The Sum and Product of Finite Sequences of Real Numbers

Czesław Byliński¹ Warsaw University Białystok

Summary. Some operations on the set of n-tuples of real numbers are introduced. Addition, difference of such n-tuples, complement of a n-tuple and multiplication of these by real numbers are defined. In these definitions more general properties of binary operations applied to finite sequences from [3] are used. Then the fact that certain properties are satisfied by those operations is demonstrated directly from [3]. Moreover some properties can be recognized as being those of real vector space. Multiplication of n-tuples of real numbers and square power of n-tuple of real numbers using for notation of some properties of finite sums and products of real numbers are defined, followed by definitions of the finite sum and product of n-tuples of real numbers using notions and properties introduced in [7]. A number of propositions and theorems on sum and product of finite sequences of real numbers are proved. As a additional properties there are proved some properties of real numbers and set representations of binary operations on real numbers.

MML Identifier: RVSUM_1.

The papers [8], [12], [5], [6], [1], [2], [13], [10], [9], [11], [4], [3], and [7] provide the terminology and notation for this paper. For simplicity we follow the rules: i, j, k are natural numbers, r, r', r_1, r_2, r_3 are real numbers, x is an element of \mathbb{R} , F, F_1, F_2 are finite sequences of elements of \mathbb{R} , and R, R_1, R_2, R_3 are elements of \mathbb{R}^i . Next we state the proposition

(1) $-(r_1 + r_2) = (-r_1) + (-r_2).$

Let us consider x. The functor @x yields a real number and is defined by: @x = x.

The following propositions are true:

(2) @x = x.

¹Supported by RPBP.III-24.C1.

661

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (3) 0 is a unity w.r.t. $+_{\mathbb{R}}$.
- (4) $\mathbf{1}_{+_{\mathbb{R}}} = 0.$
- (5) $+_{\mathbb{R}}$ has a unity.
- (6) $+_{\mathbb{R}}$ is commutative.
- (7) $+_{\mathbb{R}}$ is associative.

The binary operation $-_{\mathbb{R}}$ on \mathbb{R} is defined as follows:

 $-_{\mathbb{R}} = +_{\mathbb{R}} \circ (\mathrm{id}_{\mathbb{R}}, -_{\mathbb{R}}).$

We now state two propositions:

(8) $-_{\mathbb{R}} = +_{\mathbb{R}} \circ (\mathrm{id}_{\mathbb{R}}, -_{\mathbb{R}}).$

(9) $-_{\mathbb{R}}(r_1, r_2) = r_1 - r_2.$

The unary operation $\operatorname{sqr}_{\mathbb R}$ on $\mathbb R$ is defined as follows:

for every r holds $\operatorname{sqr}_{\mathbb{R}}(r) = r^2$.

The following propositions are true:

- (10) For every unary operation u on \mathbb{R} holds $u = \operatorname{sqr}_{\mathbb{R}}$ if and only if for every r holds $u(r) = r^2$.
- (11) $\cdot_{\mathbb{R}}$ is commutative.
- (12) $\cdot_{\mathbb{R}}$ is associative.
- (13) 1 is a unity w.r.t. $\cdot_{\mathbb{R}}$.
- (14) $\mathbf{1}_{\cdot_{\mathbf{D}}} = 1.$
- (15) $\cdot_{\mathbb{R}}$ has a unity.
- (16) $\cdot_{\mathbb{R}}$ is distributive w.r.t. $+_{\mathbb{R}}$.
- (17) $\operatorname{sqr}_{\mathbb{R}}$ is distributive w.r.t. $\cdot_{\mathbb{R}}$.

Let us consider x. The functor $\cdot_{\mathbb{R}}^x$ yielding a unary operation on \mathbb{R} is defined by:

$$\cdot^{x}_{\mathbb{R}} = \cdot^{x}_{\mathbb{R}} \circ (x, \mathrm{id}_{\mathbb{R}}).$$

Next we state several propositions:

(18)
$$\cdot_{\mathbb{R}}^{x} = \cdot_{\mathbb{R}}^{\circ}(x, \mathrm{id}_{\mathbb{R}}).$$

- (19) $\cdot_{\mathbb{R}}^{r}(x) = r \cdot x.$
- (20) $\cdot_{\mathbb{R}}^{r}$ is distributive w.r.t. $+_{\mathbb{R}}$.
- (21) $-_{\mathbb{R}}$ is an inverse operation w.r.t. $+_{\mathbb{R}}$.
- (22) $+_{\mathbb{R}}$ has an inverse operation.
- (23) The inverse operation w.r.t. $+_{\mathbb{R}} = -_{\mathbb{R}}$.
- (24) $-_{\mathbb{R}}$ is distributive w.r.t. $+_{\mathbb{R}}$.

