Introduction to Probability

Jan Popiołek
Warsaw University
Białystok

Abstract

Summary. Definitions of Elementary Event and Event in any sample space E are given. Next, the probability of an Event when E is finite is introduced and some properties of this function are investigated. Last part of the paper is devoted to the conditional probability and essential properties of this function (Bayes Theorem).

MML Identifier: RPR_1.

The articles [7], [8], [3], [6], [5], [2], [4], and [1] provide the terminology and notation for this paper. For simplicity we follow the rules: E will denote a non-empty set, a will denote an element of $E, A, B, B_{1}, B_{2}, B_{3}, C$ will denote subsets of E, X, Y will denote sets, and p will denote a finite sequence. Let us consider E. A subset of E is called an elementary event of E if:
it $\subseteq E$ and it $\neq \emptyset$ but $Y \subseteq$ it if and only if $Y=\emptyset$ or $Y=$ it.
In the sequel e, e_{1}, e_{2} will denote elementary events of E. One can prove the following propositions:
(1) If e is an elementary event of E, then $e \subseteq E$.
(2) If e is an elementary event of E, then $e \neq \emptyset$.
(3) For every e such that e is an elementary event of E holds $Y \subseteq e$ if and only if $Y=\emptyset$ or $Y=e$.
(4) e is an elementary event of E if and only if $e \subseteq E$ and $e \neq \emptyset$ but $Y \subseteq e$ if and only if $Y=\emptyset$ or $Y=e$.
(5) If e is an elementary event of E and $e=A \cup B$ and $A \neq B$, then $A=\emptyset$ and $B=e$ or $A=e$ and $B=\emptyset$.
(6) If e is an elementary event of E and $e=A \cup B$, then $A=e$ and $B=e$ or $A=e$ and $B=\emptyset$ or $A=\emptyset$ and $B=e$.
(7) If $a \in E$, then $\{a\}$ is an elementary event of E.
(8) If $\{a\}$ is an elementary event of E, then $a \in E$.
(9) $\quad a \in E$ if and only if $\{a\}$ is an elementary event of E.
(10) If e_{1} is an elementary event of E and e_{2} is an elementary event of E and $e_{1} \subseteq e_{2}$, then $e_{1}=e_{2}$.
(11) If e is an elementary event of E, then there exists a such that $a \in E$ and $e=\{a\}$.
(12) For every E there exists e such that e is an elementary event of E.
(13) For every E such that e is an elementary event of E holds e is finite.
(14) If e is an elementary event of E, then there exists p such that p is a finite sequence of elements of E and $\operatorname{rng} p=e$ and $\operatorname{len} p=1$.
Let us consider E. An event of E is a subset of E.
The following propositions are true:
(15) For every subset X of E holds X is an event of E.
(16) \emptyset is an event of E.
(17) E is an event of E.
(18) If A is an event of E and B is an event of E, then $A \cap B$ is an event of E.
(19) If A is an event of E and B is an event of E, then $A \cup B$ is an event of E.
(20) If $A \subseteq B$ and B is an event of E, then A is an event of E.
(21) If A is an event of E, then A^{c} is an event of E.
(22) If e is an elementary event of E and A is an event of E, then $e \cap A=\emptyset$ or $e \cap A=e$.
(23) If A is an event of E and B is an event of E, then $A \backslash B$ is an event of E.
(24) If e is an elementary event of E, then e is an event of E.
(25) If A is an event of E and $A \neq \emptyset$, then there exists e such that e is an elementary event of E and $e \subseteq A$.
(26) If e is an elementary event of E and A is an event of E and $e \subseteq A \cup A^{\mathrm{c}}$, then $e \subseteq A$ or $e \subseteq A^{\mathrm{c}}$.
(27) If e_{1} is an elementary event of E and e_{2} is an elementary event of E, then $e_{1}=e_{2}$ or $e_{1} \cap e_{2}=\emptyset$.
Let us consider X, Y. We say that X exclude Y if and only if:
$X \cap Y=\emptyset$.
Next we state several propositions:
(28) $\quad X$ exclude Y if and only if $X \cap Y=\emptyset$.
(29) If X exclude Y, then Y exclude X.
(30) A exclude A^{c}.
(31) For every A holds A exclude \emptyset.
(32) A exclude B if and only if $A \backslash B=A$.
(33) $A \cap B$ exclude $A \backslash B$.
(34) $A \cap B$ exclude $A \cap B^{\mathrm{c}}$.
(35) If A exclude B, then A exclude $B \cap C$.
(36) If A exclude B, then $A \cap C$ exclude $B \cap C$.

