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Summary. Basic operations in the set of partial functions which
map a domain to the set of all real numbers are introduced. They in-
clude adition, substraction, multiplication, division, multipication by a
real number and also module. Main properties of these operations are
proved. A definition of the partial function bounded on a set (bounded
below and bounded above) is presented. There are theorems showing the
laws of conservation of totality and boundeness for operations of partial
functions. The characteristic function of a subset of a domain as a partial
function is redefined and a few properties are proved.
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The papers [6], [3], [1], [7], [5], [2], and [4] provide the terminology and notation
for this paper. For simplicity we follow the rules: X, Y will be sets, C will be
a non-empty set, c will be an element of C, f , f1, f2, f3, g, g1 will be partial
functions from C to � , and r, r1, p, p1 will be real numbers. We now state two
propositions:

(1) (−1)−1 = −1.

(2) If 0 ≤ p and 0 ≤ r and p ≤ p1 and r ≤ r1, then p · r ≤ p1 · r1.

We now define four new functors. Let us consider C, f1, f2. The functor
f1 + f2 yields a partial function from C to � and is defined as follows:

dom(f1 + f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 + f2)
holds (f1 + f2)(c) = f1(c) + f2(c).
The functor f1 − f2 yielding a partial function from C to � is defined as follows:

dom(f1 − f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 − f2)
holds (f1 − f2)(c) = f1(c) − f2(c).
The functor f1 ⋄ f2 yielding a partial function from C to � is defined by:
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dom(f1 ⋄ f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 ⋄ f2)
holds (f1 ⋄ f2)(c) = f1(c) · f2(c).

The functor f1

f2
yielding a partial function from C to � is defined by:

dom f1

f2
= dom f1 ∩ (dom f2 \ f2

−1 {0}) and for every c such that c ∈ dom f1

f2

holds f1

f2
(c) = f1(c) · (f2(c))−1.

Let us consider C, f , r. The functor r ⋄ f yields a partial function from C
to � and is defined by:

dom(r⋄f) = dom f and for every c such that c ∈ dom(r⋄f) holds (r⋄f)(c) =
r · f(c).

We now define three new functors. Let us consider C, f . The functor |f |
yields a partial function from C to � and is defined by:

dom |f | = dom f and for every c such that c ∈ dom |f | holds |f |(c) = |f(c)|.
The functor −f yields a partial function from C to � and is defined by:

dom(−f) = dom f and for every c such that c ∈ dom(−f) holds (−f)(c) =
−f(c).
The functor 1

f
yielding a partial function from C to � is defined by:

dom 1

f
= dom f \ f −1 {0} and for every c such that c ∈ dom 1

f
holds 1

f
(c) =

(f(c))−1.

One can prove the following propositions:

(3) f = f1 + f2 if and only if dom f = dom f1 ∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) + f2(c).

(4) f = f1 − f2 if and only if dom f = dom f1 ∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) − f2(c).

(5) f = f1 ⋄ f2 if and only if dom f = dom f1 ∩ dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) · f2(c).

(6) f = f1

f2
if and only if dom f = dom f1∩(dom f2 \f2

−1 {0}) and for every

c such that c ∈ dom f holds f(c) = f1(c) · (f2(c))−1.

(7) f = r ⋄ f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = r · f1(c).

(8) f = |f1| if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = |f1(c)|.

(9) f = −f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = −f1(c).

(10) f1 = 1

f
if and only if dom f1 = dom f \ f −1 {0} and for every c such

that c ∈ dom f1 holds f1(c) = (f(c))−1.

(11) dom 1

g
⊆ dom g and dom g ∩ (dom g \ g −1 {0}) = dom g \ g −1 {0}.

(12) dom(f1 ⋄f2)\(f1 ⋄f2)−1 {0} = (dom f1 \f1
−1 {0})∩(dom f2 \f2

−1 {0}).

(13) If c ∈ dom 1

f
, then f(c) 6= 0.

(14) 1

f
−1 {0} = ∅.

(15) |f | −1 {0} = f −1 {0} and (−f) −1 {0} = f −1 {0}.
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(16) dom 1
1

f

= dom(f � dom 1

f
).

(17) If r 6= 0, then (r ⋄ f) −1 {0} = f −1 {0}.

(18) f1 + f2 = f2 + f1.

(19) (f1 + f2) + f3 = f1 + (f2 + f3).

(20) f1 ⋄ f2 = f2 ⋄ f1.

(21) (f1 ⋄ f2) ⋄ f3 = f1 ⋄ (f2 ⋄ f3).

(22) (f1 + f2) ⋄ f3 = f1 ⋄ f3 + f2 ⋄ f3.

(23) f3 ⋄ (f1 + f2) = f3 ⋄ f1 + f3 ⋄ f2.

(24) r ⋄ (f1 ⋄ f2) = (r ⋄ f1) ⋄ f2.

(25) r ⋄ (f1 ⋄ f2) = f1 ⋄ (r ⋄ f2).

