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Summary. The list of theorems concerning properties of real se-
quences and functions is enlarged. (See e.g. [9], [4], [8]). The monotone
real functions are introduced and their properties are discussed.
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The papers [11], [3], [1], [9], [5], [6], [4], [2], [7], [10], and [8] provide the ter-
minology and notation for this paper. For simplicity we follow a convention:
x is arbitrary, X, X1, Y denote sets, g, r, r1, r2, p denote real numbers, R

denotes a subset of � , seq, seq1, seq2, seq3 denote sequences of real numbers,
Ns denotes an increasing sequence of naturals, n denotes a natural number,
and h, h1, h2 denote partial functions from � to � . The following propositions
are true:

(1) For all functions F , G and for every X such that X ⊆ dom F and
F ◦ X ⊆ dom G holds X ⊆ dom(G · F ).

(2) For all functions F , G and for every X holds G � (F ◦ X) · F � X =
(G · F ) � X.

(3) For all functions F , G and for all X, X1 holds G � X1 ·F � X = (G·F ) �
(X ∩ F −1 X1).

(4) For all functions F , G and for every X holds X ⊆ dom(G · F ) if and
only if X ⊆ dom F and F ◦ X ⊆ dom G.

(5) For every function F and for every X holds (F � X) ◦ X = F ◦ X.

Let us consider seq. Then rng seq is a subset of � .

One can prove the following propositions:

(6) seq1 = seq2 − seq3 if and only if for every n holds seq1(n) = seq2(n) −
seq3(n).

(7) rng(seq � n) ⊆ rng seq.
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(8) If rng seq ⊆ dom h, then seq(n) ∈ dom h.

(9) x ∈ rng seq if and only if there exists n such that x = seq(n).

(10) seq(n) ∈ rng seq.

(11) If seq1 is a subsequence of seq, then rng seq1 ⊆ rng seq.

(12) If seq1 is a subsequence of seq and seq is non-zero, then seq1 is non-zero.

(13) (seq1 + seq2) · Ns = seq1 · Ns + seq2 · Ns and (seq1 − seq2) · Ns =
seq1 · Ns − seq2 · Ns and (seq1 ⋄ seq2) · Ns = (seq1 · Ns) ⋄ (seq2 · Ns).

(14) (p ⋄ seq) · Ns = p ⋄ (seq · Ns).

(15) (−seq) · Ns = −seq · Ns and |seq| · Ns = |seq · Ns|.

(16) If seq is non-zero, then (seq · Ns)−1 = seq−1 · Ns.

(17) If seq is non-zero, then seq1

seq
· Ns = seq1·Ns

seq·Ns
.

(18) If seq is convergent and for every n holds seq(n) ≤ 0, then lim seq ≤ 0.

(19) If for every n holds seq(n) ∈ Y , then rng seq ⊆ Y .

Let us consider h, seq. Let us assume that rng seq ⊆ dom h. The functor
h · seq yields a sequence of real numbers and is defined by:

h · seq = (hqua a function) · seq.

The following propositions are true:

(20) If rng seq ⊆ dom h, then h · seq = (hqua a function) · seq.

(21) If rng seq ⊆ dom h, then (h · seq)(n) = h(seq(n)).

(22) If rng seq ⊆ dom h, then (h · seq) � n = h · (seq � n).

(23) Suppose rng seq ⊆ dom h1 ∩ dom h2. Then (h1 + h2) · seq = h1 · seq +
h2 · seq and (h1 − h2) · seq = h1 · seq − h2 · seq and (h1 ⋄ h2) · seq =
(h1 · seq) ⋄ (h2 · seq).

(24) If rng seq ⊆ dom h, then (r ⋄ h) · seq = r ⋄ (h · seq).

(25) If rng seq ⊆ dom h, then |h · seq| = |h| · seq and −h · seq = (−h) · seq.

(26) If rng seq ⊆ dom 1

h
, then h · seq is non-zero.

(27) If rng seq ⊆ dom 1

h
, then 1

h
· seq = (h · seq)−1.

(28) If rng seq ⊆ dom h, then (h · seq) · Ns = h · (seq · Ns).

(29) If rng seq1 ⊆ dom h and seq2 is a subsequence of seq1, then h · seq2 is a
subsequence of h · seq1.

(30) If h is total, then (h · seq)(n) = h(seq(n)).

(31) If h is total, then h · (seq � n) = (h · seq) � n.

(32) If h1 is total and h2 is total, then (h1 + h2) · seq = h1 · seq + h2 · seq and
(h1−h2) ·seq = h1 ·seq−h2 ·seq and (h1 ⋄h2) ·seq = (h1 ·seq)⋄ (h2 ·seq).

(33) If h is total, then (r ⋄ h) · seq = r ⋄ (h · seq).

(34) If rng seq ⊆ dom(h � X), then h � X · seq = h · seq.

(35) If rng seq ⊆ dom(h � X) but rng seq ⊆ dom(h � Y ) or X ⊆ Y , then
h � X · seq = h � Y · seq.

(36) If rng seq ⊆ dom(h � X), then |h � X · seq| = |h| � X · seq.
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(37) If rng seq ⊆ dom(h � X) and h −1 {0} = ∅, then 1

h
� X · seq = (h �

X · seq)−1.

(38) If rng seq ⊆ dom h, then h ◦ rng seq = rng(h · seq).

(39) If rng seq ⊆ dom(h2 · h1), then h2 · (h1 · seq) = (h2 · h1) · seq.

(40) If h is one-to-one, then (h � X)−1 = h−1 � (h ◦ X).

(41) If rng h is bounded and sup(rng h) = inf(rng h), then h is a constant on
dom h.

