Properties of Real Functions

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The list of theorems concerning properties of real sequences and functions is enlarged. (See e.g. [9], [4], [8]). The monotone real functions are introduced and their properties are discussed.

MML Identifier: RFUNCT_2.

The papers [11], [3], [1], [9], [5], [6], [4], [2], [7], [10], and [8] provide the terminology and notation for this paper. For simplicity we follow a convention: x is arbitrary, X, X_{1}, Y denote sets, g, r, r_{1}, r_{2}, p denote real numbers, R denotes a subset of \mathbb{R}, seq, seq $_{1}$, seq q_{2}, seq q_{3} denote sequences of real numbers, $N s$ denotes an increasing sequence of naturals, n denotes a natural number, and h, h_{1}, h_{2} denote partial functions from \mathbb{R} to \mathbb{R}. The following propositions are true:
(1) For all functions F, G and for every X such that $X \subseteq \operatorname{dom} F$ and $F^{\circ} X \subseteq \operatorname{dom} G$ holds $X \subseteq \operatorname{dom}(G \cdot F)$.
(2) For all functions F, G and for every X holds $G \upharpoonright\left(F^{\circ} X\right) \cdot F \upharpoonright X=$ $(G \cdot F) \upharpoonright X$.
(3) For all functions F, G and for all X, X_{1} holds $G \upharpoonright X_{1} \cdot F \upharpoonright X=(G \cdot F) \upharpoonright$ $\left(X \cap F^{-1} X_{1}\right)$.
(4) For all functions F, G and for every X holds $X \subseteq \operatorname{dom}(G \cdot F)$ if and only if $X \subseteq \operatorname{dom} F$ and $F^{\circ} X \subseteq \operatorname{dom} G$.
(5) For every function F and for every X holds $(F \upharpoonright X)^{\circ} X=F^{\circ} X$.

Let us consider seq. Then rng seq is a subset of \mathbb{R}.
One can prove the following propositions:
(6) $\quad s e q_{1}=s e q_{2}-s e q_{3}$ if and only if for every n holds $s e q_{1}(n)=s e q_{2}(n)-$ $s e q_{3}(n)$.
(7) $\quad \operatorname{rng}\left(s e q^{\wedge} n\right) \subseteq \operatorname{rng} s e q$.

[^0](8) If rng seq $\subseteq \operatorname{dom} h$, then $\operatorname{seq}(n) \in \operatorname{dom} h$.
(9) $\quad x \in \operatorname{rng} \operatorname{seq}$ if and only if there exists n such that $x=\operatorname{seq}(n)$.
$s e q(n) \in \operatorname{rng}$ seq.
(11) If $s e q_{1}$ is a subsequence of $s e q$, then rng $s e q_{1} \subseteq$ rng seq.
(12) If $s e q_{1}$ is a subsequence of seq and seq is non-zero, then $s e q_{1}$ is non-zero.
(13) $\quad\left(s e q_{1}+s e q_{2}\right) \cdot N s=s e q_{1} \cdot N s+s e q_{2} \cdot N s$ and $\left(s e q_{1}-s e q_{2}\right) \cdot N s=$ $s e q_{1} \cdot N s-s e q_{2} \cdot N s$ and $\left(s e q_{1} \diamond s e q_{2}\right) \cdot N s=\left(s e q_{1} \cdot N s\right) \diamond\left(s e q_{2} \cdot N s\right)$.
$(p \diamond s e q) \cdot N s=p \diamond(s e q \cdot N s)$.
$(-s e q) \cdot N s=-s e q \cdot N s$ and $|s e q| \cdot N s=|s e q \cdot N s|$.
If $s e q$ is non-zero, then $(s e q \cdot N s)^{-1}=s e q^{-1} \cdot N s$.
(18) If seq is convergent and for every n holds $\operatorname{seq}(n) \leq 0$, then lim seq ≤ 0.
(19) If for every n holds seq $(n) \in Y$, then rng seq $\subseteq Y$.