(26) (f1 − f2) ⋄ f3 = f1 ⋄ f3 − f2 ⋄ f3.

(27) f3 ⋄ f1 − f3 ⋄ f2 = f3 ⋄ (f1 − f2).

(28) r ⋄ (f1 + f2) = r ⋄ f1 + r ⋄ f2.

(29) (r · p) ⋄ f = r ⋄ (p ⋄ f).

(30) r ⋄ (f1 − f2) = r ⋄ f1 − r ⋄ f2.

(31) f1 − f2 = (−1) ⋄ (f2 − f1).

(32) f1 − (f2 + f3) = (f1 − f2) − f3.

(33) 1 ⋄ f = f .

(34) f1 − (f2 − f3) = (f1 − f2) + f3.

(35) f1 + (f2 − f3) = (f1 + f2) − f3.

(36) |f1 ⋄ f2| = |f1| ⋄ |f2|.

(37) |r ⋄ f | = |r| ⋄ |f |.

(38) −f = (−1) ⋄ f .

(39) −(−f) = f .

(40) f1 − f2 = f1 + (−f2).

(41) f1 − (−f2) = f1 + f2.

(42) 1
1

f

= f � dom 1

f
.

(43) 1

f1⋄f2
= 1

f1
⋄ 1

f2
.

(44) If r 6= 0, then 1

r⋄f = r−1 ⋄ 1

f
.

(45) 1

−f
= (−1) ⋄ 1

f
.

(46) 1

|f | = | 1
f
|.

(47) f
g

= f ⋄ 1

g
.

(48) r ⋄ g
f

= r⋄g
f

.

(49) f
g
⋄ g = f � dom 1

g
.

(50) f
g
⋄ f1

g1
= f⋄f1

g⋄g1
.
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(51) 1
f1
f2

=
f2  dom

1

f2

f1
.

(52) g ⋄ f1

f2
= g⋄f1

f2
.

(53) g
f1
f2

=
g⋄f2  dom

1

f2

f1
.

(54) − f
g

= −f
g

and f
−g

= − f
g
.

(55) f1

f
+ f2

f
= f1+f2

f
and f1

f
− f2

f
= f1−f2

f
.

(56) f1

f
+ g1

g
= f1⋄g+g1⋄f

f⋄g .

(57)
f

g
f1
g1

=
f⋄g1  dom

1

g1

g⋄f1
.

(58) f1

f
− g1

g
= f1⋄g−g1⋄f

f⋄g .

(59) |f1

f2
| = |f1|

|f2|
.

(60) (f1 + f2) � X = f1 � X + f2 � X and (f1 + f2) � X = f1 � X + f2 and
(f1 + f2) � X = f1 + f2 � X.

(61) (f1 ⋄ f2) � X = f1 � X ⋄ f2 � X and (f1 ⋄ f2) � X = f1 � X ⋄ f2 and
(f1 ⋄ f2) � X = f1 ⋄ f2 � X.

(62) (−f) � X = −f � X and 1

f
� X = 1

f  X and |f | � X = |f � X|.

(63) (f1 − f2) � X = f1 � X − f2 � X and (f1 − f2) � X = f1 � X − f2 and
(f1 − f2) � X = f1 − f2 � X.

(64) f1

f2
� X = f1  X

f2  X and f1

f2
� X = f1  X

f2
and f1

f2
� X = f1

f2  X .

(65) (r ⋄ f) � X = r ⋄ f � X.

(66) f1 is total and f2 is total if and only if f1 + f2 is total but f1 is total
and f2 is total if and only if f1 − f2 is total but f1 is total and f2 is total
if and only if f1 ⋄ f2 is total.

(67) f is total if and only if r ⋄ f is total.

(68) f is total if and only if −f is total.

(69) f is total if and only if |f | is total.

(70) 1

f
is total if and only if f −1 {0} = ∅ and f is total.

(71) f1 is total and f2
−1 {0} = ∅ and f2 is total if and only if f1

f2
is total.

(72) If f1 is total and f2 is total, then (f1 + f2)(c) = f1(c) + f2(c) and
(f1 − f2)(c) = f1(c) − f2(c) and (f1 ⋄ f2)(c) = f1(c) · f2(c).

(73) If f is total, then (r ⋄ f)(c) = r · f(c).

(74) If f is total, then (−f)(c) = −f(c) and |f |(c) = |f(c)|.

(75) If 1

f
is total, then 1

f
(c) = (f(c))−1.

(76) If f1 is total and 1

f2
is total, then f1

f2
(c) = f1(c) · (f2(c))−1.

Let us consider X, C. Then χX,C is a partial function from C to � .

Next we state a number of propositions:
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(77) f = χX,C if and only if dom f = C and for every c holds if c ∈ X, then
f(c) = 1 but if c /∈ X, then f(c) = 0.

(78) χX,C is total.

(79) c ∈ X if and only if χX,C(c) = 1.

