Partial Functions from a Domain to the Set of Real Numbers

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. Basic operations in the set of partial functions which map a domain to the set of all real numbers are introduced. They include adition, substraction, multiplication, division, multiplication by a real number and also module. Main properties of these operations are proved. A definition of the partial function bounded on a set (bounded below and bounded above) is presented. There are theorems showing the laws of conservation of totality and boundeness for operations of partial functions. The characteristic function of a subset of a domain as a partial function is redefined and a few properties are proved.

MML Identifier: RFUNCT_1.

The papers [6], [3], [1], [7], [5], [2], and [4] provide the terminology and notation for this paper. For simplicity we follow the rules: X, Y will be sets, C will be a non-empty set, c will be an element of C, f, f_1 , f_2 , f_3 , g, g_1 will be partial functions from C to \mathbb{R} , and r, r_1 , p, p_1 will be real numbers. We now state two propositions:

 $(1) \quad (-1)^{-1} = -1.$

(2) If $0 \le p$ and $0 \le r$ and $p \le p_1$ and $r \le r_1$, then $p \cdot r \le p_1 \cdot r_1$.

We now define four new functors. Let us consider C, f_1 , f_2 . The functor $f_1 + f_2$ yields a partial function from C to \mathbb{R} and is defined as follows:

 $\operatorname{dom}(f_1 + f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 + f_2)$ holds $(f_1 + f_2)(c) = f_1(c) + f_2(c)$.

The functor $f_1 - f_2$ yielding a partial function from C to \mathbb{R} is defined as follows: $\operatorname{dom}(f_1 - f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 - f_2)$ holds $(f_1 - f_2)(c) = f_1(c) - f_2(c)$.

The functor $f_1 \diamond f_2$ yielding a partial function from C to \mathbb{R} is defined by:

¹Supported by RPBP.III-24.C8

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 $\operatorname{dom}(f_1 \diamond f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 \diamond f_2)$ holds $(f_1 \diamond f_2)(c) = f_1(c) \cdot f_2(c)$.

The functor $\frac{f_1}{f_2}$ yielding a partial function from C to \mathbb{R} is defined by:

dom $\frac{f_1}{f_2}$ = dom $f_1 \cap (\text{dom } f_2 \setminus f_2^{-1} \{0\})$ and for every c such that $c \in \text{dom } \frac{f_1}{f_2}$ holds $\frac{f_1}{f_2}(c) = f_1(c) \cdot (f_2(c))^{-1}$.

Let us consider C, f, r. The functor $r \diamond f$ yields a partial function from C to \mathbb{R} and is defined by:

 $\operatorname{dom}(r \diamond f) = \operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(r \diamond f)$ holds $(r \diamond f)(c) = r \cdot f(c)$.

We now define three new functors. Let us consider C, f. The functor |f| yields a partial function from C to \mathbb{R} and is defined by:

dom |f| = dom f and for every c such that $c \in \text{dom } |f|$ holds |f|(c) = |f(c)|. The functor -f yields a partial function from C to \mathbb{R} and is defined by:

dom(-f) = dom f and for every c such that $c \in dom(-f)$ holds (-f)(c) = -f(c).

The functor $\frac{1}{f}$ yielding a partial function from C to \mathbb{R} is defined by:

dom $\frac{1}{f}$ = dom $f \setminus f^{-1} \{0\}$ and for every c such that $c \in \text{dom } \frac{1}{f} \text{ holds } \frac{1}{f}(c) = (f(c))^{-1}$.