Let us consider F_1 , F_2 . The functor $F_1 + F_2$ yields a finite sequence of elements of \mathbb{R} and is defined by:

 $F_1 + F_2 = +_{\mathbb{R}}^{\circ}(F_1, F_2).$

We now state two propositions:

- (25) $F_1 + F_2 = +_{\mathbb{R}}^{\circ}(F_1, F_2).$
- (26) If $i \in \text{Seg}(\text{len}(F_1 + F_2))$ and $r_1 = F_1(i)$ and $r_2 = F_2(i)$, then $(F_1 + F_2)(i) = r_1 + r_2$.

Let us consider i, R_1, R_2 . Then $R_1 + R_2$ is an element of \mathbb{R}^i . We now state several propositions:

(27) If
$$j \in \text{Seg } i$$
 and $r_1 = R_1(j)$ and $r_2 = R_2(j)$, then $(R_1 + R_2)(j) = r_1 + r_2$.

- (28) $\varepsilon_{\mathbb{R}} + F = \varepsilon_{\mathbb{R}}$ and $F + \varepsilon_{\mathbb{R}} = \varepsilon_{\mathbb{R}}$.
- (29) $\langle r_1 \rangle + \langle r_2 \rangle = \langle r_1 + r_2 \rangle.$
- $(30) \quad (i \longmapsto r_1) + (i \longmapsto r_2) = i \longmapsto r_1 + r_2.$
- $(31) \quad R_1 + R_2 = R_2 + R_1.$
- $(32) \quad R_1 + (R_2 + R_3) = (R_1 + R_2) + R_3.$
- (33) $R + (i \mapsto (0 \operatorname{\mathbf{qua}} a \operatorname{real number})) = R$ and $R = (i \mapsto (0 \operatorname{\mathbf{qua}} a \operatorname{real number})) + R.$

Let us consider F. The functor -F yields a finite sequence of elements of \mathbb{R} and is defined as follows:

$$-F = -_{\mathbb{R}} \cdot F.$$

We now state two propositions:

 $(34) \quad -F = -_{\mathbb{R}} \cdot F.$

(35) If
$$i \in \text{Seg}(\text{len}(-F))$$
 and $r = F(i)$, then $(-F)(i) = -r$.

Let us consider i, R. Then -R is an element of \mathbb{R}^i .

The following propositions are true:

- (36) If $j \in \text{Seg } i$ and r = R(j), then (-R)(j) = -r.
- $(37) \quad -\varepsilon_{\mathbb{R}} = \varepsilon_{\mathbb{R}}.$
- $(38) \quad -\langle r \rangle = \langle -r \rangle.$
- $(39) \quad -(i \longmapsto r) = i \longmapsto -r.$
- (40) $R + (-R) = i \longmapsto 0$ and $(-R) + R = i \longmapsto 0$.
- (41) If $R_1 + R_2 = i \mapsto 0$, then $R_1 = -R_2$ and $R_2 = -R_1$.
- $(42) \quad -(-R) = R.$
- (43) If $-R_1 = -R_2$, then $R_1 = R_2$.
- (44) If $R_1 + R = R_2 + R$ or $R_1 + R = R + R_2$, then $R_1 = R_2$.
- (45) $-(R_1 + R_2) = (-R_1) + (-R_2).$

Let us consider F_1 , F_2 . The functor $F_1 - F_2$ yielding a finite sequence of elements of \mathbb{R} is defined as follows:

$$F_1 - F_2 = -_{\mathbb{R}}^{\circ}(F_1, F_2).$$

The following two propositions are true:

- (46) $F_1 F_2 = -_{\mathbb{R}}^{\circ}(F_1, F_2).$
- (47) If $i \in \text{Seg}(\text{len}(F_1 F_2))$ and $r_1 = F_1(i)$ and $r_2 = F_2(i)$, then $(F_1 F_2)(i) = r_1 r_2$.

