Partial Functions from a Domain to the Set of Real Numbers

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Basic operations in the set of partial functions which map a domain to the set of all real numbers are introduced. They include adition, substraction, multiplication, division, multipication by a real number and also module. Main properties of these operations are proved. A definition of the partial function bounded on a set (bounded below and bounded above) is presented. There are theorems showing the laws of conservation of totality and boundeness for operations of partial functions. The characteristic function of a subset of a domain as a partial function is redefined and a few properties are proved.

MML Identifier: RFUNCT_1.

The papers [6], [3], [1], [7], [5], [2], and [4] provide the terminology and notation for this paper. For simplicity we follow the rules: X, Y will be sets, C will be a non-empty set, c will be an element of $C, f, f_{1}, f_{2}, f_{3}, g$, g_{1} will be partial functions from C to \mathbb{R}, and r, r_{1}, p, p_{1} will be real numbers. We now state two propositions:

$$
\begin{equation*}
(-1)^{-1}=-1 \tag{1}
\end{equation*}
$$

(2) If $0 \leq p$ and $0 \leq r$ and $p \leq p_{1}$ and $r \leq r_{1}$, then $p \cdot r \leq p_{1} \cdot r_{1}$.

We now define four new functors. Let us consider C, f_{1}, f_{2}. The functor $f_{1}+f_{2}$ yields a partial function from C to \mathbb{R} and is defined as follows:
$\operatorname{dom}\left(f_{1}+f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ holds $\left(f_{1}+f_{2}\right)(c)=f_{1}(c)+f_{2}(c)$.
The functor $f_{1}-f_{2}$ yielding a partial function from C to \mathbb{R} is defined as follows:
$\operatorname{dom}\left(f_{1}-f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom}\left(f_{1}-f_{2}\right)$ holds $\left(f_{1}-f_{2}\right)(c)=f_{1}(c)-f_{2}(c)$.
The functor $f_{1} \diamond f_{2}$ yielding a partial function from C to \mathbb{R} is defined by:

[^0]$\operatorname{dom}\left(f_{1} \diamond f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom}\left(f_{1} \diamond f_{2}\right)$ holds $\left(f_{1} \diamond f_{2}\right)(c)=f_{1}(c) \cdot f_{2}(c)$.
The functor $\frac{f_{1}}{f_{2}}$ yielding a partial function from C to \mathbb{R} is defined by:
$\operatorname{dom} \frac{f_{1}}{f_{2}}=\operatorname{dom} f_{1} \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\{0\}\right)$ and for every c such that $c \in \operatorname{dom} \frac{f_{1}}{f_{2}}$ holds $\frac{f_{1}}{f_{2}}(c)=f_{1}(c) \cdot\left(f_{2}(c)\right)^{-1}$.

Let us consider C, f, r. The functor $r \diamond f$ yields a partial function from C to \mathbb{R} and is defined by:
$\operatorname{dom}(r \diamond f)=\operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(r \diamond f)$ holds $(r \diamond f)(c)=$ $r \cdot f(c)$.

We now define three new functors. Let us consider C, f. The functor $|f|$ yields a partial function from C to \mathbb{R} and is defined by:
$\operatorname{dom}|f|=\operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}|f|$ holds $|f|(c)=|f(c)|$. The functor $-f$ yields a partial function from C to \mathbb{R} and is defined by:
$\operatorname{dom}(-f)=\operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(-f)$ holds $(-f)(c)=$ $-f(c)$.
The functor $\frac{1}{f}$ yielding a partial function from C to \mathbb{R} is defined by:
$\operatorname{dom} \frac{1}{f}=\operatorname{dom} f \backslash f^{-1}\{0\}$ and for every c such that $c \in \operatorname{dom} \frac{1}{f}$ holds $\frac{1}{f}(c)=$ $(f(c))^{-1}$.

One can prove the following propositions:
(3) $\quad f=f_{1}+f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c)+f_{2}(c)$.
(4) $\quad f=f_{1}-f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c)-f_{2}(c)$.
(5) $\quad f=f_{1} \diamond f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c) \cdot f_{2}(c)$.
(6) $\quad f=\frac{f_{1}}{f_{2}}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\{0\}\right)$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c) \cdot\left(f_{2}(c)\right)^{-1}$.
(7) $\quad f=r \diamond f_{1}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=r \cdot f_{1}(c)$.
(8) $\quad f=\left|f_{1}\right|$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=\left|f_{1}(c)\right|$.
(9) $\quad f=-f_{1}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=-f_{1}(c)$.

$$
\begin{equation*}
f_{1}=\frac{1}{f} \text { if and only if } \operatorname{dom} f_{1}=\operatorname{dom} f \backslash f^{-1}\{0\} \text { and for every } c \text { such } \tag{10}
\end{equation*}
$$ that $c \in \operatorname{dom} f_{1}$ holds $f_{1}(c)=(f(c))^{-1}$.