One can prove the following propositions:

- (3) $f = f_1 + f_2$ if and only if dom $f = \text{dom } f_1 \cap \text{dom } f_2$ and for every c such that $c \in \text{dom } f$ holds $f(c) = f_1(c) + f_2(c)$.
- (4) $f = f_1 f_2$ if and only if dom $f = \text{dom } f_1 \cap \text{dom } f_2$ and for every c such that $c \in \text{dom } f$ holds $f(c) = f_1(c) f_2(c)$.
- (5) $f = f_1 \diamond f_2$ if and only if dom $f = \text{dom } f_1 \cap \text{dom } f_2$ and for every c such that $c \in \text{dom } f$ holds $f(c) = f_1(c) \cdot f_2(c)$.
- (6) $f = \frac{f_1}{f_2}$ if and only if dom $f = \text{dom } f_1 \cap (\text{dom } f_2 \setminus f_2^{-1} \{0\})$ and for every c such that $c \in \text{dom } f$ holds $f(c) = f_1(c) \cdot (f_2(c))^{-1}$.
- (7) $f = r \diamond f_1$ if and only if dom $f = \text{dom } f_1$ and for every c such that $c \in \text{dom } f$ holds $f(c) = r \cdot f_1(c)$.
- (8) $f = |f_1|$ if and only if dom $f = \text{dom } f_1$ and for every c such that $c \in \text{dom } f$ holds $f(c) = |f_1(c)|$.
- (9) $f = -f_1$ if and only if dom $f = \text{dom } f_1$ and for every c such that $c \in \text{dom } f$ holds $f(c) = -f_1(c)$.
- (10) $f_1 = \frac{1}{f}$ if and only if dom $f_1 = \text{dom } f \setminus f^{-1} \{0\}$ and for every c such that $c \in \text{dom } f_1$ holds $f_1(c) = (f(c))^{-1}$.
- (11) $\operatorname{dom} \frac{1}{q} \subseteq \operatorname{dom} g$ and $\operatorname{dom} g \cap (\operatorname{dom} g \setminus g^{-1} \{0\}) = \operatorname{dom} g \setminus g^{-1} \{0\}.$
- (12) $\operatorname{dom}(f_1 \diamond f_2) \setminus (f_1 \diamond f_2)^{-1} \{0\} = (\operatorname{dom} f_1 \setminus f_1^{-1} \{0\}) \cap (\operatorname{dom} f_2 \setminus f_2^{-1} \{0\}).$
- (13) If $c \in \operatorname{dom} \frac{1}{f}$, then $f(c) \neq 0$.
- (14) $\frac{1}{f}^{-1} \{0\} = \emptyset.$
- (15) $|f|^{-1} \{0\} = f^{-1} \{0\}$ and $(-f)^{-1} \{0\} = f^{-1} \{0\}.$