Let us consider i, R_1, R_2 . Then $R_1 - R_2$ is an element of \mathbb{R}^i . One can prove the following propositions:

(48) If $j \in \text{Seg } i$ and $r_1 = R_1(j)$ and $r_2 = R_2(j)$, then $(R_1 - R_2)(j) = r_1 - r_2$.

- (49) $\varepsilon_{\mathbb{R}} F = \varepsilon_{\mathbb{R}}$ and $F \varepsilon_{\mathbb{R}} = \varepsilon_{\mathbb{R}}$.
- (50) $\langle r_1 \rangle \langle r_2 \rangle = \langle r_1 r_2 \rangle.$

$$\begin{array}{lll} (51) & (i\longmapsto r_1) - (i\longmapsto r_2) = i\longmapsto r_1 - r_2. \\ (52) & R_1 - R_2 = R_1 + (-R_2). \\ (53) & R - (i\longmapsto (0\,\mathbf{qua}\,\mathrm{a\,real\,number})) = R. \\ (54) & (i\longmapsto (0\,\mathbf{qua}\,\mathrm{a\,real\,number})) - R = -R. \\ (55) & R_1 - (-R_2) = R_1 + R_2. \\ (56) & -(R_1 - R_2) = R_2 - R_1. \\ (57) & -(R_1 - R_2) = (-R_1) + R_2. \\ (58) & R - R = i\longmapsto 0. \\ (59) & \mathrm{If}\,\, R_1 - R_2 = i\longmapsto 0, \, \mathrm{then}\,\, R_1 = R_2. \\ (60) & (R_1 - R_2) - R_3 = R_1 - (R_2 + R_3). \\ (61) & R_1 + (R_2 - R_3) = (R_1 + R_2) - R_3. \end{array}$$

- (62) $R_1 (R_2 R_3) = (R_1 R_2) + R_3.$
- (63) $R_1 = (R_1 + R) R.$
- (64) $R_1 = (R_1 R) + R.$

Let us consider r, F. The functor $r \cdot F$ yields a finite sequence of elements of \mathbb{R} and is defined by:

 $r \cdot F = \cdot_{\mathbb{R}}^r \cdot F.$

We now state two propositions:

(65) $r \cdot F = \cdot_{\mathbb{R}}^r \cdot F.$

(66) If
$$i \in \text{Seg}(\text{len}(r \cdot F))$$
 and $r' = F(i)$, then $(r \cdot F)(i) = r \cdot r'$.

Let us consider i, r, R. Then $r \cdot R$ is an element of \mathbb{R}^i .

Next we state a number of propositions:

- (67) If $j \in \text{Seg } i$ and r' = R(j), then $(r \cdot R)(j) = r \cdot r'$.
- (68) $r \cdot \varepsilon_{\mathbb{R}} = \varepsilon_{\mathbb{R}}.$

(69)
$$r \cdot \langle r_1 \rangle = \langle r \cdot r_1 \rangle.$$

- (70) $r_1 \cdot (i \longmapsto r_2) = i \longmapsto r_1 \cdot r_2.$
- (71) $(r_1 \cdot r_2) \cdot R = r_1 \cdot (r_2 \cdot R).$
- (72) $(r_1 + r_2) \cdot R = r_1 \cdot R + r_2 \cdot R.$
- (73) $r \cdot (R_1 + R_2) = r \cdot R_1 + r \cdot R_2.$
- $(74) \quad 1 \cdot R = R.$
- (75) $0 \cdot R = i \longmapsto 0.$
- $(76) \quad (-1) \cdot R = -R.$

Let us consider F. The functor 2F yielding a finite sequence of elements of $\mathbb R$ is defined as follows:

$${}^{2}F = \operatorname{sqr}_{\mathbb{R}} \cdot F$$

Next we state two propositions:

- (77) ${}^2F = \operatorname{sqr}_{\mathbb{R}} \cdot F.$
- (78) If $i \in \text{Seg}(\text{len}(^2F))$ and r = F(i), then ${}^2F(i) = r^2$.

