Partial Functions from a Domain to a Domain

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The value of a partial function from a domain to a domain and a inverse partial function are introduced. The value and inverse function were defined in the article [1], but new definitions are introduced. The basic properties of the value, the inverse partial function, the identity partial function, the composition of partial funtion, the $1-1$ partial function, the restriction of a partial function, the image, the inverse image and the graph are proved. Constant partial function are introduced, too.

MML Identifier: PARTFUN2.

The terminology and notation used here are introduced in the following papers: [5], [1], [2], [6], [4], and [3]. For simplicity we follow the rules: x, y are arbitrary, X, Y denote sets, C, D, E denote non-empty sets, $S C$ denotes a subset of C, $S D$ denotes a subset of $D, S E$ denotes a subset of E, c, c_{1}, c_{2} denote elements of C, d denotes an element of D, e denotes an element of E, f, f_{1}, g denote partial functions from C to D, t denotes a partial function from D to C, s denotes a partial function from D to E, h denotes a partial function from C to E, and F denotes a partial function from D to D. The following proposition is true
(1) $\quad x$ is an element of E if and only if $x \in E$.

Let us consider C, D, f, c. Let us assume that $c \in \operatorname{dom} f$. The functor $f(c)$ yielding an element of D is defined by:
$f(c)=(f$ qua a function) (c).
Next we state four propositions:
(2) If $c \in \operatorname{dom} f$, then $f(c)=(f$ qua a function $)(c)$.

[^0](3) If $\operatorname{dom} f=\operatorname{dom} g$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=g(c)$, then $f=g$.
(4) $y \in \operatorname{rng} f$ if and only if there exists c such that $c \in \operatorname{dom} f$ and $y=f(c)$. If $c \in \operatorname{dom} f$, then $f(c) \in \operatorname{rng} f$.
Let us consider D, C, f. Then $\operatorname{dom} f$ is a subset of C. Then $\operatorname{rng} f$ is a subset of D.

The following propositions are true:
(6) $h=s \cdot f$ if and only if for every c holds $c \in \operatorname{dom} h$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$ and for every c such that $c \in \operatorname{dom} h$ holds $h(c)=s(f(c))$.
(7) $\quad c \in \operatorname{dom}(s \cdot f)$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$.
(8) If $c \in \operatorname{dom}(s \cdot f)$, then $(s \cdot f)(c)=s(f(c))$.
(9) If $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$, then $(s \cdot f)(c)=s(f(c))$.
(10) If $\operatorname{rng} f \subseteq \operatorname{dom} s$ and $c \in \operatorname{dom} f$, then $(s \cdot f)(c)=s(f(c))$.
(11) If $\operatorname{rng} f=\operatorname{dom} s$ and $c \in \operatorname{dom} f$, then $(s \cdot f)(c)=s(f(c))$.