(42) If Y ⊆ dom h and h ◦ Y is bounded and sup(h ◦ Y ) = inf(h ◦ Y ), then h

is a constant on Y .

We now define four new predicates. Let us consider h, Y . We say that h is
increasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 < r2 holds
h(r1) < h(r2).
We say that h is decreasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 < r2 holds
h(r2) < h(r1).
We say that h is non-decreasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 < r2 holds
h(r1) ≤ h(r2).
We say that h is non-increasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 < r2 holds
h(r2) ≤ h(r1).

Let us consider h, Y . We say that h is monotone on Y if and only if:
h is non-decreasing on Y or h is non-increasing on Y .

Next we state a number of propositions:

(43) h is increasing on Y if and only if for all r1, r2 such that r1 ∈ Y ∩dom h

and r2 ∈ Y ∩ dom h and r1 < r2 holds h(r1) < h(r2).

(44) h is decreasing on Y if and only if for all r1, r2 such that r1 ∈ Y ∩dom h

and r2 ∈ Y ∩ dom h and r1 < r2 holds h(r2) < h(r1).

(45) h is non-decreasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 < r2 holds h(r1) ≤ h(r2).

(46) h is non-increasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 < r2 holds h(r2) ≤ h(r1).

(47) h is monotone on Y if and only if h is non-decreasing on Y or h is
non-increasing on Y .

(48) h is non-decreasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 ≤ r2 holds h(r1) ≤ h(r2).

(49) h is non-increasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ dom h and r2 ∈ Y ∩ dom h and r1 ≤ r2 holds h(r2) ≤ h(r1).

(50) h is increasing on X if and only if h � X is increasing on X.

(51) h is decreasing on X if and only if h � X is decreasing on X.

(52) h is non-decreasing on X if and only if h � X is non-decreasing on X.
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(53) h is non-increasing on X if and only if h � X is non-increasing on X.

(54) If Y ∩ dom h = ∅, then h is increasing on Y and h is decreasing on
Y and h is non-decreasing on Y and h is non-increasing on Y and h is
monotone on Y .

(55) If h is increasing on Y , then h is non-decreasing on Y .

(56) If h is decreasing on Y , then h is non-increasing on Y .

(57) If h is a constant on Y , then h is non-decreasing on Y .

(58) If h is a constant on Y , then h is non-increasing on Y .

(59) If h is non-decreasing on Y and h is non-increasing on X, then h is a
constant on Y ∩ X.

(60) If X ⊆ Y and h is increasing on Y , then h is increasing on X.

(61) If X ⊆ Y and h is decreasing on Y , then h is decreasing on X.

(62) If X ⊆ Y and h is non-decreasing on Y , then h is non-decreasing on X.

(63) If X ⊆ Y and h is non-increasing on Y , then h is non-increasing on X.

(64) If h is increasing on Y and 0 < r, then r ⋄ h is increasing on Y but if
r = 0, then r ⋄h is a constant on Y but if h is increasing on Y and r < 0,
then r ⋄ h is decreasing on Y .

(65) If h is decreasing on Y and 0 < r, then r ⋄ h is decreasing on Y but if
h is decreasing on Y and r < 0, then r ⋄ h is increasing on Y .

(66) If h is non-decreasing on Y and 0 ≤ r, then r ⋄ h is non-decreasing on
Y but if h is non-decreasing on Y and r ≤ 0, then r ⋄ h is non-increasing
on Y .

(67) If h is non-increasing on Y and 0 ≤ r, then r ⋄h is non-increasing on Y

but if h is non-increasing on Y and r ≤ 0, then r ⋄ h is non-decreasing on
Y .

(68) If r ∈ (X ∩Y )∩dom(h1 +h2), then r ∈ X∩dom h1 and r ∈ Y ∩dom h2.

(69) (i) If h1 is increasing on X and h2 is increasing on Y , then h1 + h2 is
increasing on X ∩ Y ,

(ii) if h1 is decreasing on X and h2 is decreasing on Y , then h1 + h2 is
decreasing on X ∩ Y ,

(iii) if h1 is non-decreasing on X and h2 is non-decreasing on Y , then h1+h2

is non-decreasing on X ∩ Y ,

(iv) if h1 is non-increasing on X and h2 is non-increasing on Y , then h1+h2

is non-increasing on X ∩ Y .

(70) If h1 is increasing on X and h2 is a constant on Y , then h1 + h2 is
increasing on X ∩ Y but if h1 is decreasing on X and h2 is a constant on
Y , then h1 + h2 is decreasing on X ∩ Y .

(71) If h1 is increasing on X and h2 is non-decreasing on Y , then h1 + h2 is
increasing on X ∩ Y .

(72) If h1 is non-increasing on X and h2 is a constant on Y , then h1 + h2 is
non-increasing on X ∩ Y .
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(73) If h1 is decreasing on X and h2 is non-increasing on Y , then h1 + h2 is
decreasing on X ∩ Y .

(74) If h1 is non-decreasing on X and h2 is a constant on Y , then h1 + h2 is
non-decreasing on X ∩ Y .

(75) h is increasing on {x}.

(76) h is decreasing on {x}.

(77) h is non-decreasing on {x}.

(78) h is non-increasing on {x}.

(79) idR is increasing on R.

(80) If h is increasing on X, then −h is decreasing on X.

(81) If h is non-decreasing on X, then −h is non-increasing on X.

(82) If h is increasing on [p, g] or h is decreasing on [p, g], then h � [p, g] is
one-to-one.

(83) If h is increasing on [p, g], then (h � [p, g])−1 is increasing on h ◦ [p, g].

(84) If h is decreasing on [p, g], then (h � [p, g])−1 is decreasing on h ◦ [p, g].

References
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