The Lattice of Real Numbers. The Lattice of Real Functions

Marek Chmur¹ Warsaw University Białystok

Summary. A proof of the fact, that $\langle \mathbb{R}, \max, \min \rangle$ is a lattice (real lattice). Some basic properties (real lattice is distributive and modular) of it are proved. The same is done for the set \mathbb{R}^A with operations: $\max(f(A))$ and $\min(f(A))$, where \mathbb{R}^A means the set of all functions from A (being non-empty set) to \mathbb{R} , f is just such a function.

MML Identifier: REAL_LAT.

The articles [4], [1], [3], and [2] provide the terminology and notation for this paper. In the sequel x, y will denote real numbers. Let x be an element of \mathbb{R} . The functor @x yielding a real number is defined by:

@x = x.

We now state the proposition

(1) For every element x of \mathbb{R} holds @x = x.

We now define two new functors. The binary operation $\min_{\mathbb{R}}$ on \mathbb{R} is defined by:

 $\min_{\mathbb{R}}(x, y) = \min(x, y).$

The binary operation $\max_{\mathbb{R}}$ on \mathbb{R} is defined by:

 $\max_{\mathbb{R}}(x, y) = \max(x, y).$

The following propositions are true:

- (2) $\min_{\mathbb{R}}(x, y) = \min(x, y).$
- (3) $\max_{\mathbb{R}}(x, y) = \max(x, y).$

In the sequel p, q will denote elements of the carrier of $\langle \mathbb{R}, \max_{\mathbb{R}}, \min_{\mathbb{R}} \rangle$. Let x be an element of the carrier of $\langle \mathbb{R}, \max_{\mathbb{R}}, \min_{\mathbb{R}} \rangle$. The functor @x yields a real number and is defined by:

@x = x.

681

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1.

Next we state three propositions:

- (4) For every element x of the carrier of $\langle \mathbb{R}, \max_{\mathbb{R}}, \min_{\mathbb{R}} \rangle$ holds @x = x.
- (5) $p \sqcup q = \max_{\mathbb{R}}(p, q).$
- (6) $p \sqcap q = \min_{\mathbb{R}}(p, q).$

The lattice \mathbb{R}_L is defined as follows:

 $\mathbb{R}_{\mathrm{L}} = \langle \mathbb{R}, \max_{\mathbb{R}}, \min_{\mathbb{R}} \rangle.$

One can prove the following proposition

(7) $\mathbb{R}_{\mathrm{L}} = \langle \mathbb{R}, \max_{\mathbb{R}}, \min_{\mathbb{R}} \rangle.$

In the sequel p, q, r denote elements of the carrier of \mathbb{R}_L . One can prove the following propositions:

- (8) $\max_{\mathbb{R}}(p, q) = \max_{\mathbb{R}}(q, p).$
- (9) $\min_{\mathbb{R}}(p, q) = \min_{\mathbb{R}}(q, p).$
- (10) (i) $\max_{\mathbb{R}}(p, \max_{\mathbb{R}}(q, r)) = \max_{\mathbb{R}}(\max_{\mathbb{R}}(q, r), p),$
 - (ii) $\max_{\mathbb{R}}(p, \max_{\mathbb{R}}(q, r)) = \max_{\mathbb{R}}(\max_{\mathbb{R}}(p, q), r),$
 - (iii) $\max_{\mathbb{R}}(p, \max_{\mathbb{R}}(q, r)) = \max_{\mathbb{R}}(\max_{\mathbb{R}}(q, p), r),$
 - (iv) $\max_{\mathbb{R}}(p, \max_{\mathbb{R}}(q, r)) = \max_{\mathbb{R}}(\max_{\mathbb{R}}(r, p), q),$
 - (v) $\max_{\mathbb{R}}(p, \max_{\mathbb{R}}(q, r)) = \max_{\mathbb{R}}(\max_{\mathbb{R}}(r, q), p),$
 - (vi) $\max_{\mathbb{R}}(p, \max_{\mathbb{R}}(q, r)) = \max_{\mathbb{R}}(\max_{\mathbb{R}}(p, r), q).$
- (11) (i) $\min_{\mathbb{R}}(p, \min_{\mathbb{R}}(q, r)) = \min_{\mathbb{R}}(\min_{\mathbb{R}}(q, r), p),$
 - (ii) $\min_{\mathbb{R}}(p, \min_{\mathbb{R}}(q, r)) = \min_{\mathbb{R}}(\min_{\mathbb{R}}(p, q), r),$
 - (iii) $\min_{\mathbb{R}}(p, \min_{\mathbb{R}}(q, r)) = \min_{\mathbb{R}}(\min_{\mathbb{R}}(q, p), r),$
 - (iv) $\min_{\mathbb{R}}(p, \min_{\mathbb{R}}(q, r)) = \min_{\mathbb{R}}(\min_{\mathbb{R}}(r, p), q),$
 - (v) $\min_{\mathbb{R}}(p, \min_{\mathbb{R}}(q, r)) = \min_{\mathbb{R}}(\min_{\mathbb{R}}(r, q), p),$
 - (vi) $\min_{\mathbb{R}}(p, \min_{\mathbb{R}}(q, r)) = \min_{\mathbb{R}}(\min_{\mathbb{R}}(p, r), q).$
- (12) $\max_{\mathbb{R}}(\min_{\mathbb{R}}(p, q), q) = q$ and $\max_{\mathbb{R}}(q, \min_{\mathbb{R}}(p, q)) = q$ and $\max_{\mathbb{R}}(q, \min_{\mathbb{R}}(q, p)) = q$ and $\max_{\mathbb{R}}(\min_{\mathbb{R}}(q, p), q) = q$.
- (13) $\min_{\mathbb{R}}(q, \max_{\mathbb{R}}(q, p)) = q$ and $\min_{\mathbb{R}}(\max_{\mathbb{R}}(p, q), q) = q$ and $\min_{\mathbb{R}}(q, \max_{\mathbb{R}}(p, q), q) = q$.
- (14) $\min_{\mathbb{R}}(q, \max_{\mathbb{R}}(p, r)) = \max_{\mathbb{R}}(\min_{\mathbb{R}}(q, p), \min_{\mathbb{R}}(q, r)).$
- (15) \mathbb{R}_{L} is a distributive lattice.

