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Summary. Definitions of Elementary Event and Event in any sam-
ple space E are given. Next, the probability of an Event when E is finite
is introduced and some properties of this function are investigated. Last
part of the paper is devoted to the conditional probability and essential
properties of this function (Bayes Theorem).
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The articles [7], [8], [3], [6], [5], [2], [4], and [1] provide the terminology and
notation for this paper. For simplicity we follow the rules: E will denote a
non-empty set, a will denote an element of E, A, B, B1, B2, B3, C will denote
subsets of E, X, Y will denote sets, and p will denote a finite sequence. Let us
consider E. A subset of E is called an elementary event of E if:

it ⊆ E and it 6= ∅ but Y ⊆ it if and only if Y = ∅ or Y = it.

In the sequel e, e1, e2 will denote elementary events of E. One can prove the
following propositions:

(1) If e is an elementary event of E, then e ⊆ E.

(2) If e is an elementary event of E, then e 6= ∅.

(3) For every e such that e is an elementary event of E holds Y ⊆ e if and
only if Y = ∅ or Y = e.

(4) e is an elementary event of E if and only if e ⊆ E and e 6= ∅ but Y ⊆ e
if and only if Y = ∅ or Y = e.

(5) If e is an elementary event of E and e = A∪B and A 6= B, then A = ∅
and B = e or A = e and B = ∅.

(6) If e is an elementary event of E and e = A ∪ B, then A = e and B = e
or A = e and B = ∅ or A = ∅ and B = e.

(7) If a ∈ E, then {a} is an elementary event of E.

(8) If {a} is an elementary event of E, then a ∈ E.

(9) a ∈ E if and only if {a} is an elementary event of E.
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(10) If e1 is an elementary event of E and e2 is an elementary event of E
and e1 ⊆ e2, then e1 = e2.

(11) If e is an elementary event of E, then there exists a such that a ∈ E
and e = {a}.

(12) For every E there exists e such that e is an elementary event of E.

(13) For every E such that e is an elementary event of E holds e is finite.

(14) If e is an elementary event of E, then there exists p such that p is a
finite sequence of elements of E and rng p = e and len p = 1.

Let us consider E. An event of E is a subset of E.

The following propositions are true:

(15) For every subset X of E holds X is an event of E.

(16) ∅ is an event of E.

(17) E is an event of E.

(18) If A is an event of E and B is an event of E, then A∩B is an event of
E.

(19) If A is an event of E and B is an event of E, then A∪B is an event of
E.

(20) If A ⊆ B and B is an event of E, then A is an event of E.

(21) If A is an event of E, then Ac is an event of E.

(22) If e is an elementary event of E and A is an event of E, then e∩A = ∅
or e ∩ A = e.

(23) If A is an event of E and B is an event of E, then A \ B is an event of
E.

(24) If e is an elementary event of E, then e is an event of E.

(25) If A is an event of E and A 6= ∅, then there exists e such that e is an
elementary event of E and e ⊆ A.

(26) If e is an elementary event of E and A is an event of E and e ⊆ A∪Ac,
then e ⊆ A or e ⊆ Ac.

(27) If e1 is an elementary event of E and e2 is an elementary event of E,
then e1 = e2 or e1 ∩ e2 = ∅.

Let us consider X, Y . We say that X exclude Y if and only if:
X ∩ Y = ∅.

Next we state several propositions:

(28) X exclude Y if and only if X ∩ Y = ∅.

(29) If X exclude Y , then Y exclude X.

(30) A exclude Ac.

(31) For every A holds A exclude ∅.

(32) A exclude B if and only if A \ B = A.

(33) A ∩ B exclude A \ B.

(34) A ∩ B exclude A ∩ Bc.
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(35) If A exclude B, then A exclude B ∩ C.

(36) If A exclude B, then A ∩ C exclude B ∩ C.

Let us consider E. Let us assume that E is finite. Let us consider A. The
functor P(A) yields a real number and is defined as follows:

P(A) = card A
card E .