Let us consider E. Let us assume that E is finite. Let us consider A. The functor $\mathrm{P}(A)$ yields a real number and is defined as follows:
$\mathrm{P}(A)=\frac{\operatorname{card} A}{\operatorname{card} E}$.
Let us consider E. Then Ω_{E} is an event of E. Then \emptyset_{E} is an event of E.
The following propositions are true:
(37) If E is finite and A is an event of E, then $\mathrm{P}(A)=\frac{\operatorname{card} A}{\operatorname{card} E}$.
(38) If E is finite and e is an elementary event of E, then $\mathrm{P}(e)=\frac{1}{\operatorname{card} E}$.
(39) If E is finite, then $\mathrm{P}\left(\Omega_{E}\right)=1$.
(40) If E is finite, then $\mathrm{P}\left(\emptyset_{E}\right)=0$.
(41) If E is finite and A is an event of E and B is an event of E and A exclude B, then $\mathrm{P}(A \cap B)=0$.
(42) If E is finite and A is an event of E, then $\mathrm{P}(A) \leq 1$.
(43) If E is finite and A is an event of E, then $0 \leq \mathrm{P}(A)$.
(44) If E is finite and A is an event of E and B is an event of E and $A \subseteq B$, then $\mathrm{P}(A) \leq \mathrm{P}(B)$.
$(46)^{1}$ If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A \cup B)=(\mathrm{P}(A)+\mathrm{P}(B))-\mathrm{P}(A \cap B)$.
(47) If E is finite and A is an event of E and B is an event of E and A exclude B, then $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$.
(48) If E is finite and A is an event of E, then $\mathrm{P}(A)=1-\mathrm{P}\left(A^{\mathrm{c}}\right)$ and $\mathrm{P}\left(A^{\mathrm{c}}\right)=1-\mathrm{P}(A)$.
(49) If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A \backslash B)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$.
(50) If E is finite and A is an event of E and B is an event of E and $B \subseteq A$, then $\mathrm{P}(A \backslash B)=\mathrm{P}(A)-\mathrm{P}(B)$.
(51) If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A \cup B) \leq \mathrm{P}(A)+\mathrm{P}(B)$.
(52) If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A \backslash B)=\mathrm{P}\left(A \cap B^{\mathrm{c}}\right)$.
(53) If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\mathrm{c}}\right)$.
(54) If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A)=\mathrm{P}(A \cup B)-\mathrm{P}(B \backslash A)$.
(55) If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A)+\mathrm{P}\left(A^{\mathrm{c}} \cap B\right)=\mathrm{P}(B)+\mathrm{P}\left(B^{\mathrm{c}} \cap A\right)$.
(56) Suppose E is finite and A is an event of E and B is an event of E and C is an event of E. Then $\mathrm{P}((A \cup B) \cup C)=(((\mathrm{P}(A)+\mathrm{P}(B))+\mathrm{P}(C))-$ $((\mathrm{P}(A \cap B)+\mathrm{P}(A \cap C))+\mathrm{P}(B \cap C)))+\mathrm{P}((A \cap B) \cap C)$.