$$
\begin{align*}
& \operatorname{dom} \frac{1}{g} \subseteq \operatorname{dom} g \text { and } \operatorname{dom} g \cap\left(\operatorname{dom} g \backslash g^{-1}\{0\}\right)=\operatorname{dom} g \backslash g^{-1}\{0\} . \tag{11}\\
& \operatorname{dom}\left(f_{1} \diamond f_{2}\right) \backslash\left(f_{1} \diamond f_{2}\right)^{-1}\{0\}=\left(\operatorname{dom} f_{1} \backslash f_{1}^{-1}\{0\}\right) \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\{0\}\right) . \tag{12}\\
& \text { If } c \in \operatorname{dom} \frac{1}{f} \text {, then } f(c) \neq 0 \text {. } \tag{13}\\
& \frac{1}{f}-1\{0\}=\emptyset \text {. } \tag{14}\\
& |f|^{-1}\{0\}=f^{-1}\{0\} \text { and }(-f)^{-1}\{0\}=f^{-1}\{0\} \text {. } \tag{15}
\end{align*}
$$

(16) $\operatorname{dom} \frac{1}{\frac{1}{f}}=\operatorname{dom}\left(f \upharpoonright \operatorname{dom} \frac{1}{f}\right)$.
(17) If $r \neq 0$, then $(r \diamond f)^{-1}\{0\}=f^{-1}\{0\}$.
(18) $f_{1}+f_{2}=f_{2}+f_{1}$.
(19) $\left(f_{1}+f_{2}\right)+f_{3}=f_{1}+\left(f_{2}+f_{3}\right)$.
(20) $f_{1} \diamond f_{2}=f_{2} \diamond f_{1}$.
(21) $\left(f_{1} \diamond f_{2}\right) \diamond f_{3}=f_{1} \diamond\left(f_{2} \diamond f_{3}\right)$.
(22) $\quad\left(f_{1}+f_{2}\right) \diamond f_{3}=f_{1} \diamond f_{3}+f_{2} \diamond f_{3}$.
(23) $f_{3} \diamond\left(f_{1}+f_{2}\right)=f_{3} \diamond f_{1}+f_{3} \diamond f_{2}$.
(24) $r \diamond\left(f_{1} \diamond f_{2}\right)=\left(r \diamond f_{1}\right) \diamond f_{2}$.
(25) $r \diamond\left(f_{1} \diamond f_{2}\right)=f_{1} \diamond\left(r \diamond f_{2}\right)$.
(26) $\quad\left(f_{1}-f_{2}\right) \diamond f_{3}=f_{1} \diamond f_{3}-f_{2} \diamond f_{3}$.
(27) $f_{3} \diamond f_{1}-f_{3} \diamond f_{2}=f_{3} \diamond\left(f_{1}-f_{2}\right)$.
(28) $\quad r \diamond\left(f_{1}+f_{2}\right)=r \diamond f_{1}+r \diamond f_{2}$.
(29) $(r \cdot p) \diamond f=r \diamond(p \diamond f)$.
(30) $\quad r \diamond\left(f_{1}-f_{2}\right)=r \diamond f_{1}-r \diamond f_{2}$.
(31) $f_{1}-f_{2}=(-1) \diamond\left(f_{2}-f_{1}\right)$.
(32) $f_{1}-\left(f_{2}+f_{3}\right)=\left(f_{1}-f_{2}\right)-f_{3}$.
(33) $1 \diamond f=f$.
(34) $f_{1}-\left(f_{2}-f_{3}\right)=\left(f_{1}-f_{2}\right)+f_{3}$.
(35) $f_{1}+\left(f_{2}-f_{3}\right)=\left(f_{1}+f_{2}\right)-f_{3}$.
(36) $\left|f_{1} \diamond f_{2}\right|=\left|f_{1}\right| \diamond\left|f_{2}\right|$.
(37) $|r \diamond f|=|r| \diamond|f|$.
(38) $-f=(-1) \diamond f$.
(39) $-(-f)=f$.
(40) $f_{1}-f_{2}=f_{1}+\left(-f_{2}\right)$.
(41) $f_{1}-\left(-f_{2}\right)=f_{1}+f_{2}$.
(42) $\frac{1}{\frac{1}{f}}=f \upharpoonright \operatorname{dom} \frac{1}{f}$.
(43) $\frac{1}{f_{1} \diamond f_{2}}=\frac{1}{f_{1}} \diamond \frac{1}{f_{2}}$.
(44) If $r \neq 0$, then $\frac{1}{r \diamond f}=r^{-1} \diamond \frac{1}{f}$.
(45) $\frac{1}{-f}=(-1) \diamond \frac{1}{f}$.
(46) $\frac{1}{|f|}=\left|\frac{1}{f}\right|$.
(47) $\frac{f}{g}=f \diamond \frac{1}{g}$.
(48) $r \diamond \frac{g}{f}=\frac{r \diamond g}{f}$.
(49) $\frac{f}{g} \diamond g=f \upharpoonright \operatorname{dom} \frac{1}{g}$.
(50) $\frac{f}{g} \diamond \frac{f_{1}}{g_{1}}=\frac{f \diamond f_{1}}{g \diamond g_{1}}$.