Let us consider h, seq. Let us assume that rng seq $\subseteq \operatorname{dom} h$. The functor $h \cdot s e q$ yields a sequence of real numbers and is defined by:
$h \cdot s e q=(h$ qua a function $) \cdot$ seq.
The following propositions are true:
(20) If rng seq $\subseteq \operatorname{dom} h$, then $h \cdot s e q=(h$ qua a function) \cdot seq.
(21) If rng seq $\subseteq \operatorname{dom} h$, then $(h \cdot$ seq) $(n)=h(\operatorname{seq}(n))$.
(22) If rng seq $\subseteq \operatorname{dom} h$, then $\left.(h \cdot s e q)^{\wedge} n=h \cdot(s e q)^{\wedge} n\right)$.
(23) Suppose rng seq $\subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$. Then $\left(h_{1}+h_{2}\right) \cdot s e q=h_{1} \cdot s e q+$ $h_{2} \cdot s e q$ and $\left(h_{1}-h_{2}\right) \cdot s e q=h_{1} \cdot s e q-h_{2} \cdot s e q$ and $\left(h_{1} \diamond h_{2}\right) \cdot s e q=$ $\left(h_{1} \cdot s e q\right) \diamond\left(h_{2} \cdot s e q\right)$.
(24) If rng seq $\subseteq \operatorname{dom} h$, then $(r \diamond h) \cdot s e q=r \diamond(h \cdot s e q)$.
(25) If rng seq $\subseteq \operatorname{dom} h$, then $|h \cdot s e q|=|h| \cdot s e q$ and $-h \cdot s e q=(-h) \cdot s e q$.
(26) If rng seq $\subseteq \operatorname{dom} \frac{1}{h}$, then $h \cdot$ seq is non-zero.
(27) If rng seq $\subseteq \operatorname{dom} \frac{1}{h}$, then $\frac{1}{h} \cdot s e q=(h \cdot s e q)^{-1}$.
(28) If rng seq $\subseteq \operatorname{dom} h$, then $(h \cdot s e q) \cdot N s=h \cdot(s e q \cdot N s)$.
(29) If rng $s e q_{1} \subseteq \operatorname{dom} h$ and $s e q_{2}$ is a subsequence of $s e q_{1}$, then $h \cdot s e q_{2}$ is a subsequence of $h \cdot$ seq $_{1}$.
(30) If h is total, then $(h \cdot \operatorname{seq})(n)=h(\operatorname{seq}(n))$.
(31) If h is total, then $h \cdot\left(\right.$ seq $\left.^{\wedge} n\right)=(h \cdot s e q)^{\wedge} n$.
(32) If h_{1} is total and h_{2} is total, then $\left(h_{1}+h_{2}\right) \cdot s e q=h_{1} \cdot s e q+h_{2} \cdot s e q$ and $\left(h_{1}-h_{2}\right) \cdot s e q=h_{1} \cdot s e q-h_{2} \cdot s e q$ and $\left(h_{1} \diamond h_{2}\right) \cdot s e q=\left(h_{1} \cdot s e q\right) \diamond\left(h_{2} \cdot s e q\right)$.
(33) If h is total, then $(r \diamond h) \cdot s e q=r \diamond(h \cdot s e q)$.
(34) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$, then $h \upharpoonright X \cdot \operatorname{seq}=h \cdot \mathrm{seq}$.
(35) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$ but rng seq $\subseteq \operatorname{dom}(h \upharpoonright Y)$ or $X \subseteq Y$, then $h \upharpoonright X \cdot s e q=h \upharpoonright Y \cdot$ seq.
(36) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$, then $|h \upharpoonright X \cdot s e q|=|h| \upharpoonright X \cdot$ seq.
(37) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$ and $h^{-1}\{0\}=\emptyset$, then $\frac{1}{h} \upharpoonright X \cdot \operatorname{seq}=(h \upharpoonright$ $X \cdot s e q)^{-1}$.
(38) If rng seq $\subseteq \operatorname{dom} h$, then h° rng $s e q=\operatorname{rng}(h \cdot s e q)$.
(39) If rng seq $\subseteq \operatorname{dom}\left(h_{2} \cdot h_{1}\right)$, then $h_{2} \cdot\left(h_{1} \cdot s e q\right)=\left(h_{2} \cdot h_{1}\right) \cdot s e q$.
(40) If h is one-to-one, then $(h \upharpoonright X)^{-1}=h^{-1} \upharpoonright\left(h^{\circ} X\right)$.
(41) If $\operatorname{rng} h$ is bounded and $\sup (\operatorname{rng} h)=\inf (\operatorname{rng} h)$, then h is a constant on $\operatorname{dom} h$.
(42) If $Y \subseteq \operatorname{dom} h$ and $h^{\circ} Y$ is bounded and $\sup \left(h^{\circ} Y\right)=\inf \left(h^{\circ} Y\right)$, then h is a constant on Y.
We now define four new predicates. Let us consider h, Y. We say that h is increasing on Y if and only if:
for all r_{1}, r_{2} such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right)<h\left(r_{2}\right)$.
We say that h is decreasing on Y if and only if:
for all r_{1}, r_{2} such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right)<h\left(r_{1}\right)$.
We say that h is non-decreasing on Y if and only if:
for all r_{1}, r_{2} such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right) \leq h\left(r_{2}\right)$.
We say that h is non-increasing on Y if and only if:
for all r_{1}, r_{2} such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right) \leq h\left(r_{1}\right)$.