[^0](57) If E is finite and A is an event of E and B is an event of E and C is an event of E and A exclude B and A exclude C and B exclude C, then $\mathrm{P}((A \cup B) \cup C)=(\mathrm{P}(A)+\mathrm{P}(B))+\mathrm{P}(C)$.
(58) If E is finite and A is an event of E and B is an event of E, then $\mathrm{P}(A)-\mathrm{P}(B) \leq \mathrm{P}(A \backslash B)$.
Let us consider E. Let us assume that E is finite. Let us consider B. Let us assume that $0<\mathrm{P}(B)$. Let us consider A. The functor $\mathrm{P}(A / B)$ yielding a real number is defined by:
$\mathrm{P}(A / B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$.
One can prove the following propositions:
(59) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$.
(60) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$, then $\mathrm{P}(A \cap B)=\mathrm{P}(A / B) \cdot \mathrm{P}(B)$.
(61) If E is finite and A is an event of E, then $\mathrm{P}\left(A / \Omega_{E}\right)=\mathrm{P}(A)$.
(62) If E is finite, then $\mathrm{P}\left(\Omega_{E} / \Omega_{E}\right)=1$.
(63) If E is finite, then $\mathrm{P}\left(\emptyset_{E} / \Omega_{E}\right)=0$.
(64) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B) \leq 1$.
(65) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$, then $0 \leq \mathrm{P}(A / B)$.
(66) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B)=1-\frac{\mathrm{P}(B \backslash A)}{\mathrm{P}(B)}$.
(67) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$ and $A \subseteq B$, then $\mathrm{P}(A / B)=\frac{\mathrm{P}(A)}{\mathrm{P}(B)}$.
(68) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$ and A exclude B, then $\mathrm{P}(A / B)=0$.
(69) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(A)$ and $0<\mathrm{P}(B)$, then $\mathrm{P}(A) \cdot \mathrm{P}(B / A)=\mathrm{P}(B) \cdot \mathrm{P}(A / B)$.
(70) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B)=1-\mathrm{P}\left(A^{\mathrm{c}} / B\right)$ and $\mathrm{P}\left(A^{\mathrm{c}} / B\right)=1-\mathrm{P}(A / B)$.
(71) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$ and $B \subseteq A$, then $\mathrm{P}(A / B)=1$.
(72) If E is finite and B is an event of E and $0<\mathrm{P}(B)$, then $\mathrm{P}\left(\Omega_{E} / B\right)=1$.

If E is finite and A is an event of E and $0<\mathrm{P}(A)$, then $\mathrm{P}\left(A^{\mathrm{c}} / A\right)=0$. If E is finite and A is an event of E and $\mathrm{P}(A)<1$, then $\mathrm{P}\left(A / A^{\mathrm{c}}\right)=0$. If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$ and A exclude B, then $\mathrm{P}\left(A^{\mathrm{c}} / B\right)=1$.
(76) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(A)$ and $\mathrm{P}(B)<1$ and A exclude B, then $\mathrm{P}\left(A / B^{\mathrm{c}}\right)=\frac{\mathrm{P}(A)}{1-\mathrm{P}(B)}$.
(77) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(A)$ and $\mathrm{P}(B)<1$ and A exclude B, then $\mathrm{P}\left(A^{\mathrm{c}} / B^{\mathrm{c}}\right)=1-\frac{\mathrm{P}(A)}{1-\mathrm{P}(B)}$.
(78) If E is finite and A is an event of E and B is an event of E and C is an event of E and $0<\mathrm{P}(B \cap C)$ and $0<\mathrm{P}(C)$, then $\mathrm{P}((A \cap B) \cap C)=$ $(\mathrm{P}(A /(B \cap C)) \cdot \mathrm{P}(B / C)) \cdot \mathrm{P}(C)$.
(79) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$ and $\mathrm{P}(B)<1$, then $\mathrm{P}(A)=\mathrm{P}(A / B) \cdot \mathrm{P}(B)+\mathrm{P}\left(A / B^{\mathrm{c}}\right) \cdot \mathrm{P}\left(B^{\mathrm{c}}\right)$.
(80) Suppose E is finite and A is an event of E and B_{1} is an event of E and B_{2} is an event of E and $0<\mathrm{P}\left(B_{1}\right)$ and $0<\mathrm{P}\left(B_{2}\right)$ and $B_{1} \cup B_{2}=E$ and $B_{1} \cap B_{2}=\emptyset$. Then $\mathrm{P}(A)=\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)$.
(81) Suppose that
(i) E is finite,
(ii) A is an event of E,
(iii) $\quad B_{1}$ is an event of E,
(iv) $\quad B_{2}$ is an event of E,
(v) B_{3} is an event of E,
(vi) $0<\mathrm{P}\left(B_{1}\right)$,
(vii) $0<\mathrm{P}\left(B_{2}\right)$,
(viii) $0<\mathrm{P}\left(B_{3}\right)$,
(ix) $\left(B_{1} \cup B_{2}\right) \cup B_{3}=E$,
(x) $\quad B_{1} \cap B_{2}=\emptyset$,
(xi) $\quad B_{1} \cap B_{3}=\emptyset$,
(xii) $\quad B_{2} \cap B_{3}=\emptyset$.