Let us consider i, R. Then ${}^{2}R$ is an element of \mathbb{R}^{i} .

Next we state several propositions:

(79) If
$$j \in \operatorname{Seg} i$$
 and $r = R(j)$, then ${}^{2}R(j) = r^{2}$.

- $(80) \quad {}^2\varepsilon_{\mathbb{R}} = \varepsilon_{\mathbb{R}}.$
- $(81) \quad {}^{2}\langle r \rangle = \langle r^{2} \rangle.$
- $(82) \quad {}^2(i \longmapsto r) = i \longmapsto r^2.$
- $(83) \quad {}^2(-R) = {}^2R.$
- $(84) \quad {}^2(r \cdot R) = r^2 \cdot {}^2R.$

Let us consider F_1 , F_2 . The functor $F_1 \bullet F_2$ yields a finite sequence of elements of \mathbb{R} and is defined by:

 $F_1 \bullet F_2 = \cdot_{\mathbb{R}} \circ (F_1, F_2).$

One can prove the following two propositions:

- (85) $F_1 \bullet F_2 = \cdot_{\mathbb{R}}^{\circ}(F_1, F_2).$
- (86) If $i \in \text{Seg}(\text{len}(F_1 \bullet F_2))$ and $r_1 = F_1(i)$ and $r_2 = F_2(i)$, then $F_1 \bullet F_2(i) = r_1 \cdot r_2$.

Let us consider i, R_1, R_2 . Then $R_1 \bullet R_2$ is an element of \mathbb{R}^i .

The following propositions are true:

(87) If
$$j \in \text{Seg } i$$
 and $r_1 = R_1(j)$ and $r_2 = R_2(j)$, then $R_1 \bullet R_2(j) = r_1 \cdot r_2$.

- (88) $\varepsilon_{\mathbb{R}} \bullet F = \varepsilon_{\mathbb{R}} \text{ and } F \bullet \varepsilon_{\mathbb{R}} = \varepsilon_{\mathbb{R}}.$
- (89) $\langle r_1 \rangle \bullet \langle r_2 \rangle = \langle r_1 \cdot r_2 \rangle.$
- $(90) \qquad R_1 \bullet R_2 = R_2 \bullet R_1.$
- (91) $R_1 \bullet (R_2 \bullet R_3) = (R_1 \bullet R_2) \bullet R_3.$

(92)
$$(i \mapsto r) \bullet R = r \cdot R \text{ and } R \bullet (i \mapsto r) = r \cdot R.$$

- $(93) \quad (i \longmapsto r_1) \bullet (i \longmapsto r_2) = i \longmapsto r_1 \cdot r_2.$
- $(94) \quad r \cdot R_1 \bullet R_2 = (r \cdot R_1) \bullet R_2.$
- (95) $r \cdot R_1 \bullet R_2 = (r \cdot R_1) \bullet R_2$ and $r \cdot R_1 \bullet R_2 = R_1 \bullet (r \cdot R_2)$.
- (96) $r \cdot R = (i \longmapsto r) \bullet R.$
- $(97) \quad {}^2R = R \bullet R.$

(98)
$${}^{2}(R_1 + R_2) = ({}^{2}R_1 + 2 \cdot R_1 \bullet R_2) + {}^{2}R_2$$

(99)
$${}^{2}(R_{1} - R_{2}) = ({}^{2}R_{1} - 2 \cdot R_{1} \bullet R_{2}) + {}^{2}R_{2}$$

(100)
$${}^{2}(R_{1} \bullet R_{2}) = ({}^{2}R_{1}) \bullet ({}^{2}R_{2}).$$

Let F be a finite sequence of elements of \mathbb{R} . The functor $\sum F$ yields a real number and is defined by:

$$\sum F = +_{\mathbb{R}} \circledast F.$$

One can prove the following propositions:

(101)
$$\sum F = +_{\mathbb{R}} \circledast F.$$

- (102) $\sum \varepsilon_{\mathbb{R}} = 0.$
- (103) $\sum \langle r \rangle = r.$
- (104) $\sum (F \cap \langle r \rangle) = \sum F + r.$

