Topological Properties of Subsets in Real Numbers ¹

Konrad Raczkowski Warsaw University Białystok Paweł Sadowski Warsaw University Białystok

Summary. The following notions for real subsets are defined: open set, closed set, compact set, intervals and neighbourhoods. In the sequel some theorems involving above mentioned notions are proved.

 ${\rm MML} \ {\rm Identifier:} \ {\tt RCOMP_1}.$

The notation and terminology used in this paper have been introduced in the following articles: [9], [3], [10], [1], [2], [7], [5], [6], [4], and [8]. For simplicity we adopt the following convention: n, m are natural numbers, x is arbitrary, s, g, g_1, g_2, r, p, q are real numbers, s_1, s_2 are sequences of real numbers, and X, Y, Y_1 are subsets of \mathbb{R} . In this article we present several logical schemes. The scheme *SeqChoice* concerns a non-empty set \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists a function f from \mathbb{N} into \mathcal{A} such that for every element t of \mathbb{N} holds $\mathcal{P}[t, f(t)]$

provided the following requirement is met:

• for every element t of \mathbb{N} there exists an element ff of \mathcal{A} such that $\mathcal{P}[t, ff]$.

The scheme *RealSeqChoice* concerns a binary predicate \mathcal{P} , and states that: there exists s_1 such that for every n holds $\mathcal{P}[n, s_1(n)]$

provided the parameter meets the following requirement:

• for every n there exists r such that $\mathcal{P}[n,r]$.

We now state several propositions:

- (1) $X \subseteq Y$ if and only if for every r such that $r \in X$ holds $r \in Y$.
- (2) $r \in X$ if and only if $r \notin X^c$.

¹Supported by RPBP.III-24.C8.

777

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (3) If there exists x such that $x \in Y_1$ and $Y_1 \subseteq Y$ and Y is lower bounded, then Y_1 is lower bounded.
- (4) If there exists x such that $x \in Y_1$ and $Y_1 \subseteq Y$ and Y is upper bounded, then Y_1 is upper bounded.
- (5) If there exists x such that $x \in Y_1$ and $Y_1 \subseteq Y$ and Y is bounded, then Y_1 is bounded.

Let us consider g, s. The functor [g, s] yields a subset of \mathbb{R} and is defined by: $[g, s] = \{r : g \leq r \land r \leq s\}.$

Next we state the proposition

(6) $[g,s] = \{r : g \le r \land r \le s\}.$

Let us consider g, s. The functor]g, s[yields a subset of \mathbb{R} and is defined as follows:

 $]g, s[= \{r : g < r \land r < s\}.$

Next we state a number of propositions:

- (7) $]g, s[= \{r : g < r \land r < s\}.$
- (8) $r \in [p-g, p+g]$ if and only if |r-p| < g.
- (9) $r \in [p, g]$ if and only if $|(p+g) 2 \cdot r| \le g p$.
- (10) $r \in [p, q]$ if and only if $|(p+q) 2 \cdot r| < q p$.
- (11) For all g, s such that $g \leq s$ holds $[g, s] = [g, s] \cup \{g, s\}$.
- (12) If $p \leq g$, then $|g, p| = \emptyset$.
- (13) If p < g, then $[g, p] = \emptyset$.
- (14) If p = g, then $[p, g] = \{p\}$ and $[g, p] = \{p\}$ and $[p, g] = \emptyset$.
- (15) If p < g, then $]p, g[\neq \emptyset$ but if $p \leq g$, then $p \in [p, g]$ and $g \in [p, g]$ and $[p, g] \neq \emptyset$ and $]p, g[\subseteq [p, g]$.
- (16) If $r \in [p, g]$ and $s \in [p, g]$, then $[r, s] \subseteq [p, g]$.
- (17) If $r \in]p, g[$ and $s \in]p, g[$, then $[r, s] \subseteq]p, g[$.
- (18) If $p \le g$, then $[p, g] = [p, g] \cup [g, p]$.