Let us consider E. Then ΩE is an event of E. Then ∅E is an event of E.

The following propositions are true:

(37) If E is finite and A is an event of E, then P(A) = card A
card E .

(38) If E is finite and e is an elementary event of E, then P(e) = 1
card E .

(39) If E is finite, then P(ΩE) = 1.

(40) If E is finite, then P(∅E) = 0.

(41) If E is finite and A is an event of E and B is an event of E and A
exclude B, then P(A ∩ B) = 0.

(42) If E is finite and A is an event of E, then P(A) ≤ 1.

(43) If E is finite and A is an event of E, then 0 ≤ P(A).

(44) If E is finite and A is an event of E and B is an event of E and A ⊆ B,
then P(A) ≤ P(B).

(46)1 If E is finite and A is an event of E and B is an event of E, then
P(A ∪ B) = (P(A) + P(B)) − P(A ∩ B).

(47) If E is finite and A is an event of E and B is an event of E and A
exclude B, then P(A ∪ B) = P(A) + P(B).

(48) If E is finite and A is an event of E, then P(A) = 1 − P(Ac) and
P(Ac) = 1 − P(A).

(49) If E is finite and A is an event of E and B is an event of E, then
P(A \ B) = P(A) − P(A ∩ B).

(50) If E is finite and A is an event of E and B is an event of E and B ⊆ A,
then P(A \ B) = P(A) − P(B).

(51) If E is finite and A is an event of E and B is an event of E, then
P(A ∪ B) ≤ P(A) + P(B).

(52) If E is finite and A is an event of E and B is an event of E, then
P(A \ B) = P(A ∩ Bc).

(53) If E is finite and A is an event of E and B is an event of E, then
P(A) = P(A ∩ B) + P(A ∩ Bc).

(54) If E is finite and A is an event of E and B is an event of E, then
P(A) = P(A ∪ B) − P(B \ A).

(55) If E is finite and A is an event of E and B is an event of E, then
P(A) + P(Ac ∩ B) = P(B) + P(Bc ∩ A).

(56) Suppose E is finite and A is an event of E and B is an event of E and
C is an event of E. Then P((A ∪ B) ∪ C) = (((P(A) + P(B)) + P(C)) −
((P(A ∩ B) + P(A ∩ C)) + P(B ∩ C))) + P((A ∩ B) ∩ C).

1The proposition (45) became obvious.
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(57) If E is finite and A is an event of E and B is an event of E and C is
an event of E and A exclude B and A exclude C and B exclude C, then
P((A ∪ B) ∪ C) = (P(A) + P(B)) + P(C).

(58) If E is finite and A is an event of E and B is an event of E, then
P(A) − P(B) ≤ P(A \ B).

Let us consider E. Let us assume that E is finite. Let us consider B. Let us
assume that 0 < P(B). Let us consider A. The functor P(A/B) yielding a real
number is defined by:

P(A/B) = P(A∩B)
P(B) .

One can prove the following propositions:

(59) If E is finite and A is an event of E and B is an event of E and 0 < P(B),

then P(A/B) = P(A∩B)
P(B) .

(60) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then P(A ∩ B) = P(A/B) · P(B).

(61) If E is finite and A is an event of E, then P(A/ΩE) = P(A).

(62) If E is finite, then P(ΩE/ΩE) = 1.

(63) If E is finite, then P(∅E/ΩE) = 0.

(64) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then P(A/B) ≤ 1.

(65) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then 0 ≤ P(A/B).

(66) If E is finite and A is an event of E and B is an event of E and 0 < P(B),

then P(A/B) = 1 − P(B\A)
P(B) .

(67) If E is finite and A is an event of E and B is an event of E and 0 < P(B)

and A ⊆ B, then P(A/B) = P(A)
P(B) .

(68) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and A exclude B, then P(A/B) = 0.

(69) If E is finite and A is an event of E and B is an event of E and 0 < P(A)
and 0 < P(B), then P(A) · P(B/A) = P(B) · P(A/B).