$$
\begin{align*}
& \frac{1}{\frac{f_{1}}{f_{2}}}=\frac{f_{2}\left\lceil\operatorname{dom} \frac{1}{f_{2}}\right.}{f_{1}} \tag{51}\\
& \text { (53) } \frac{g}{\frac{g}{f_{1}}}=\frac{g \diamond f_{2} \text { (dom } \frac{1}{f_{2}}}{f_{1}} \text {. } \tag{52}\\
& \text { (54) }-\frac{f}{g}=\frac{-f}{g} \text { and } \frac{f}{-g}=-\frac{f}{g} \text {. } \\
& \text { (55) } \frac{f_{1}}{f}+\frac{f_{2}}{f}=\frac{f_{1}+f_{2}}{f} \text { and } \frac{f_{1}}{f}-\frac{f_{2}}{f}=\frac{f_{1}-f_{2}}{f} \text {. } \\
& \frac{f_{1}}{f}+\frac{g_{1}}{g}=\frac{f_{1} \triangleright g+g_{1} \diamond f}{f \diamond g} . \tag{56}\\
& \frac{\frac{f}{g}}{\frac{f_{1}}{g_{1}}}=\frac{f \diamond g_{1} \upharpoonright \text { dom } \frac{1}{g_{1}}}{g \diamond f_{1}} . \tag{57}\\
& \text { (58) } \frac{f_{1}}{f}-\frac{g_{1}}{g}=\frac{f_{1} \diamond g-g_{1} \diamond f}{f \diamond g} \text {. } \tag{59}
\end{align*}
$$

(60) $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2} \upharpoonright X$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2}$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1}+f_{2} \upharpoonright X$.
(61) $\left(f_{1} \diamond f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X \diamond f_{2} \upharpoonright X$ and $\left(f_{1} \diamond f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X \diamond f_{2}$ and $\left(f_{1} \diamond f_{2}\right) \upharpoonright X=f_{1} \diamond f_{2} \upharpoonright X$.
(62) $\quad(-f) \upharpoonright X=-f \upharpoonright X$ and $\frac{1}{f} \upharpoonright X=\frac{1}{f \upharpoonright X}$ and $|f| \upharpoonright X=|f \upharpoonright X|$.
(63) $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2} \upharpoonright X$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2}$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1}-f_{2} \upharpoonright X$.
(64) $\frac{f_{1}}{f_{2}} \upharpoonright X=\frac{f_{1} \mid X}{f_{2} \upharpoonright X}$ and $\frac{f_{1}}{f_{2}} \upharpoonright X=\frac{f_{1} \upharpoonright X}{f_{2}}$ and $\frac{f_{1}}{f_{2}} \upharpoonright X=\frac{f_{1}}{f_{2} \upharpoonright X}$.
(65) $\quad(r \diamond f) \upharpoonright X=r \diamond f \upharpoonright X$.
(66) $\quad f_{1}$ is total and f_{2} is total if and only if $f_{1}+f_{2}$ is total but f_{1} is total and f_{2} is total if and only if $f_{1}-f_{2}$ is total but f_{1} is total and f_{2} is total if and only if $f_{1} \diamond f_{2}$ is total.
(67) f is total if and only if $r \diamond f$ is total.
(68) f is total if and only if $-f$ is total.
(69) $\quad f$ is total if and only if $|f|$ is total.
(70) $\frac{1}{f}$ is total if and only if $f^{-1}\{0\}=\emptyset$ and f is total.
(71) $\quad f_{1}$ is total and $f_{2}^{-1}\{0\}=\emptyset$ and f_{2} is total if and only if $\frac{f_{1}}{f_{2}}$ is total.
(72) If f_{1} is total and f_{2} is total, then $\left(f_{1}+f_{2}\right)(c)=f_{1}(c)+f_{2}(c)$ and $\left(f_{1}-f_{2}\right)(c)=f_{1}(c)-f_{2}(c)$ and $\left(f_{1} \diamond f_{2}\right)(c)=f_{1}(c) \cdot f_{2}(c)$.
(73) If f is total, then $(r \diamond f)(c)=r \cdot f(c)$.
(74) If f is total, then $(-f)(c)=-f(c)$ and $|f|(c)=|f(c)|$.
(75) If $\frac{1}{f}$ is total, then $\frac{1}{f}(c)=(f(c))^{-1}$.
(76) If f_{1} is total and $\frac{1}{f_{2}}$ is total, then $\frac{f_{1}}{f_{2}}(c)=f_{1}(c) \cdot\left(f_{2}(c)\right)^{-1}$.

