Properties of Real Functions

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. The list of theorems concerning properties of real sequences and functions is enlarged. (See e.g. [9], [4], [8]). The monotone real functions are introduced and their properties are discussed.

MML Identifier: RFUNCT_2.

The papers [11], [3], [1], [9], [5], [6], [4], [2], [7], [10], and [8] provide the terminology and notation for this paper. For simplicity we follow a convention: x is arbitrary, X, X_1 , Y denote sets, g, r, r_1 , r_2 , p denote real numbers, Rdenotes a subset of \mathbb{R} , seq, seq_1 , seq_2 , seq_3 denote sequences of real numbers, Ns denotes an increasing sequence of naturals, n denotes a natural number, and h, h_1 , h_2 denote partial functions from \mathbb{R} to \mathbb{R} . The following propositions are true:

- (1) For all functions F, G and for every X such that $X \subseteq \text{dom } F$ and $F \circ X \subseteq \text{dom } G$ holds $X \subseteq \text{dom}(G \cdot F)$.
- (2) For all functions F, G and for every X holds $G \upharpoonright (F \circ X) \cdot F \upharpoonright X = (G \cdot F) \upharpoonright X$.
- (3) For all functions F, G and for all X, X_1 holds $G \upharpoonright X_1 \cdot F \upharpoonright X = (G \cdot F) \upharpoonright (X \cap F^{-1} X_1)$.
- (4) For all functions F, G and for every X holds $X \subseteq \text{dom}(G \cdot F)$ if and only if $X \subseteq \text{dom } F$ and $F \circ X \subseteq \text{dom } G$.
- (5) For every function F and for every X holds $(F \upharpoonright X) \circ X = F \circ X$. Let us consider *seq*. Then rng *seq* is a subset of \mathbb{R} .

One can prove the following propositions:

- (6) $seq_1 = seq_2 seq_3$ if and only if for every n holds $seq_1(n) = seq_2(n) seq_3(n)$.
- (7) $\operatorname{rng}(\operatorname{seq} \cap n) \subseteq \operatorname{rng} \operatorname{seq}.$

¹Supported by RPBP.III-24.C.8.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (8) If rng $seq \subseteq \operatorname{dom} h$, then $seq(n) \in \operatorname{dom} h$.
- (9) $x \in \operatorname{rng} seq$ if and only if there exists n such that x = seq(n).
- (10) $seq(n) \in rng seq.$
- (11) If seq_1 is a subsequence of seq, then $rng seq_1 \subseteq rng seq$.
- (12) If seq_1 is a subsequence of seq and seq is non-zero, then seq_1 is non-zero.
- (13) $(seq_1 + seq_2) \cdot Ns = seq_1 \cdot Ns + seq_2 \cdot Ns$ and $(seq_1 seq_2) \cdot Ns = seq_1 \cdot Ns seq_2 \cdot Ns$ and $(seq_1 \diamond seq_2) \cdot Ns = (seq_1 \cdot Ns) \diamond (seq_2 \cdot Ns)$.
- (14) $(p \diamond seq) \cdot Ns = p \diamond (seq \cdot Ns).$
- (15) $(-seq) \cdot Ns = -seq \cdot Ns$ and $|seq| \cdot Ns = |seq \cdot Ns|$.
- (16) If seq is non-zero, then $(seq \cdot Ns)^{-1} = seq^{-1} \cdot Ns$.
- (17) If seq is non-zero, then $\frac{seq_1}{seq} \cdot Ns = \frac{seq_1 \cdot Ns}{seq \cdot Ns}$.
- (18) If seq is convergent and for every n holds $seq(n) \le 0$, then $\lim seq \le 0$.
- (19) If for every n holds $seq(n) \in Y$, then $rng seq \subseteq Y$.