(70) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then P(A/B) = 1 − P(Ac/B) and P(Ac/B) = 1 − P(A/B).

(71) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and B ⊆ A, then P(A/B) = 1.

(72) If E is finite and B is an event of E and 0 < P(B), then P(ΩE/B) = 1.

(73) If E is finite and A is an event of E and 0 < P(A), then P(Ac/A) = 0.

(74) If E is finite and A is an event of E and P(A) < 1, then P(A/Ac) = 0.

(75) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and A exclude B, then P(Ac/B) = 1.

(76) If E is finite and A is an event of E and B is an event of E and 0 < P(A)

and P(B) < 1 and A exclude B, then P(A/Bc) = P(A)
1−P(B) .
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(77) If E is finite and A is an event of E and B is an event of E and 0 < P(A)

and P(B) < 1 and A exclude B, then P(Ac/Bc) = 1 − P(A)
1−P(B) .

(78) If E is finite and A is an event of E and B is an event of E and C is
an event of E and 0 < P(B ∩ C) and 0 < P(C), then P((A ∩ B) ∩ C) =
(P(A/(B ∩ C)) · P(B/C)) · P(C).

(79) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and P(B) < 1, then P(A) = P(A/B) · P(B) + P(A/Bc) · P(Bc).

(80) Suppose E is finite and A is an event of E and B1 is an event of E and
B2 is an event of E and 0 < P(B1) and 0 < P(B2) and B1 ∪ B2 = E and
B1 ∩ B2 = ∅. Then P(A) = P(A/B1) · P(B1) + P(A/B2) · P(B2).

(81) Suppose that
(i) E is finite,
(ii) A is an event of E,

(iii) B1 is an event of E,
(iv) B2 is an event of E,
(v) B3 is an event of E,
(vi) 0 < P(B1),
(vii) 0 < P(B2),

(viii) 0 < P(B3),
(ix) (B1 ∪ B2) ∪ B3 = E,
(x) B1 ∩ B2 = ∅,
(xi) B1 ∩ B3 = ∅,
(xii) B2 ∩ B3 = ∅.

Then P(A) = (P(A/B1) · P(B1) + P(A/B2) · P(B2)) + P(A/B3) · P(B3).

(82) Suppose E is finite and A is an event of E and B1 is an event of E and
B2 is an event of E and 0 < P(A) and 0 < P(B1) and 0 < P(B2) and B1∪

B2 = E and B1 ∩ B2 = ∅. Then P(B1/A) = P(A/B1)·P(B1)
P(A/B1)·P(B1)+P(A/B2)·P(B2) .

(83) Suppose that
(i) E is finite,
(ii) A is an event of E,

(iii) B1 is an event of E,
(iv) B2 is an event of E,
(v) B3 is an event of E,
(vi) 0 < P(A),
(vii) 0 < P(B1),

(viii) 0 < P(B2),
(ix) 0 < P(B3),
(x) (B1 ∪ B2) ∪ B3 = E,
(xi) B1 ∩ B2 = ∅,
(xii) B1 ∩ B3 = ∅,

(xiii) B2 ∩ B3 = ∅.

Then P(B1/A) = P(A/B1)·P(B1)
(P(A/B1)·P(B1)+P(A/B2)·P(B2))+P(A/B3)·P(B3) .
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Let us consider E, A, B. We say that A and B are independent if and only
if:

P(A ∩ B) = P(A) · P(B).

The following propositions are true:

(84) A and B are independent if and only if P(A ∩ B) = P(A) · P(B).

(85) If A and B are independent, then B and A are independent.

(86) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and A and B are independent, then P(A/B) = P(A).

(87) If E is finite and A is an event of E and B is an event of E and P(B) = 0,
then A and B are independent.

(88) If E is finite and A is an event of E and B is an event of E and A and
B are independent, then Ac and B are independent.

(89) If E is finite and A is an event of E and B is an event of E and A
exclude B and A and B are independent, then P(A) = 0 or P(B) = 0.
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