Then $\mathrm{P}(A)=\left(\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)\right)+\mathrm{P}\left(A / B_{3}\right) \cdot \mathrm{P}\left(B_{3}\right)$.
(82) Suppose E is finite and A is an event of E and B_{1} is an event of E and B_{2} is an event of E and $0<\mathrm{P}(A)$ and $0<\mathrm{P}\left(B_{1}\right)$ and $0<\mathrm{P}\left(B_{2}\right)$ and $B_{1} \cup$ $B_{2}=E$ and $B_{1} \cap B_{2}=\emptyset$. Then $\mathrm{P}\left(B_{1} / A\right)=\frac{\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)}{\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)}$.
(83) Suppose that
(i) E is finite,
(ii) A is an event of E,
(iii) $\quad B_{1}$ is an event of E,
(iv) $\quad B_{2}$ is an event of E,
(v) $\quad B_{3}$ is an event of E,
(vi) $0<\mathrm{P}(A)$,
(vii) $0<\mathrm{P}\left(B_{1}\right)$,
(viii) $0<\mathrm{P}\left(B_{2}\right)$,
(ix) $0<\mathrm{P}\left(B_{3}\right)$,
(x) $\left(B_{1} \cup B_{2}\right) \cup B_{3}=E$,
(xi) $\quad B_{1} \cap B_{2}=\emptyset$,
(xii) $\quad B_{1} \cap B_{3}=\emptyset$,
(xiii) $\quad B_{2} \cap B_{3}=\emptyset$.

Then $\mathrm{P}\left(B_{1} / A\right)=\frac{\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)}{\left(\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)\right)+\mathrm{P}\left(A / B_{3}\right) \cdot \mathrm{P}\left(B_{3}\right)}$.

Let us consider E, A, B. We say that A and B are independent if and only if:
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$.
The following propositions are true:
(84) $\quad A$ and B are independent if and only if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$.
(85) If A and B are independent, then B and A are independent.
(86) If E is finite and A is an event of E and B is an event of E and $0<\mathrm{P}(B)$ and A and B are independent, then $\mathrm{P}(A / B)=\mathrm{P}(A)$.
(87) If E is finite and A is an event of E and B is an event of E and $\mathrm{P}(B)=0$, then A and B are independent.
(88) If E is finite and A is an event of E and B is an event of E and A and B are independent, then A^{c} and B are independent.
(89) If E is finite and A is an event of E and B is an event of E and A exclude B and A and B are independent, then $\mathrm{P}(A)=0$ or $\mathrm{P}(B)=0$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377382, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):6771, 1990.

[^0]: ${ }^{1}$ The proposition (45) became obvious.