In the sequel L will be a distributive lattice. We now state the proposition

(16) L is a modular lattice.

In the sequel A will denote a non-empty set and f, g, h will denote elements of \mathbb{R}^A . Let A be a non-empty set, and let x be an element of \mathbb{R}^A . The functor @x yielding an element of \mathbb{R}^A qua a non-empty set is defined as follows:

@x = x.

We now state the proposition

(17) For every element f of \mathbb{R}^A holds @f = f.

We now define two new functors. Let us consider A. The functor $\max_{\mathbb{R}^A}$ yielding a binary operation on \mathbb{R}^A is defined by:

 $\max_{\mathbb{R}^A}(f, g) = \max_{\mathbb{R}^o}(f, g).$

The functor $\min_{\mathbb{R}^A}$ yields a binary operation on \mathbb{R}^A and is defined as follows: $\min_{\mathbb{R}^A}(f, g) = \min_{\mathbb{R}^o}(f, g).$

Next we state a number of propositions:

- (18) $\max_{\mathbb{R}^A}(f, g) = \max_{\mathbb{R}^\circ}(f, g).$
- (19) $\min_{\mathbb{R}^A}(f, g) = \min_{\mathbb{R}^o}(f, g).$
- (20) $\max_{\mathbb{R}^A}(f, g) = \max_{\mathbb{R}^A}(g, f).$
- (21) $\min_{\mathbb{R}^A}(f, g) = \min_{\mathbb{R}^A}(g, f).$
- (22) $\max_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(f, g), h) = \max_{\mathbb{R}^A}(f, \max_{\mathbb{R}^A}(g, h)).$
- (23) $\min_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(f, g), h) = \min_{\mathbb{R}^A}(f, \min_{\mathbb{R}^A}(g, h)).$
- (24) $\max_{\mathbb{R}^A}(f, \min_{\mathbb{R}^A}(f, g)) = f.$
- (25) $\max_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(f, g), f) = f.$
- (26) $\max_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(g, f), f) = f.$
- (27) $\max_{\mathbb{R}^A}(f, \min_{\mathbb{R}^A}(g, f)) = f.$
- (28) $\min_{\mathbb{R}^A}(f, \max_{\mathbb{R}^A}(f, g)) = f.$
- (29) $\min_{\mathbb{R}^A}(f, \max_{\mathbb{R}^A}(g, f)) = f.$
- (30) $\min_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(g, f), f) = f.$
- (31) $\min_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(f, g), f) = f.$
- (32) $\min_{\mathbb{R}^A}(f, \max_{\mathbb{R}^A}(g, h)) = \max_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(f, g), \min_{\mathbb{R}^A}(f, h)).$
- We now define two new functors. Let us consider A. The functor $\max_{\mathbb{R}^A}$ yields a binary operation on \mathbb{R}^A and is defined by:
 - $\max_{\mathbb{R}^A}(f, g) = \max_{\mathbb{R}^A}(f, g).$

The functor $\min_{\mathbb{R}^A}$ yields a binary operation on \mathbb{R}^A and is defined as follows: $\min_{\mathbb{R}^A}(f, g) = \min_{\mathbb{R}^A}(f, g).$

 $\mathbb{R}^{n}(j, g) = \mathbb{R}^{n}(j, g).$

The following two propositions are true:

- (33) $\max_{\mathbb{R}^A}(f, g) = \max_{\mathbb{R}^A}(f, g).$
- (34) $\min_{\mathbb{R}^A}(f, g) = \min_{\mathbb{R}^A}(f, g).$

In the sequel p, q are elements of the carrier of $\langle \mathbb{R}^A, \max_{\mathbb{R}^A}, \min_{\mathbb{R}^A} \rangle$. Let us consider A, and let x be an element of the carrier of $\langle \mathbb{R}^A, \max_{\mathbb{R}^A}, \min_{\mathbb{R}^A} \rangle$. The functor @x yields an element of \mathbb{R}^A and is defined as follows:

@x = x.