$$\begin{array}{rll} (16) & \mathrm{dom}\,\frac{1}{f}=\mathrm{dom}(f\restriction\mathrm{dom}\,\frac{1}{f}).\\ (17) & \mathrm{If}\,r\neq 0,\,\mathrm{then}\,(r\diamond f)^{-1}\,\{0\}=f^{-1}\,\{0\}.\\ (18) & f_1+f_2=f_2+f_1.\\ (19) & (f_1+f_2)+f_3=f_1+(f_2+f_3).\\ (20) & f_1\diamond f_2=f_2\diamond f_1.\\ (21) & (f_1\diamond f_2)\diamond f_3=f_1\diamond f_3+f_2\diamond f_3.\\ (22) & (f_1+f_2)\diamond f_3=f_1\diamond f_3+f_2\diamond f_3.\\ (23) & f_3\diamond (f_1+f_2)=f_3\diamond f_1+f_3\diamond f_2.\\ (24) & r\diamond (f_1\diamond f_2)=(r\diamond f_1)\diamond f_2.\\ (25) & r\diamond (f_1\diamond f_2)=f_1\diamond (r\diamond f_2).\\ (26) & (f_1-f_2)\diamond f_3=f_1\diamond f_3-f_2\diamond f_3.\\ (27) & f_3\diamond f_1-f_3\diamond f_2=f_3\diamond (f_1-f_2).\\ (28) & r\diamond (f_1+f_2)=r\diamond f_1+r\diamond f_2.\\ (29) & (r\cdot p)\diamond f=r\diamond (p\diamond f).\\ (30) & r\diamond (f_1-f_2)=r\diamond f_1-r\diamond f_2.\\ (31) & f_1-f_2=(-1)\diamond (f_2-f_1).\\ (32) & f_1-(f_2+f_3)=(f_1-f_2)-f_3.\\ (33) & 1\diamond f=f.\\ (34) & f_1-(f_2-f_3)=(f_1-f_2)+f_3.\\ (35) & f_1+(f_2-f_3)=(f_1+f_2)-f_3.\\ (36) & |f_1\diamond f_2|=|f_1|\diamond |f_2|.\\ (37) & |r\diamond f|=|r|\diamond |f|.\\ (38) & -f=(-1)\diamond f.\\ (39) & -(-f)=f.\\ (40) & f_1-f_2=f_1+(-f_2).\\ (41) & f_1-(f_2)=f_1+f_2.\\ (42) & \frac{1}{f}=f\restriction \mathrm{dom}\,\frac{1}{f}.\\ (43) & \frac{1}{f_1\diamond f_2}=\frac{1}{f_1}\diamond\frac{1}{f_2}.\\ (44) & \mathrm{If}\, r\neq 0,\,\mathrm{then}\,\frac{1}{r\diamond f}=r^{-1}\diamond\frac{1}{f}.\\ (45) & \frac{1}{-f}=(-1)\diamond\frac{1}{f}.\\ (46) & \frac{1}{|f|}=|\frac{1}{f}|.\\ (47) & \frac{f}{g}=f\diamond\frac{1}{g}.\\ (48) & r\diamond\frac{g}{f}=\frac{r\diamond g}{f}.\\ (49) & \frac{f}{g}\diamond g=f\restriction \mathrm{dom}\,\frac{1}{g}.\\ (50) & \frac{f}{g}\diamond\frac{f_1}{g_1}=\frac{f\diamond f_1}{g\diamond g_1}.\\ \end{array}$$

