_{1}, r_{2} such that $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=$ $R_{2}(j)$ holds $r_{1} \leq r_{2}$ and there exist j, r_{1}, r_{2} such that $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$ and $r_{1}<r_{2}$. Then $\sum R_{1}<\sum R_{2}$.
(114) If for all i, r such that $i \in \operatorname{Seg}(\operatorname{len} F)$ and $r=F(i)$ holds $0 \leq r$, then $0 \leq \sum F$.
(115) If for all i, r such that $i \in \operatorname{Seg}(\operatorname{len} F)$ and $r=F(i)$ holds $0 \leq r$ and there exist i, r such that $i \in \operatorname{Seg}(\operatorname{len} F)$ and $r=F(i)$ and $0<r$, then $0<\sum F$.
(116) $0 \leq \sum\left({ }^{2} F\right)$.
(117) $\quad \sum(r \cdot F)=r \cdot \sum F$.
(118) $\quad \sum(-F)=-\sum F$.
(119) $\quad \sum\left(R_{1}+R_{2}\right)=\sum R_{1}+\sum R_{2}$.
(121) \quad If $\sum\left({ }^{2} R\right)=0$, then $R=i \longmapsto 0$.
(122) $\quad\left(\sum\left(R_{1} \bullet R_{2}\right)\right)^{2} \leq \sum\left({ }^{2} R_{1}\right) \cdot \sum\left({ }^{2} R_{2}\right)$.

Let F be a finite sequence of elements of \mathbb{R}. The functor ΠF yields a real number and is defined as follows:
$\Pi F=\cdot_{\mathrm{R}} \circledast F$.
Next we state a number of propositions:
(123) $\quad \Pi F=\cdot_{\mathrm{R}} \circledast F$.
(124) $\quad \prod \varepsilon_{\mathbb{R}}=1$.
(125) $\Pi\langle r\rangle=r$.
(126) $\quad \Pi(F \frown\langle r\rangle)=\Pi F \cdot r$.
(127) $\quad \Pi\left(F_{1} \wedge F_{2}\right)=\Pi F_{1} \cdot \Pi F_{2}$.
(128) $\Pi(\langle r\rangle \sim F)=r \cdot \Pi F$.
(129) $\Pi\left\langle r_{1}, r_{2}\right\rangle=r_{1} \cdot r_{2}$.
(130) $\Pi\left\langle r_{1}, r_{2}, r_{3}\right\rangle=\left(r_{1} \cdot r_{2}\right) \cdot r_{3}$.
(131) For every element R of \mathbb{R}^{0} holds $\Pi R=1$.
(132) $\quad \Pi(i \longmapsto(1$ qua a real number $))=1$.
(133) There exists k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ and $F(k)=0$ if and only if $\Pi F=0$.

$$
\begin{align*}
& \Pi(i+j \longmapsto r)=\Pi(i \longmapsto r) \cdot \Pi(j \longmapsto r) . \tag{134}\\
& \Pi(i \cdot j \longmapsto r)=\Pi(j \longmapsto \Pi(i \longmapsto r)) . \\
& \Pi\left(i \longmapsto r_{1} \cdot r_{2}\right)=\Pi\left(i \longmapsto r_{1}\right) \cdot \Pi\left(i \longmapsto r_{2}\right) . \\
& \Pi\left(R_{1} \bullet R_{2}\right)=\Pi R_{1} \cdot \Pi R_{2} . \\
& \Pi(r \cdot R)=\Pi(i \longmapsto r) \cdot \Pi R . \\
& \Pi\left({ }^{2} R\right)=(\Pi R)^{2} .
\end{align*}
$$

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 11, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