(80) c /∈ X if and only if χX,C(c) = 0.

(81) c ∈ C \ X if and only if χX,C(c) = 0.

(82) χ
∅,C(c) = 0.

(83) χC,C(c) = 1.

(84) χX,C(c) 6= 1 if and only if χX,C(c) = 0.

(85) If X ∩ Y = ∅, then χX,C + χY,C = χX∪Y,C .

(86) χX,C ⋄ χY,C = χX∩Y,C .

We now define two new predicates. Let us consider C, f , Y . We say that f
is upper bounded on Y if and only if:

there exists r such that for every c such that c ∈ Y ∩ dom f holds f(c) ≤ r.
We say that f is lower bounded on Y if and only if:

there exists r such that for every c such that c ∈ Y ∩ dom f holds r ≤ f(c).

Let us consider C, f , Y . We say that f is bounded on Y if and only if:
f is upper bounded on Y and f is lower bounded on Y .

The following propositions are true:

(87) f is upper bounded on Y if and only if there exists r such that for every
c such that c ∈ Y ∩ dom f holds f(c) ≤ r.

(88) f is lower bounded on Y if and only if there exists r such that for every
c such that c ∈ Y ∩ dom f holds r ≤ f(c).

(89) f is bounded on Y if and only if f is upper bounded on Y and f is
lower bounded on Y .

(90) f is bounded on Y if and only if there exists r such that for every c
such that c ∈ Y ∩ dom f holds |f(c)| ≤ r.

(91) If Y ⊆ X and f is upper bounded on X, then f is upper bounded on
Y but if Y ⊆ X and f is lower bounded on X, then f is lower bounded
on Y but if Y ⊆ X and f is bounded on X, then f is bounded on Y .

(92) If f is upper bounded on X and f is lower bounded on Y , then f is
bounded on X ∩ Y .

(93) If X ∩ dom f = ∅, then f is bounded on X.

(94) If 0 = r, then r ⋄ f is bounded on Y .

(95) If f is upper bounded on Y and 0 ≤ r, then r ⋄ f is upper bounded on
Y but if f is upper bounded on Y and r ≤ 0, then r ⋄ f is lower bounded
on Y .

(96) If f is lower bounded on Y and 0 ≤ r, then r ⋄ f is lower bounded on
Y but if f is lower bounded on Y and r ≤ 0, then r ⋄ f is upper bounded
on Y .

(97) If f is bounded on Y , then r ⋄ f is bounded on Y .
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(98) |f | is lower bounded on X.

(99) If f is bounded on Y , then |f | is bounded on Y and −f is bounded on
Y .

(100) If f1 is upper bounded on X and f2 is upper bounded on Y , then f1+f2

is upper bounded on X ∩ Y but if f1 is lower bounded on X and f2 is
lower bounded on Y , then f1 + f2 is lower bounded on X ∩ Y but if f1

is bounded on X and f2 is bounded on Y , then f1 + f2 is bounded on
X ∩ Y .

(101) If f1 is bounded on X and f2 is bounded on Y , then f1 ⋄ f2 is bounded
on X ∩ Y and f1 − f2 is bounded on X ∩ Y .

(102) If f is upper bounded on X and f is upper bounded on Y , then f is
upper bounded on X ∪ Y .

(103) If f is lower bounded on X and f is lower bounded on Y , then f is
lower bounded on X ∪ Y .

(104) If f is bounded on X and f is bounded on Y , then f is bounded on
X ∪ Y .

(105) If f1 is a constant on X and f2 is a constant on Y , then f1 + f2 is a
constant on X ∩ Y and f1 − f2 is a constant on X ∩ Y and f1 ⋄ f2 is a
constant on X ∩ Y .

(106) If f is a constant on Y , then p ⋄ f is a constant on Y .

(107) If f is a constant on Y , then |f | is a constant on Y and −f is a constant
on Y .

(108) If f is a constant on Y , then f is bounded on Y .

(109) If f is a constant on Y , then for every r holds r ⋄ f is bounded on Y
and −f is bounded on Y and |f | is bounded on Y .

(110) If f1 is upper bounded on X and f2 is a constant on Y , then f1 + f2

is upper bounded on X ∩ Y but if f1 is lower bounded on X and f2 is
a constant on Y , then f1 + f2 is lower bounded on X ∩ Y but if f1 is
bounded on X and f2 is a constant on Y , then f1 + f2 is bounded on
X ∩ Y .

(111) (i) If f1 is upper bounded on X and f2 is a constant on Y , then f1 − f2

is upper bounded on X ∩ Y ,
(ii) if f1 is lower bounded on X and f2 is a constant on Y , then f1 − f2 is

lower bounded on X ∩ Y ,
(iii) if f1 is bounded on X and f2 is a constant on Y , then f1−f2 is bounded

on X ∩ Y and f2 − f1 is bounded on X ∩ Y and f1 ⋄ f2 is bounded on
X ∩ Y .
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