- (105) $\sum (F_1 \cap F_2) = \sum F_1 + \sum F_2.$
- (106) $\sum (\langle r \rangle \cap F) = r + \sum F.$
- (107) $\sum \langle r_1, r_2 \rangle = r_1 + r_2.$
- (108) $\sum \langle r_1, r_2, r_3 \rangle = (r_1 + r_2) + r_3.$
- (109) For every element R of \mathbb{R}^0 holds $\sum R = 0$.
- (110) $\sum (i \longmapsto r) = i \cdot r.$
- (111) $\sum (i \longmapsto (0 \operatorname{\mathbf{qua}} a \operatorname{real number})) = 0.$
- (112) If for all j, r_1 , r_2 such that $j \in \text{Seg } i$ and $r_1 = R_1(j)$ and $r_2 = R_2(j)$ holds $r_1 \leq r_2$, then $\sum R_1 \leq \sum R_2$.
- (113) Suppose for all j, r_1 , r_2 such that $j \in \text{Seg } i$ and $r_1 = R_1(j)$ and $r_2 = R_2(j)$ holds $r_1 \leq r_2$ and there exist j, r_1 , r_2 such that $j \in \text{Seg } i$ and $r_1 = R_1(j)$ and $r_2 = R_2(j)$ and $r_1 < r_2$. Then $\sum R_1 < \sum R_2$.
- (114) If for all i, r such that $i \in \text{Seg}(\text{len } F)$ and r = F(i) holds $0 \le r$, then $0 \le \sum F$.
- (115) If for all i, r such that $i \in \text{Seg}(\text{len } F)$ and r = F(i) holds $0 \leq r$ and there exist i, r such that $i \in \text{Seg}(\text{len } F)$ and r = F(i) and 0 < r, then $0 < \sum F$.
- $(116) \quad 0 \le \sum ({}^2F).$
- (117) $\sum (r \cdot F) = r \cdot \sum F.$
- (118) $\sum (-F) = -\sum F.$
- (119) $\sum (R_1 + R_2) = \sum R_1 + \sum R_2.$
- (120) $\sum (R_1 R_2) = \sum R_1 \sum R_2.$
- (121) If $\sum (2R) = 0$, then $R = i \longmapsto 0$.
- (122) $(\sum (R_1 \bullet R_2))^2 \le \sum ({}^2R_1) \cdot \sum ({}^2R_2).$

Let F be a finite sequence of elements of $\mathbb R.$ The functor $\prod F$ yields a real number and is defined as follows:

 $\prod F = \cdot_{\mathbb{R}} \circledast F.$

Next we state a number of propositions:

- (123) $\prod F = \cdot_{\mathbb{R}} \circledast F.$
- (124) $\prod \varepsilon_{\mathbb{R}} = 1.$
- (125) $\prod \langle r \rangle = r.$
- (126) $\prod (F \cap \langle r \rangle) = \prod F \cdot r.$
- (127) $\prod (F_1 \cap F_2) = \prod F_1 \cdot \prod F_2.$
- (128) $\prod(\langle r \rangle \cap F) = r \cdot \prod F.$
- (129) $\prod \langle r_1, r_2 \rangle = r_1 \cdot r_2.$
- (130) $\prod \langle r_1, r_2, r_3 \rangle = (r_1 \cdot r_2) \cdot r_3.$
- (131) For every element R of \mathbb{R}^0 holds $\prod R = 1$.
- (132) $\prod(i \mapsto (1 \operatorname{\mathbf{qua}} a \operatorname{real number})) = 1.$
- (133) There exists k such that $k \in \text{Seg}(\text{len } F)$ and F(k) = 0 if and only if $\prod F = 0$.

- $(134) \quad \prod (i+j\longmapsto r) = \prod (i\longmapsto r)\cdot \prod (j\longmapsto r).$
- (135) $\prod (i \cdot j \longmapsto r) = \prod (j \longmapsto \prod (i \longmapsto r)).$
- (136) $\prod(i\longmapsto r_1\cdot r_2)=\prod(i\longmapsto r_1)\cdot\prod(i\longmapsto r_2).$
- (137) $\prod (R_1 \bullet R_2) = \prod R_1 \cdot \prod R_2.$
- (138) $\prod (r \cdot R) = \prod (i \longmapsto r) \cdot \prod R.$
- (139) $\prod (^2R) = (\prod R)^2.$

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [7] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

[13] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received May 11, 1990