The following propositions are true:

- (35) $p \sqcup q = \max_{\mathbb{R}^A}(p, q).$
- (36) $p \sqcup q = \max_{\mathbb{R}^A}(p, q).$
- (37) $p \sqcap q = \min_{\mathbb{R}^A}(p, q).$
- (38) $p \sqcap q = \min_{\mathbb{R}^A}(p, q).$

Let us consider A. The functor $\mathbb{R}^A_{\mathrm{L}}$ yields a lattice and is defined by:

$$\mathbb{R}^{A}_{\mathrm{L}} = \langle \mathbb{R}^{A}, \mathbf{max}_{\mathbb{R}^{A}}, \mathbf{min}_{\mathbb{R}^{A}}
angle$$

One can prove the following proposition

(39) $\mathbb{R}^A_{\mathrm{L}} = \langle \mathbb{R}^A, \max_{\mathbb{R}^A}, \min_{\mathbb{R}^A} \rangle.$

In the sequel p, q, r will denote elements of the carrier of \mathbb{R}^{A}_{L} . We now state several propositions:

(40) $\max_{\mathbb{R}^A}(p, q) = \max_{\mathbb{R}^A}(q, p).$ (41) $\min_{\mathbb{R}^A}(p, q) = \min_{\mathbb{R}^A}(q, p).$ $\max_{\mathbb{R}^A}(p, \max_{\mathbb{R}^A}(q, r)) = \max_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(q, r), p),$ (42) (i) $\max_{\mathbb{R}^A}(p, \max_{\mathbb{R}^A}(q, r)) = \max_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(p, q), r),$ (ii) $\max_{\mathbb{R}^A}(p, \max_{\mathbb{R}^A}(q, r)) = \max_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(q, p), r),$ (iii) $\max_{\mathbb{R}^A}(p, \max_{\mathbb{R}^A}(q, r)) = \max_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(r, p), q),$ (iv) (\mathbf{v}) $\max_{\mathbb{R}^A}(p, \max_{\mathbb{R}^A}(q, r)) = \max_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(r, q), p),$ (vi) $\max_{\mathbb{R}^A}(p, \max_{\mathbb{R}^A}(q, r)) = \max_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(p, r), q).$ (43) (i) $\min_{\mathbb{R}^A}(p, \min_{\mathbb{R}^A}(q, r)) = \min_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(q, r), p),$ (ii) $\min_{\mathbb{R}^A}(p, \min_{\mathbb{R}^A}(q, r)) = \min_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(p, q), r),$ $\mathbf{min}_{\mathbb{R}^{A}}(p, \mathbf{min}_{\mathbb{R}^{A}}(q, r)) = \mathbf{min}_{\mathbb{R}^{A}}(\mathbf{min}_{\mathbb{R}^{A}}(q, p), r),$ (iii) $\min_{\mathbb{R}^A}(p, \min_{\mathbb{R}^A}(q, r)) = \min_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(r, p), q),$ (iv) $\min_{\mathbb{R}^A}(p, \min_{\mathbb{R}^A}(q, r)) = \min_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(r, q), p),$ (v)(vi) $\min_{\mathbb{R}^A}(p, \min_{\mathbb{R}^A}(q, r)) = \min_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(p, r), q).$ $\max_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(p, q), q) = q \text{ and } \max_{\mathbb{R}^A}(q, \min_{\mathbb{R}^A}(p, q)) = q \text{ and }$ (44) $\max_{\mathbb{R}^A}(q, \min_{\mathbb{R}^A}(q, p)) = q$ and $\max_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(q, p), q) = q$. $\min_{\mathbb{R}^A}(q, \max_{\mathbb{R}^A}(q, p)) = q \text{ and } \min_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(p, q), q) = q \text{ and }$ (45) $\min_{\mathbb{R}^A}(q, \max_{\mathbb{R}^A}(p, q)) = q$ and $\min_{\mathbb{R}^A}(\max_{\mathbb{R}^A}(q, p), q) = q$.

(46)
$$\min_{\mathbb{R}^A}(q, \max_{\mathbb{R}^A}(p, r)) = \max_{\mathbb{R}^A}(\min_{\mathbb{R}^A}(q, p), \min_{\mathbb{R}^A}(q, r)).$$

(47) $\mathbb{R}^A_{\mathrm{L}}$ is a distributive lattice.

In the sequel ${\cal F}$ will denote a distributive lattice. We now state the proposition

(48) F is a modular lattice.

References

- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.
- [3] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
- [4] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received May 22, 1990