Let us consider X. We say that X is compact if and only if:

for every s_1 such that $\operatorname{rng} s_1 \subseteq X$ there exists s_2 such that s_2 is a subsequence of s_1 and s_2 is convergent and $\lim s_2 \in X$.

Next we state the proposition

(19) X is compact if and only if for every s_1 such that $\operatorname{rng} s_1 \subseteq X$ there exists s_2 such that s_2 is a subsequence of s_1 and s_2 is convergent and $\lim s_2 \in X$.

Let us consider X. We say that X is closed if and only if:

for every s_1 such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent holds $\lim s_1 \in X$.

The following proposition is true

(20) X is closed if and only if for every s_1 such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent holds $\lim s_1 \in X$.

Let A be a non-empty set, and let X be a subset of A. Then X^{c} is a subset of A.

Let us consider X. We say that X is open if and only if: X^{c} is closed.

One can prove the following propositions:

- (21) X is open if and only if X^c is closed.
- (22) For all s, g such that $s \leq g$ for every s_1 such that $\operatorname{rng} s_1 \subseteq [s, g]$ holds s_1 is bounded.
- (23) For all s, g such that $s \leq g$ holds [s, g] is closed.
- (24) For all s, g such that $s \leq g$ holds [s, g] is compact.
- (25) For all p, q such that p < q holds]p, q[is open.
- (26) If X is compact, then X is closed.
- (27) Given X, s_1 . Suppose $X \neq \emptyset$ and $\operatorname{rng} s_1 \subseteq X$ and for every p such that $p \in X$ there exist r, n such that 0 < r and for every m such that n < m holds $r < |s_1(m) p|$. Then for every s_2 such that s_2 is a subsequence of s_1 holds it is not true that: s_2 is convergent and $\lim s_2 \in X$.
- (28) If there exists r such that $r \in X$ and X is compact, then X is bounded.
- (29) If there exists r such that $r \in X$, then X is compact if and only if X is bounded and X is closed.
- (30) For every X such that $X \neq \emptyset$ and X is closed and X is upper bounded holds sup $X \in X$.
- (31) For every X such that $X \neq \emptyset$ and X is closed and X is lower bounded holds inf $X \in X$.
- (32) For every X such that $X \neq \emptyset$ and X is compact holds $\sup X \in X$ and $\inf X \in X$.
- (33) If X is compact and for all g_1 , g_2 such that $g_1 \in X$ and $g_2 \in X$ holds $[g_1, g_2] \subseteq X$, then there exist p, g such that X = [p, g].

A subset of \mathbb{R} is called a real open subset if:

it is open.

We now state the proposition

(34) For every subset X of \mathbb{R} holds X is a real open subset if and only if X is open.

Let us consider r. A real open subset is said to be a neighbourhood of r if: there exists g such that 0 < g and it =]r - g, r + g[.

One can prove the following propositions:

- (35) For every r and for every real open subset X holds X is a neighbourhood of r if and only if there exists g such that 0 < g and X =]r g, r + g[.
- (36) For all r, X holds X is a neighbourhood of r if and only if there exists g such that 0 < g and X = [r g, r + g].
- (37) For every r and for every neighbourhood N of r holds $r \in N$.
- (38) For every r and for every neighbourhoods N_1 , N_2 of r there exists a neighbourhood N of r such that $N \subseteq N_1$ and $N \subseteq N_2$.

- (39) For every real open subset X and for every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$.
- (40) For every real open subset X and for every r such that $r \in X$ there exists g such that 0 < g and $]r g, r + g[\subseteq X.$
- (41) For every X such that for every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$ holds X is open.
- (42) For every X holds for every r such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$ if and only if X is open.
- (43) If $X \neq \emptyset$ and X is open and X is upper bounded, then $\sup X \notin X$.
- (44) If $X \neq \emptyset$ and X is open and X is lower bounded, then $\inf X \notin X$.
- (45) If X is open and X is bounded and for all g_1, g_2 such that $g_1 \in X$ and $g_2 \in X$ holds $[g_1, g_2] \subseteq X$, then there exist p, g such that X =]p, g[.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [8] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received June 18, 1990