Let us consider $D, S D$. Then $\mathrm{id}_{S D}$ is a partial function from D to D.
Next we state several propositions:
(12) $\quad F=\operatorname{id}_{S D}$ if and only if dom $F=S D$ and for every d such that $d \in S D$ holds $F(d)=d$.
(13) If $d \in S D$, then $\operatorname{id}_{S D}(d)=d$.
(14) If $d \in \operatorname{dom} F \cap S D$, then $F(d)=\left(F \cdot \operatorname{id}_{S D}\right)(d)$.
(15) $\quad d \in \operatorname{dom}\left(\mathrm{id}_{S D} \cdot F\right)$ if and only if $d \in \operatorname{dom} F$ and $F(d) \in S D$.
(16) f is one-to-one if and only if for all c_{1}, c_{2} such that $c_{1} \in \operatorname{dom} f$ and $c_{2} \in \operatorname{dom} f$ and $f\left(c_{1}\right)=f\left(c_{2}\right)$ holds $c_{1}=c_{2}$.
Let us consider C, D, and let f be a partial function from C to D. Let us assume that f is one-to-one. The functor f^{-1} yields a partial function from D to C and is defined as follows:
$f^{-1}=(f \text { qua a function })^{-1}$.
One can prove the following propositions:
(17) If f is one-to-one, then for every partial function g from D to C holds $g=f^{-1}$ if and only if $g=(f \text { qua a function })^{-1}$.
(18) If f is one-to-one, then for every partial function g from D to C holds $g=f^{-1}$ if and only if $\operatorname{dom} g=\operatorname{rng} f$ and for all d, c holds $d \in \operatorname{rng} f$ and $c=g(d)$ if and only if $c \in \operatorname{dom} f$ and $d=f(c)$.
(19) If f is one-to-one, then $\operatorname{rng} f=\operatorname{dom}\left(f^{-1}\right)$ and $\operatorname{dom} f=\operatorname{rng}\left(f^{-1}\right)$.
(20) If f is one-to-one, then $\operatorname{dom}\left(f^{-1} \cdot f\right)=\operatorname{dom} f$ and $\operatorname{rng}\left(f^{-1} \cdot f\right)=\operatorname{dom} f$.
(21) If f is one-to-one, then $\operatorname{dom}\left(f \cdot f^{-1}\right)=\operatorname{rng} f$ and $\operatorname{rng}\left(f \cdot f^{-1}\right)=\operatorname{rng} f$.

If f is one-to-one and $c \in \operatorname{dom} f$, then $c=f^{-1}(f(c))$ and $c=\left(f^{-1} \cdot f\right)(c)$. If f is one-to-one and $d \in \operatorname{rng} f$, then $d=f\left(f^{-1}(d)\right)$ and $d=\left(f \cdot f^{-1}\right)(d)$.
(24) such that $c \in \operatorname{dom} f$ and $d \in \operatorname{dom} t$ holds $f(c)=d$ if and only if $t(d)=c$, then $t=f^{-1}$.
(29) If f is one-to-one, then $\left(f^{-1}\right)^{-1}=f$.
(30) If f is one-to-one and s is one-to-one, then $(s \cdot f)^{-1}=f^{-1} \cdot s^{-1}$.
(31) $\quad\left(\mathrm{id}_{S C}\right)^{-1}=\mathrm{id}_{S C}$.

Let us consider C, D, f, X. Then $f \upharpoonright X$ is a partial function from C to D.
We now state several propositions:
(32) $g=f \upharpoonright X$ if and only if $\operatorname{dom} g=\operatorname{dom} f \cap X$ and for every c such that $c \in \operatorname{dom} g$ holds $g(c)=f(c)$.
(33) If $c \in \operatorname{dom}(f \upharpoonright X)$, then $(f \upharpoonright X)(c)=f(c)$.
(34) If $c \in \operatorname{dom} f \cap X$, then $(f \upharpoonright X)(c)=f(c)$.
(35) If $c \in \operatorname{dom} f$ and $c \in X$, then $(f \upharpoonright X)(c)=f(c)$.
(36) If $c \in \operatorname{dom} f$ and $c \in X$, then $f(c) \in \operatorname{rng}(f \upharpoonright X)$.

Let us consider C, D, X, f. Then $X \upharpoonright f$ is a partial function from C to D.
The following three propositions are true:
(37) $g=X \upharpoonright f$ if and only if for every c holds $c \in \operatorname{dom} g$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$ and for every c such that $c \in \operatorname{dom} g$ holds $g(c)=f(c)$.
(38) $\quad c \in \operatorname{dom}(X \upharpoonright f)$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$.
(39) If $c \in \operatorname{dom}(X \upharpoonright f)$, then $(X \upharpoonright f)(c)=f(c)$.