$$\begin{array}{ll} (51) & \frac{1}{f_2} = \frac{f_2 | t \text{dom} \frac{f_1}{f_2}}{f_1} \\ (52) & g \diamond \frac{f_1}{f_2} = \frac{g \diamond f_2 | t \text{dom} \frac{1}{f_2}}{f_1} \\ (53) & \frac{g}{f_1} = \frac{g \diamond f_2 | t \text{dom} \frac{1}{f_2}}{f_1} \\ (54) & -\frac{g}{f_2} = \frac{-f}{g} \text{ and } \frac{f}{f_2} = -\frac{g}{g} \\ (55) & \frac{f_1}{f_1} + \frac{f_2}{f_2} = \frac{f_1 \diamond f_2}{f_2} \text{ and } \frac{f}{f_1} - \frac{f_2}{f_2} = \frac{f_1 - f_2}{f_2} \\ (56) & \frac{f_1}{f_1} + \frac{g_1}{g} = \frac{f_1 \diamond g - g_1 \diamond f_1}{f_{\circ \circ g} f_1} \\ (57) & \frac{f_1}{f_1} = \frac{g}{g} = \frac{f_1 \diamond g - g_1 \diamond f_1}{f_{\circ \circ g} f_1} \\ (58) & \frac{f_1}{f_1} - \frac{g_1}{g} = \frac{f_1 \diamond g - g_1 \diamond f_1}{f_{\circ \circ g} f_1} \\ (58) & \frac{f_1}{f_2} - \frac{g_1}{g} = \frac{f_1 \diamond g - g_1 \diamond f_1}{f_{\circ \circ g} f_1} \\ (59) & |\frac{f_1}{f_2}| = |\frac{f_1}{f_2}| \\ (60) & (f_1 + f_2) | X = f_1 + f_2 | X \\ (61) & (f_1 + f_2) | X = f_1 + f_2 | X \\ (61) & (f_1 - f_2) | X = f_1 + f_2 | X \\ (62) & (-f) | X = -f | X \text{ and } \frac{1}{f_1} | X = \frac{1}{f_{1X}} \text{ and } |f| | X = |f| | X| \\ (63) & (f_1 - f_2) | X = f_1 - f_2 | X \\ (64) & \frac{f_1}{f_2} | X = \frac{f_{11} X}{f_{11} X} \text{ and } \frac{f_1}{f_2} | X = \frac{f_{11}}{f_{21}} \text{ and } (f_1 - f_2) | X = f_1 - f_2 | X \\ (64) & \frac{f_1}{f_2} | X = \frac{f_{11} X}{f_{12} | X|} \text{ and } \frac{f_1}{f_2} | X = \frac{f_1}{f_{21} | X| } \\ (66) & (f_1 + f_2) | X = f_1 - f_2 | X \\ (66) & f_1 \text{ is total and } f_2 \text{ is total if and only if } f_1 + f_2 \text{ is total but } f_1 \text{ is total and } f_2 \text{ is total if and only if } f_1 - f_2 | X = \frac{f_1}{f_{21} | X| } \\ (66) & f \text{ is total if and only if } f^{-1} \{0\} = \emptyset \text{ and } f \text{ is total } \\ (71) & f_1 \text{ is total and } f_2^{-1} | 0\} = \emptyset \text{ and } f_2 \text{ is total } \\ (72) & \text{If } f_1 \text{ is total and } f_2^{-1} \text{ is total, } \\ (71) & f_1 \text{ is total and } f_2^{-1} | 0\} = \emptyset \text{ and } f_2 \text{ is total.} \\ (71) & f_1 \text{ is total and } f_2^{-1} | 0\} = \emptyset \text{ and } f_2 \text{ is total.} \\ (71) & f_1 \text{ is total and } f_2^{-1} | 0\} = \emptyset \text{ and } f_2 \text{ is total.} \\ (71) & f_1 \text{ is total and } f_2^{-1} | 0\} = \emptyset \text{ and } f_2 \text{ is total.} \\ (71) & \text{If } f_1 \text{ is total and } f_2^{-1} \text{ is total, } (f_1 \wedge f_2)(c) = f_1(c) + f_2(c). \\ (73) & \text{If } f \text{ is tota$$

Let us consider X, C. Then $\chi_{X,C}$ is a partial function from C to \mathbb{R} . Next we state a number of propositions:

706

- (77) $f = \chi_{X,C}$ if and only if dom f = C and for every c holds if $c \in X$, then f(c) = 1 but if $c \notin X$, then f(c) = 0.
- (78) $\chi_{X,C}$ is total.
- (79) $c \in X$ if and only if $\chi_{X,C}(c) = 1$.
- (80) $c \notin X$ if and only if $\chi_{X,C}(c) = 0$.
- (81) $c \in C \setminus X$ if and only if $\chi_{X,C}(c) = 0$.
- (82) $\chi_{\emptyset,C}(c) = 0.$
- (83) $\chi_{C,C}(c) = 1.$
- (84) $\chi_{X,C}(c) \neq 1$ if and only if $\chi_{X,C}(c) = 0$.
- (85) If $X \cap Y = \emptyset$, then $\chi_{X,C} + \chi_{Y,C} = \chi_{X \cup Y,C}$.
- (86) $\chi_{X,C} \diamond \chi_{Y,C} = \chi_{X \cap Y,C}.$

We now define two new predicates. Let us consider C, f, Y. We say that f is upper bounded on Y if and only if:

there exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $f(c) \leq r$. We say that f is lower bounded on Y if and only if:

there exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $r \leq f(c)$.

Let us consider C, f, Y. We say that f is bounded on Y if and only if:

f is upper bounded on Y and f is lower bounded on Y.