Let us consider h, Y. We say that h is monotone on Y if and only if:
h is non-decreasing on Y or h is non-increasing on Y.
Next we state a number of propositions:
(43) $\quad h$ is increasing on Y if and only if for all r_{1}, r_{2} such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right)<h\left(r_{2}\right)$.
(44) h is decreasing on Y if and only if for all r_{1}, r_{2} such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right)<h\left(r_{1}\right)$.
(45) h is non-decreasing on Y if and only if for all r_{1}, r_{2} such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right) \leq h\left(r_{2}\right)$.
(46) h is non-increasing on Y if and only if for all r_{1}, r_{2} such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right) \leq h\left(r_{1}\right)$.
(47) h is monotone on Y if and only if h is non-decreasing on Y or h is non-increasing on Y.
(48) h is non-decreasing on Y if and only if for all r_{1}, r_{2} such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1} \leq r_{2}$ holds $h\left(r_{1}\right) \leq h\left(r_{2}\right)$.
(49) h is non-increasing on Y if and only if for all r_{1}, r_{2} such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1} \leq r_{2}$ holds $h\left(r_{2}\right) \leq h\left(r_{1}\right)$.
(50) h is increasing on X if and only if $h \upharpoonright X$ is increasing on X.
(51) h is decreasing on X if and only if $h \upharpoonright X$ is decreasing on X.
(52) h is non-decreasing on X if and only if $h \upharpoonright X$ is non-decreasing on X.
(53) $\quad h$ is non-increasing on X if and only if $h \upharpoonright X$ is non-increasing on X.
(54) If $Y \cap \operatorname{dom} h=\emptyset$, then h is increasing on Y and h is decreasing on Y and h is non-decreasing on Y and h is non-increasing on Y and h is monotone on Y.
(55) If h is increasing on Y, then h is non-decreasing on Y.
(56) If h is decreasing on Y, then h is non-increasing on Y.
(57) If h is a constant on Y, then h is non-decreasing on Y.
(58) If h is a constant on Y, then h is non-increasing on Y.
(59) If h is non-decreasing on Y and h is non-increasing on X, then h is a constant on $Y \cap X$.
(60) If $X \subseteq Y$ and h is increasing on Y, then h is increasing on X.
(61) If $X \subseteq Y$ and h is decreasing on Y, then h is decreasing on X.
(62) If $X \subseteq Y$ and h is non-decreasing on Y, then h is non-decreasing on X.
(63) If $X \subseteq Y$ and h is non-increasing on Y, then h is non-increasing on X.
(64) If h is increasing on Y and $0<r$, then $r \diamond h$ is increasing on Y but if $r=0$, then $r \diamond h$ is a constant on Y but if h is increasing on Y and $r<0$, then $r \diamond h$ is decreasing on Y.
