The Lattice of Real Numbers. The Lattice of Real Functions

Marek Chmur ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. A proof of the fact, that $\langle\mathbb{R}, \max , \min \rangle$ is a lattice (real lattice). Some basic properties (real lattice is distributive and modular) of it are proved. The same is done for the set \mathbb{R}^{A} with operations: $\max (\mathrm{f}(\mathrm{A}))$ and $\min (f(A))$, where \mathbb{R}^{A} means the set of all functions from A (being non-empty set) to \mathbb{R}, f is just such a function.

MML Identifier: REAL_LAT.

The articles [4], [1], [3], and [2] provide the terminology and notation for this paper. In the sequel x, y will denote real numbers. Let x be an element of \mathbb{R}. The functor @ x yielding a real number is defined by:
$@ x=x$.
We now state the proposition
(1) For every element x of \mathbb{R} holds $@ x=x$.

We now define two new functors. The binary operation $\min _{\mathbb{R}}$ on \mathbb{R} is defined by:
$\min _{\mathbb{R}}(x, y)=\min (x, y)$.
The binary operation $\max _{\mathbb{R}}$ on \mathbb{R} is defined by:
$\max _{\mathbb{R}}(x, y)=\max (x, y)$.
The following propositions are true:
(2) $\min _{\mathbb{R}}(x, y)=\min (x, y)$.
(3) $\max _{\mathbb{R}}(x, y)=\max (x, y)$.

In the sequel p, q will denote elements of the carrier of $\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$. Let x be an element of the carrier of $\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$. The functor $@ x$ yields a real number and is defined by:

$$
@ x=x .
$$

[^0]Next we state three propositions:
(4) For every element x of the carrier of $\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$ holds $@ x=x$.

$$
\begin{align*}
p \sqcup q & =\max _{\mathbb{R}}(p, q) . \tag{5}\\
p \sqcap q & =\min _{\mathbb{R}}(p, q) .
\end{align*}
$$

The lattice \mathbb{R}_{L} is defined as follows:
$\mathbb{R}_{\mathrm{L}}=\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$.
One can prove the following proposition

$$
\begin{equation*}
\mathbb{R}_{\mathrm{L}}=\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle . \tag{7}
\end{equation*}
$$

In the sequel p, q, r denote elements of the carrier of \mathbb{R}_{L}. One can prove the following propositions:

$$
\begin{equation*}
\max _{\mathbb{R}}(p, q)=\max _{\mathbb{R}}(q, p) . \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\min _{\mathbb{R}}(p, q)=\min _{\mathbb{R}}(q, p) . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(q, r), p\right) \tag{10}
\end{equation*}
$$

$\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(p, q), r\right)$,
(iiv) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(q, p), r\right)$,
(iv) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(r, p), q\right)$,
(v) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(r, q), p\right)$,
(vi) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(p, r), q\right)$.

$$
\begin{equation*}
\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(q, r), p\right), \tag{11}
\end{equation*}
$$

(ii) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(p, q), r\right)$,
(iii) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(q, p), r\right)$,
(iv) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(r, p), q\right)$,
(v) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(r, q), p\right)$,
(vi) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(p, r), q\right)$.
$\max _{\mathbb{R}}\left(\min _{\mathbb{R}}(p, q), q\right)=q$ and $\max _{\mathbb{R}}\left(q, \min _{\mathbb{R}}(p, q)\right)=q$ and $\max _{\mathbb{R}}(q$, $\left.\min _{\mathbb{R}}(q, p)\right)=q$ and $\max _{\mathbb{R}}\left(\min _{\mathbb{R}}(q, p), q\right)=q$.
(13) $\min _{\mathbb{R}}\left(q, \max _{\mathbb{R}}(q, p)\right)=q$ and $\min _{\mathbb{R}}\left(\max _{\mathbb{R}}(p, q), q\right)=q$ and $\min _{\mathbb{R}}(q$, $\left.\max _{\mathbb{R}}(p, q)\right)=q$ and $\min _{\mathbb{R}}\left(\max _{\mathbb{R}}(q, p), q\right)=q$.
(15) $\quad \mathbb{R}_{\mathrm{L}}$ is a distributive lattice.

In the sequel L will be a distributive lattice. We now state the proposition
(16) $\quad L$ is a modular lattice.

In the sequel A will denote a non-empty set and f, g, h will denote elements of \mathbb{R}^{A}. Let A be a non-empty set, and let x be an element of \mathbb{R}^{A}. The functor $@ x$ yielding an element of \mathbb{R}^{A} qua a non-empty set is defined as follows:
$@ x=x$.
We now state the proposition
(17) For every element f of \mathbb{R}^{A} holds @ $f=f$.

We now define two new functors. Let us consider A. The functor $\max _{\mathbb{R}^{A}}$ yielding a binary operation on \mathbb{R}^{A} is defined by:

$$
\max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{\circ}}(f, g) .
$$

The functor $\min _{\mathbb{R}^{A}}$ yields a binary operation on \mathbb{R}^{A} and is defined as follows:
$\min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{\circ}}(f, g)$.
Next we state a number of propositions:

$$
\begin{align*}
& \max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{\circ}}(f, g) . \tag{18}\\
& \min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{\circ}}(f, g) . \tag{19}\\
& \max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{A}}(g, f) . \tag{20}\\
& \min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{A}}(g, f) . \tag{21}\\
& \max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(f, g), h\right)=\max _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(g, h)\right) . \tag{22}\\
& \min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(f, g), h\right)=\min _{\mathbb{R}^{A}}\left(f, \min _{\mathbb{R}^{A}}(g, h)\right) . \tag{23}\\
& \max _{\mathbb{R}^{A}}\left(f, \min _{\mathbb{R}^{A}}(f, g)\right)=f . \tag{24}\\
& \max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(f, g), f\right)=f . \tag{25}\\
& \max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(g, f), f\right)=f . \tag{26}\\
& \max _{\mathbb{R}^{A}}\left(f, \min _{\mathbb{R}^{A}}(g, f)\right)=f . \tag{27}\\
& \min _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(f, g)\right)=f . \tag{28}\\
& \min _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(g, f)\right)=f . \tag{29}\\
& \min _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(g, f), f\right)=f . \tag{30}\\
& \min _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(f, g), f\right)=f . \tag{31}\\
& \min _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(g, h)\right)=\max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(f, g), \min _{\mathbb{R}^{A}}(f, h)\right) . \tag{32}
\end{align*}
$$

We now define two new functors. Let us consider A. The functor $\max _{\mathbb{R}^{A}}$ yields a binary operation on \mathbb{R}^{A} and is defined by:
$\max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{A}}(f, g)$.
The functor $\min _{\mathbb{R}^{A}}$ yields a binary operation on \mathbb{R}^{A} and is defined as follows:
$\min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{A}}(f, g)$.
The following two propositions are true:

$$
\begin{align*}
& \max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{A}}(f, g) . \tag{33}\\
& \min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{A}}(f, g) . \tag{34}
\end{align*}
$$

In the sequel p, q are elements of the carrier of $\left\langle\mathbb{R}^{A}, \boldsymbol{m a x}_{\mathbb{R}^{A}}, \boldsymbol{\operatorname { m i n }}_{\mathbb{R}^{A}}\right\rangle$. Let us consider A, and let x be an element of the carrier of $\left\langle\mathbb{R}^{A}, \boldsymbol{m a x}_{\mathbb{R}^{A}}, \boldsymbol{m i n}_{\mathbb{R}^{A}}\right\rangle$. The functor @ x yields an element of \mathbb{R}^{A} and is defined as follows:
$@ x=x$.
The following propositions are true:
(35) $p \sqcup q=\max _{\mathbb{R}^{A}}(p, q)$.

$$
\begin{align*}
p \sqcup q & =\max _{\mathbb{R}^{A}}(p, q) . \tag{36}\\
p \sqcap q & =\min _{\mathbb{R}^{A}}(p, q) . \tag{37}\\
p \sqcap q & =\min _{\mathbb{R}^{A}}(p, q) . \tag{38}
\end{align*}
$$

Let us consider A. The functor $\mathbb{R}_{\mathrm{L}}^{A}$ yields a lattice and is defined by:

$$
\mathbb{R}_{\mathrm{L}}^{A}=\left\langle\mathbb{R}^{A}, \max _{\mathbb{R}^{A}}, \min _{\mathbb{R}^{A}}\right\rangle .
$$

One can prove the following proposition

$$
\begin{equation*}
\mathbb{R}_{\mathrm{L}}^{A}=\left\langle\mathbb{R}^{A}, \max _{\mathbb{R}^{A}}, \min _{\mathbb{R}^{A}}\right\rangle \tag{39}
\end{equation*}
$$

In the sequel p, q, r will denote elements of the carrier of $\mathbb{R}_{\mathrm{L}}^{A}$. We now state several propositions:

$$
\begin{equation*}
\boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}(p, q)=\boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}(q, p) \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\min _{\mathbb{R}^{A}}(p, q)=\min _{\mathbb{R}^{A}}(q, p) \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\max _{\mathbb{R}^{A}}\left(p, \boldsymbol{\operatorname { m a x }}_{\mathbb{R}} A(q, r)\right)=\max _{\mathbb{R}} A\left(\boldsymbol{m a x}_{\mathbb{R}} A(q, r), p\right), \tag{42}
\end{equation*}
$$

(ii) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(p, q), r\right)$,
(iii) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(q, p), r\right)$,
(iv) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(r, p), q\right)$,
(v) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(r, q), p\right)$,
(vi) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(p, r), q\right)$.
$\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(q, r), p\right)$,
(ii) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(p, q), r\right)$,
(iii) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(q, p), r\right)$,
(iv) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(r, p), q\right)$,
(v) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(r, q), p\right)$,
(vi) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(p, r), q\right)$.
$\boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(p, q), q\right)=q$ and $\boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}\left(q, \min _{\mathbb{R}^{A}}(p, q)\right)=q$ and
$\max _{\mathbb{R}^{A}}\left(q, \min _{\mathbb{R}^{A}}(q, p)\right)=q$
and $\max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(q, p), q\right)=q$.
$\boldsymbol{\operatorname { m i n }}_{\mathbb{R}^{A}}\left(q, \boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}(q, p)\right)=q$ and $\min _{\mathbb{R}^{A}}\left(\boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}(p, q), q\right)=q$ and
$\min _{\mathbb{R}^{A}}\left(q, \max _{\mathbb{R}^{A}}(p, q)\right)=q$
and $\min _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(q, p), q\right)=q$.

$$
\begin{equation*}
\min _{\mathbb{R}^{A}}\left(q, \max _{\mathbb{R}^{A}}(p, r)\right)=\max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(q, p), \min _{\mathbb{R}^{A}}(q, r)\right) \tag{46}
\end{equation*}
$$

$\mathbb{R}_{\mathrm{L}}^{A}$ is a distributive lattice.
In the sequel F will denote a distributive lattice. We now state the proposition
(48) $\quad F$ is a modular lattice.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[3] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[4] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received May 22, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