The following propositions are true:

- (87) f is upper bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $f(c) \leq r$.
- (88) f is lower bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $r \leq f(c)$.
- (89) f is bounded on Y if and only if f is upper bounded on Y and f is lower bounded on Y.
- (90) f is bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $|f(c)| \leq r$.
- (91) If $Y \subseteq X$ and f is upper bounded on X, then f is upper bounded on Y but if $Y \subseteq X$ and f is lower bounded on X, then f is lower bounded on Y but if $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
- (92) If f is upper bounded on X and f is lower bounded on Y, then f is bounded on $X \cap Y$.
- (93) If $X \cap \text{dom } f = \emptyset$, then f is bounded on X.
- (94) If 0 = r, then $r \diamond f$ is bounded on Y.
- (95) If f is upper bounded on Y and $0 \le r$, then $r \diamond f$ is upper bounded on Y but if f is upper bounded on Y and $r \le 0$, then $r \diamond f$ is lower bounded on Y.
- (96) If f is lower bounded on Y and $0 \le r$, then $r \diamond f$ is lower bounded on Y but if f is lower bounded on Y and $r \le 0$, then $r \diamond f$ is upper bounded on Y.
- (97) If f is bounded on Y, then $r \diamond f$ is bounded on Y.

- (98) |f| is lower bounded on X.
- (99) If f is bounded on Y, then |f| is bounded on Y and -f is bounded on Y.
- (100) If f_1 is upper bounded on X and f_2 is upper bounded on Y, then f_1+f_2 is upper bounded on $X \cap Y$ but if f_1 is lower bounded on X and f_2 is lower bounded on Y, then $f_1 + f_2$ is lower bounded on $X \cap Y$ but if f_1 is bounded on X and f_2 is bounded on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (101) If f_1 is bounded on X and f_2 is bounded on Y, then $f_1 \diamond f_2$ is bounded on $X \cap Y$ and $f_1 f_2$ is bounded on $X \cap Y$.
- (102) If f is upper bounded on X and f is upper bounded on Y, then f is upper bounded on $X \cup Y$.
- (103) If f is lower bounded on X and f is lower bounded on Y, then f is lower bounded on $X \cup Y$.
- (104) If f is bounded on X and f is bounded on Y, then f is bounded on $X \cup Y$.
- (105) If f_1 is a constant on X and f_2 is a constant on Y, then $f_1 + f_2$ is a constant on $X \cap Y$ and $f_1 f_2$ is a constant on $X \cap Y$ and $f_1 \diamond f_2$ is a constant on $X \cap Y$.
- (106) If f is a constant on Y, then $p \diamond f$ is a constant on Y.
- (107) If f is a constant on Y, then |f| is a constant on Y and -f is a constant on Y.
- (108) If f is a constant on Y, then f is bounded on Y.
- (109) If f is a constant on Y, then for every r holds $r \diamond f$ is bounded on Y and -f is bounded on Y and |f| is bounded on Y.
- (110) If f_1 is upper bounded on X and f_2 is a constant on Y, then $f_1 + f_2$ is upper bounded on $X \cap Y$ but if f_1 is lower bounded on X and f_2 is a constant on Y, then $f_1 + f_2$ is lower bounded on $X \cap Y$ but if f_1 is bounded on X and f_2 is a constant on Y, then $f_1 + f_2$ is lower bounded on $X \cap Y$ but if f_1 is bounded on X and f_2 is a constant on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (111) (i) If f_1 is upper bounded on X and f_2 is a constant on Y, then $f_1 f_2$ is upper bounded on $X \cap Y$,
 - (ii) if f_1 is lower bounded on X and f_2 is a constant on Y, then $f_1 f_2$ is lower bounded on $X \cap Y$,
 - (iii) if f_1 is bounded on X and f_2 is a constant on Y, then $f_1 f_2$ is bounded on $X \cap Y$ and $f_2 - f_1$ is bounded on $X \cap Y$ and $f_1 \diamond f_2$ is bounded on $X \cap Y$.

References

 Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.

- [2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357– 367, 1990.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [5] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67– 71, 1990.

Received May 27, 1990