Let us consider h, seq. Let us assume that $\operatorname{rng} seq \subseteq \operatorname{dom} h$. The functor $h \cdot seq$ yields a sequence of real numbers and is defined by:

 $h \cdot seq = (h \operatorname{\mathbf{qua}} a \operatorname{function}) \cdot seq.$

The following propositions are true:

- (20) If rng $seq \subseteq dom h$, then $h \cdot seq = (h \operatorname{qua} a \operatorname{function}) \cdot seq$.
- (21) If rng $seq \subseteq dom h$, then $(h \cdot seq)(n) = h(seq(n))$.
- (22) If rng $seq \subseteq dom h$, then $(h \cdot seq) \cap n = h \cdot (seq \cap n)$.
- (23) Suppose rng $seq \subseteq \operatorname{dom} h_1 \cap \operatorname{dom} h_2$. Then $(h_1 + h_2) \cdot seq = h_1 \cdot seq + h_2 \cdot seq$ and $(h_1 h_2) \cdot seq = h_1 \cdot seq h_2 \cdot seq$ and $(h_1 \diamond h_2) \cdot seq = (h_1 \cdot seq) \diamond (h_2 \cdot seq)$.
- (24) If rng $seq \subseteq dom h$, then $(r \diamond h) \cdot seq = r \diamond (h \cdot seq)$.
- (25) If rng $seq \subseteq dom h$, then $|h \cdot seq| = |h| \cdot seq$ and $-h \cdot seq = (-h) \cdot seq$.
- (26) If rng $seq \subseteq dom \frac{1}{h}$, then $h \cdot seq$ is non-zero.
- (27) If rng $seq \subseteq \operatorname{dom} \frac{1}{h}$, then $\frac{1}{h} \cdot seq = (h \cdot seq)^{-1}$.
- (28) If rng $seq \subseteq \text{dom } h$, then $(h \cdot seq) \cdot Ns = h \cdot (seq \cdot Ns)$.
- (29) If rng $seq_1 \subseteq \text{dom } h$ and seq_2 is a subsequence of seq_1 , then $h \cdot seq_2$ is a subsequence of $h \cdot seq_1$.
- (30) If h is total, then $(h \cdot seq)(n) = h(seq(n))$.
- (31) If h is total, then $h \cdot (seq \cap n) = (h \cdot seq) \cap n$.
- (32) If h_1 is total and h_2 is total, then $(h_1 + h_2) \cdot seq = h_1 \cdot seq + h_2 \cdot seq$ and $(h_1 h_2) \cdot seq = h_1 \cdot seq h_2 \cdot seq$ and $(h_1 \diamond h_2) \cdot seq = (h_1 \cdot seq) \diamond (h_2 \cdot seq)$.
- (33) If h is total, then $(r \diamond h) \cdot seq = r \diamond (h \cdot seq)$.
- (34) If rng $seq \subseteq dom(h \upharpoonright X)$, then $h \upharpoonright X \cdot seq = h \cdot seq$.
- (35) If rng $seq \subseteq dom(h \upharpoonright X)$ but rng $seq \subseteq dom(h \upharpoonright Y)$ or $X \subseteq Y$, then $h \upharpoonright X \cdot seq = h \upharpoonright Y \cdot seq$.
- (36) If rng $seq \subseteq dom(h \upharpoonright X)$, then $|h \upharpoonright X \cdot seq| = |h| \upharpoonright X \cdot seq$.

- (37) If rng $seq \subseteq dom(h \upharpoonright X)$ and $h^{-1}\{0\} = \emptyset$, then $\frac{1}{h} \upharpoonright X \cdot seq = (h \upharpoonright X \cdot seq)^{-1}$.
- (38) If rng $seq \subseteq \operatorname{dom} h$, then $h \circ \operatorname{rng} seq = \operatorname{rng}(h \cdot seq)$.
- (39) If rng $seq \subseteq dom(h_2 \cdot h_1)$, then $h_2 \cdot (h_1 \cdot seq) = (h_2 \cdot h_1) \cdot seq$.
- (40) If h is one-to-one, then $(h \upharpoonright X)^{-1} = h^{-1} \upharpoonright (h \circ X)$.
- (41) If rng h is bounded and $\sup(\operatorname{rng} h) = \inf(\operatorname{rng} h)$, then h is a constant on dom h.
- (42) If $Y \subseteq \operatorname{dom} h$ and $h \circ Y$ is bounded and $\sup(h \circ Y) = \inf(h \circ Y)$, then h is a constant on Y.

