Average Value Theorems for Real Functions of One Variable ${ }^{1}$

Jarosław Kotowicz
Warsaw University
Białystok

Konrad Raczkowski
Warsaw University
Białystok

Paweł Sadowski
Warsaw University
Białystok

Summary. Three basic theorems in differential calculus of one variable functions are presented: Rolle Theorem, Lagrange Theorem and Cauchy Theorem. There are also direct conclusions.

MML Identifier: ROLLE.

The terminology and notation used here have been introduced in the following papers: [2], [1], [3], [4], [5], [8], [6], and [7]. We adopt the following rules: g, $r, s, p, t, x, x_{0}, x_{1}$ will denote real numbers and f, f_{1}, f_{2} will denote partial functions from \mathbb{R} to \mathbb{R}. We now state a number of propositions:
(1) For all p, g such that $p<g$ for every f such that f is continuous on [$p, g]$ and $f(p)=f(g)$ and f is differentiable on $] p, g\left[\right.$ there exists x_{0} such that $\left.x_{0} \in\right] p, g\left[\right.$ and $f^{\prime}\left(x_{0}\right)=0$.
(2) Given x, t. Suppose $0<t$. Then for every f such that f is continuous on $[x, x+t]$ and $f(x)=f(x+t)$ and f is differentiable on $] x, x+t[$ there exists s such that $0<s$ and $s<1$ and $f^{\prime}(x+s \cdot t)=0$.
(3) For all p, g such that $p<g$ for every f such that f is continuous on $[p, g]$ and f is differentiable on $] p, g\left[\right.$ there exists x_{0} such that $\left.x_{0} \in\right] p, g[$ and $f^{\prime}\left(x_{0}\right)=\frac{f(g)-f(p)}{g-p}$.
(4) Given x, t. Suppose $0<t$. Then for every f such that f is continuous on $[x, x+t]$ and f is differentiable on $] x, x+t[$ there exists s such that $0<s$ and $s<1$ and $f(x+t)=f(x)+t \cdot\left(f^{\prime}(x+s \cdot t)\right)$.
(5) Given p, g. Suppose $p<g$. Given f_{1}, f_{2}. Suppose f_{1} is continuous on [$p, g]$ and f_{1} is differentiable on $] p, g\left[\right.$ and f_{2} is continuous on $[p, g]$ and f_{2} is differentiable on $] p, g\left[\right.$. Then there exists x_{0} such that $\left.x_{0} \in\right] p, g[$ and $\left(f_{1}(g)-f_{1}(p)\right) \cdot\left(f_{2}^{\prime}\left(x_{0}\right)\right)=\left(f_{2}(g)-f_{2}(p)\right) \cdot\left(f_{1}^{\prime}\left(x_{0}\right)\right)$.

[^0](6) Given x, t. Suppose $0<t$. Given f_{1}, f_{2}. Suppose f_{1} is continuous on $[x, x+t]$ and f_{1} is differentiable on $] x, x+t\left[\right.$ and f_{2} is continuous on $[x, x+t]$ and f_{2} is differentiable on $] x, x+t\left[\right.$ and for every x_{1} such that $\left.x_{1} \in\right] x, x+t\left[\right.$ holds $f_{2}^{\prime}\left(x_{1}\right) \neq 0$. Then there exists s such that $0<s$ and $s<1$ and $\frac{f_{1}(x+t)-f_{1}(x)}{f_{2}(x+t)-f_{2}(x)}=\frac{f_{1}^{\prime}(x+s \cdot t)}{f_{2}^{\prime}(x+s \cdot t)}$.
(7) For all p, g such that $p<g$ for every f such that f is differentiable on $] p, g[$ and for every x such that $x \in] p, g\left[\right.$ holds $f^{\prime}(x)=0$ holds f is a constant on $] p, g[$.
(8) Given p, g. Suppose $p<g$. Given f_{1}, f_{2}. Suppose f_{1} is differentiable on $] p, g\left[\right.$ and f_{2} is differentiable on $] p, g[$ and for every x such that $x \in] p, g[$ holds $f_{1}^{\prime}(x)=f_{2}^{\prime}(x)$. Then $f_{1}-f_{2}$ is a constant on $] p, g[$ and there exists r such that for every x such that $x \in] p, g\left[\right.$ holds $f_{1}(x)=f_{2}(x)+r$.
(9) For all p, g such that $p<g$ for every f such that f is differentiable on $] p, g[$ and for every x such that $x \in] p, g\left[\right.$ holds $0<f^{\prime}(x)$ holds f is increasing on $] p, g[$.
(10) For all p, g such that $p<g$ for every f such that f is differentiable on $] p, g[$ and for every x such that $x \in] p, g\left[\right.$ holds $f^{\prime}(x)<0$ holds f is decreasing on $] p, g[$.
(11) For all p, g such that $p<g$ for every f such that f is differentiable on $] p, g[$ and for every x such that $x \in] p, g\left[\right.$ holds $0 \leq f^{\prime}(x)$ holds f is non-decreasing on $] p, g[$.
(12) For all p, g such that $p<g$ for every f such that f is differentiable on $] p, g[$ and for every x such that $x \in] p, g\left[\right.$ holds $f^{\prime}(x) \leq 0$ holds f is non-increasing on $] p, g[$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[4] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[5] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, $1(4): 781-786,1990$.
[6] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[7] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[8] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

Received June 18, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8.