(65) If h is decreasing on Y and $0<r$, then $r \diamond h$ is decreasing on Y but if h is decreasing on Y and $r<0$, then $r \diamond h$ is increasing on Y.
(66) If h is non-decreasing on Y and $0 \leq r$, then $r \diamond h$ is non-decreasing on Y but if h is non-decreasing on Y and $r \leq 0$, then $r \diamond h$ is non-increasing on Y.
(67) If h is non-increasing on Y and $0 \leq r$, then $r \diamond h$ is non-increasing on Y but if h is non-increasing on Y and $r \leq 0$, then $r \diamond h$ is non-decreasing on Y.
(68) If $r \in(X \cap Y) \cap \operatorname{dom}\left(h_{1}+h_{2}\right)$, then $r \in X \cap \operatorname{dom} h_{1}$ and $r \in Y \cap \operatorname{dom} h_{2}$.
(69) (i) If h_{1} is increasing on X and h_{2} is increasing on Y, then $h_{1}+h_{2}$ is increasing on $X \cap Y$,
(ii) if h_{1} is decreasing on X and h_{2} is decreasing on Y, then $h_{1}+h_{2}$ is decreasing on $X \cap Y$,
(iii) if h_{1} is non-decreasing on X and h_{2} is non-decreasing on Y, then $h_{1}+h_{2}$ is non-decreasing on $X \cap Y$,
(iv) if h_{1} is non-increasing on X and h_{2} is non-increasing on Y, then $h_{1}+h_{2}$ is non-increasing on $X \cap Y$.
(70) If h_{1} is increasing on X and h_{2} is a constant on Y, then $h_{1}+h_{2}$ is increasing on $X \cap Y$ but if h_{1} is decreasing on X and h_{2} is a constant on Y, then $h_{1}+h_{2}$ is decreasing on $X \cap Y$.
(71) If h_{1} is increasing on X and h_{2} is non-decreasing on Y, then $h_{1}+h_{2}$ is increasing on $X \cap Y$.
(72) If h_{1} is non-increasing on X and h_{2} is a constant on Y, then $h_{1}+h_{2}$ is non-increasing on $X \cap Y$.
(73) If h_{1} is decreasing on X and h_{2} is non-increasing on Y, then $h_{1}+h_{2}$ is decreasing on $X \cap Y$.
(74) If h_{1} is non-decreasing on X and h_{2} is a constant on Y, then $h_{1}+h_{2}$ is non-decreasing on $X \cap Y$.
(75) h is increasing on $\{x\}$.
(76) h is decreasing on $\{x\}$.
(77) h is non-decreasing on $\{x\}$.
(78) h is non-increasing on $\{x\}$.
(79) $\quad \operatorname{id}_{R}$ is increasing on R.
(80) If h is increasing on X, then $-h$ is decreasing on X.
(81) If h is non-decreasing on X, then $-h$ is non-increasing on X.
(82) If h is increasing on $[p, g]$ or h is decreasing on $[p, g]$, then $h \upharpoonright[p, g]$ is one-to-one.
(83) If h is increasing on $[p, g]$, then $(h \upharpoonright[p, g])^{-1}$ is increasing on $h^{\circ}[p, g]$.
(84) If h is decreasing on $[p, g]$, then $(h \upharpoonright[p, g])^{-1}$ is decreasing on $h^{\circ}[p, g]$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 18, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C.8.