We now define four new predicates. Let us consider h, Y. We say that h is increasing on Y if and only if:

for all r_1, r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_1) < h(r_2)$.

We say that h is decreasing on Y if and only if:

for all r_1, r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_2) < h(r_1)$.

We say that h is non-decreasing on Y if and only if:

for all r_1, r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_1) \leq h(r_2)$.

We say that h is non-increasing on Y if and only if:

for all r_1, r_2 such that $r_1 \in Y \cap \text{dom } h$ and $r_2 \in Y \cap \text{dom } h$ and $r_1 < r_2$ holds $h(r_2) \leq h(r_1)$.

Let us consider h, Y. We say that h is monotone on Y if and only if:

h is non-decreasing on Y or h is non-increasing on Y.

Next we state a number of propositions:

- (43) h is increasing on Y if and only if for all r_1, r_2 such that $r_1 \in Y \cap \operatorname{dom} h$ and $r_2 \in Y \cap \operatorname{dom} h$ and $r_1 < r_2$ holds $h(r_1) < h(r_2)$.
- (44) h is decreasing on Y if and only if for all r_1, r_2 such that $r_1 \in Y \cap \operatorname{dom} h$ and $r_2 \in Y \cap \operatorname{dom} h$ and $r_1 < r_2$ holds $h(r_2) < h(r_1)$.
- (45) h is non-decreasing on Y if and only if for all r_1, r_2 such that $r_1 \in Y \cap \operatorname{dom} h$ and $r_2 \in Y \cap \operatorname{dom} h$ and $r_1 < r_2$ holds $h(r_1) \le h(r_2)$.
- (46) h is non-increasing on Y if and only if for all r_1, r_2 such that $r_1 \in Y \cap \operatorname{dom} h$ and $r_2 \in Y \cap \operatorname{dom} h$ and $r_1 < r_2$ holds $h(r_2) \leq h(r_1)$.
- (47) h is monotone on Y if and only if h is non-decreasing on Y or h is non-increasing on Y.
- (48) h is non-decreasing on Y if and only if for all r_1, r_2 such that $r_1 \in Y \cap \operatorname{dom} h$ and $r_2 \in Y \cap \operatorname{dom} h$ and $r_1 \leq r_2$ holds $h(r_1) \leq h(r_2)$.
- (49) h is non-increasing on Y if and only if for all r_1, r_2 such that $r_1 \in Y \cap \operatorname{dom} h$ and $r_2 \in Y \cap \operatorname{dom} h$ and $r_1 \leq r_2$ holds $h(r_2) \leq h(r_1)$.
- (50) h is increasing on X if and only if $h \upharpoonright X$ is increasing on X.
- (51) h is decreasing on X if and only if $h \upharpoonright X$ is decreasing on X.
- (52) h is non-decreasing on X if and only if $h \upharpoonright X$ is non-decreasing on X.