Let us consider X, C. Then $\chi_{X, C}$ is a partial function from C to \mathbb{R}.
Next we state a number of propositions:
(84) $\chi_{X, C}(c) \neq 1$ if and only if $\chi_{X, C}(c)=0$.
(85) If $X \cap Y=\emptyset$, then $\chi_{X, C}+\chi_{Y, C}=\chi_{X \cup Y, C}$.
(86) $\chi_{X, C} \diamond \chi_{Y, C}=\chi_{X \cap Y, C}$.

We now define two new predicates. Let us consider C, f, Y. We say that f is upper bounded on Y if and only if:
there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $f(c) \leq r$. We say that f is lower bounded on Y if and only if:
there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $r \leq f(c)$.
Let us consider C, f, Y. We say that f is bounded on Y if and only if:
f is upper bounded on Y and f is lower bounded on Y.
The following propositions are true:
(87) f is upper bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $f(c) \leq r$.
(88) f is lower bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $r \leq f(c)$.
(89) f is bounded on Y if and only if f is upper bounded on Y and f is lower bounded on Y.
(90) f is bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $|f(c)| \leq r$.
(91) If $Y \subseteq X$ and f is upper bounded on X, then f is upper bounded on Y but if $Y \subseteq X$ and f is lower bounded on X, then f is lower bounded on Y but if $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
(92) If f is upper bounded on X and f is lower bounded on Y, then f is bounded on $X \cap Y$.
(93) If $X \cap \operatorname{dom} f=\emptyset$, then f is bounded on X.
(94) If $0=r$, then $r \diamond f$ is bounded on Y.
(95) If f is upper bounded on Y and $0 \leq r$, then $r \diamond f$ is upper bounded on Y but if f is upper bounded on Y and $r \leq 0$, then $r \diamond f$ is lower bounded on Y.
(96) If f is lower bounded on Y and $0 \leq r$, then $r \diamond f$ is lower bounded on Y but if f is lower bounded on Y and $r \leq 0$, then $r \diamond f$ is upper bounded on Y.
(97) If f is bounded on Y, then $r \diamond f$ is bounded on Y.
(98) $|f|$ is lower bounded on X.
(99) If f is bounded on Y, then $|f|$ is bounded on Y and $-f$ is bounded on Y.
(100) If f_{1} is upper bounded on X and f_{2} is upper bounded on Y, then $f_{1}+f_{2}$ is upper bounded on $X \cap Y$ but if f_{1} is lower bounded on X and f_{2} is lower bounded on Y, then $f_{1}+f_{2}$ is lower bounded on $X \cap Y$ but if f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(101) If f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1} \diamond f_{2}$ is bounded on $X \cap Y$ and $f_{1}-f_{2}$ is bounded on $X \cap Y$.
(102) If f is upper bounded on X and f is upper bounded on Y, then f is upper bounded on $X \cup Y$.
(103) If f is lower bounded on X and f is lower bounded on Y, then f is lower bounded on $X \cup Y$.
(104) If f is bounded on X and f is bounded on Y, then f is bounded on $X \cup Y$.
(105) If f_{1} is a constant on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is a constant on $X \cap Y$ and $f_{1}-f_{2}$ is a constant on $X \cap Y$ and $f_{1} \diamond f_{2}$ is a constant on $X \cap Y$.
(106) If f is a constant on Y, then $p \diamond f$ is a constant on Y.
(107) If f is a constant on Y, then $|f|$ is a constant on Y and $-f$ is a constant on Y.
(108) If f is a constant on Y, then f is bounded on Y.
(109) If f is a constant on Y, then for every r holds $r \diamond f$ is bounded on Y and $-f$ is bounded on Y and $|f|$ is bounded on Y.
(110) If f_{1} is upper bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is upper bounded on $X \cap Y$ but if f_{1} is lower bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is lower bounded on $X \cap Y$ but if f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(111) (i) If f_{1} is upper bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is upper bounded on $X \cap Y$,
(ii) if f_{1} is lower bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is lower bounded on $X \cap Y$,
(iii) if f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is bounded on $X \cap Y$ and $f_{2}-f_{1}$ is bounded on $X \cap Y$ and $f_{1} \diamond f_{2}$ is bounded on $X \cap Y$.

References

[1] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[5] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):6771, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