- (53) h is non-increasing on X if and only if $h \upharpoonright X$ is non-increasing on X.
- (54) If $Y \cap \text{dom } h = \emptyset$, then h is increasing on Y and h is decreasing on Y and h is non-decreasing on Y and h is non-increasing on Y and h is monotone on Y.
- (55) If h is increasing on Y, then h is non-decreasing on Y.
- (56) If h is decreasing on Y, then h is non-increasing on Y.
- (57) If h is a constant on Y, then h is non-decreasing on Y.
- (58) If h is a constant on Y, then h is non-increasing on Y.
- (59) If h is non-decreasing on Y and h is non-increasing on X, then h is a constant on $Y \cap X$.
- (60) If $X \subseteq Y$ and h is increasing on Y, then h is increasing on X.
- (61) If $X \subseteq Y$ and h is decreasing on Y, then h is decreasing on X.
- (62) If $X \subseteq Y$ and h is non-decreasing on Y, then h is non-decreasing on X.
- (63) If $X \subseteq Y$ and h is non-increasing on Y, then h is non-increasing on X.
- (64) If h is increasing on Y and 0 < r, then $r \diamond h$ is increasing on Y but if r = 0, then $r \diamond h$ is a constant on Y but if h is increasing on Y and r < 0, then $r \diamond h$ is decreasing on Y.
- (65) If h is decreasing on Y and 0 < r, then $r \diamond h$ is decreasing on Y but if h is decreasing on Y and r < 0, then $r \diamond h$ is increasing on Y.
- (66) If h is non-decreasing on Y and $0 \le r$, then $r \diamond h$ is non-decreasing on Y but if h is non-decreasing on Y and $r \le 0$, then $r \diamond h$ is non-increasing on Y.
- (67) If h is non-increasing on Y and $0 \le r$, then $r \diamond h$ is non-increasing on Y but if h is non-increasing on Y and $r \le 0$, then $r \diamond h$ is non-decreasing on Y.
- (68) If $r \in (X \cap Y) \cap \operatorname{dom}(h_1 + h_2)$, then $r \in X \cap \operatorname{dom} h_1$ and $r \in Y \cap \operatorname{dom} h_2$.
- (69) (i) If h_1 is increasing on X and h_2 is increasing on Y, then $h_1 + h_2$ is increasing on $X \cap Y$,
 - (ii) if h_1 is decreasing on X and h_2 is decreasing on Y, then $h_1 + h_2$ is decreasing on $X \cap Y$,
 - (iii) if h_1 is non-decreasing on X and h_2 is non-decreasing on Y, then h_1+h_2 is non-decreasing on $X \cap Y$,
 - (iv) if h_1 is non-increasing on X and h_2 is non-increasing on Y, then $h_1 + h_2$ is non-increasing on $X \cap Y$.
- (70) If h_1 is increasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is increasing on $X \cap Y$ but if h_1 is decreasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is decreasing on $X \cap Y$.
- (71) If h_1 is increasing on X and h_2 is non-decreasing on Y, then $h_1 + h_2$ is increasing on $X \cap Y$.
- (72) If h_1 is non-increasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is non-increasing on $X \cap Y$.

- (73) If h_1 is decreasing on X and h_2 is non-increasing on Y, then $h_1 + h_2$ is decreasing on $X \cap Y$.
- (74) If h_1 is non-decreasing on X and h_2 is a constant on Y, then $h_1 + h_2$ is non-decreasing on $X \cap Y$.
- (75) h is increasing on $\{x\}$.
- (76) h is decreasing on $\{x\}$.
- (77) h is non-decreasing on $\{x\}$.
- (78) h is non-increasing on $\{x\}$.
- (79) id_R is increasing on R.
- (80) If h is increasing on X, then -h is decreasing on X.
- (81) If h is non-decreasing on X, then -h is non-increasing on X.
- (82) If h is increasing on [p, g] or h is decreasing on [p, g], then $h \upharpoonright [p, g]$ is one-to-one.
- (83) If h is increasing on [p, g], then $(h \upharpoonright [p, g])^{-1}$ is increasing on $h^{\circ} [p, g]$.
- (84) If h is decreasing on [p, g], then $(h \upharpoonright [p, g])^{-1}$ is decreasing on $h^{\circ}[p, g]$.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357– 367, 1990.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Formalized Mathematics*, 1(3):477–481, 1990.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(4):777–780, 1990.

[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received June 18, 1990