Let us consider C, D, f, X. Then $f^{\circ} X$ is a subset of D.
The following propositions are true:
(40) $S D=f^{\circ} X$ if and only if for every d holds $d \in S D$ if and only if there exists c such that $c \in \operatorname{dom} f$ and $c \in X$ and $d=f(c)$.
(41) $d \in f^{\circ} X$ if and only if there exists c such that $c \in \operatorname{dom} f$ and $c \in X$ and $d=f(c)$.
(42) If $c \in \operatorname{dom} f$, then $f^{\circ}\{c\}=\{f(c)\}$.
(43) If $c_{1} \in \operatorname{dom} f$ and $c_{2} \in \operatorname{dom} f$, then $f \circ\left\{c_{1}, c_{2}\right\}=\left\{f\left(c_{1}\right), f\left(c_{2}\right)\right\}$.

Let us consider C, D, f, X. Then $f^{-1} X$ is a subset of C.
The following propositions are true:
(44) $\quad S C=f^{-1} X$ if and only if for every c holds $c \in S C$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$.
(45) $\quad c \in f^{-1} X$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$.
(46) For every f there exists a function g from C into D such that for every c such that $c \in \operatorname{dom} f$ holds $g(c)=f(c)$.

$$
\begin{align*}
& f \approx g \text { if and only if for every } c \text { such that } c \in \operatorname{dom} f \cap \operatorname{dom} g \text { holds } \tag{47}\\
& f(c)=g(c) .
\end{align*}
$$

In this article we present several logical schemes. The scheme PartFuncExD deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element d of \mathcal{A} holds $d \in \operatorname{dom} f$ if and only if there exists an element c of \mathcal{B} such that $\mathcal{P}[d, c]$ and for every element d of \mathcal{A} such that $d \in \operatorname{dom} f$ holds $\mathcal{P}[d, f(d)]$ provided the following condition is satisfied:

- for every element d of \mathcal{A} and for all elements c_{1}, c_{2} of \mathcal{B} such that $\mathcal{P}\left[d, c_{1}\right]$ and $\mathcal{P}\left[d, c_{2}\right]$ holds $c_{1}=c_{2}$.
The scheme LambdaPFD concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element d of \mathcal{A} holds $d \in \operatorname{dom} f$ if and only if $\mathcal{P}[d]$ and for every element d of \mathcal{A} such that $d \in \operatorname{dom} f$ holds $f(d)=\mathcal{F}(d)$ for all values of the parameters.

The scheme UnPartFuncD deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a set \mathcal{C}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:

Let f, g be partial functions from \mathcal{A} to \mathcal{B}. Then if $\operatorname{dom} f=\mathcal{C}$ and for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds $f(c)=\mathcal{F}(c)$ and $\operatorname{dom} g=\mathcal{C}$ and for every element c of \mathcal{A} such that $c \in \operatorname{dom} g$ holds $g(c)=\mathcal{F}(c)$, then $f=g$ for all values of the parameters.

Let us consider $C, D, S C, d$. Then $S C \longmapsto d$ is a partial function from C to D.

The following propositions are true:
(48) If $c \in S C$, then $(S C \longmapsto d)(c)=d$.
(49) If for every c such that $c \in \operatorname{dom} f$ holds $f(c)=d$, then $f=\operatorname{dom} f \longmapsto d$.

If $c \in \operatorname{dom} f$, then $f \cdot(S E \longmapsto c)=S E \longmapsto f(c)$.
$\mathrm{id}_{S C}$ is total if and only if $S C=C$.
If $S C \longmapsto d$ is total, then $S C \neq \emptyset$.
$S C \longmapsto d$ is total if and only if $S C=C$.
Let us consider C, D, f, X. We say that f is a constant on X if and only if: there exists d such that for every c such that $c \in X \cap \operatorname{dom} f$ holds $f(c)=d$.
Next we state a number of propositions:
f is a constant on X if and only if there exists d such that for every c such that $c \in X \cap \operatorname{dom} f$ holds $f(c)=d$.
f is a constant on X if and only if for all c_{1}, c_{2} such that $c_{1} \in X \cap \operatorname{dom} f$ and $c_{2} \in X \cap \operatorname{dom} f$ holds $f\left(c_{1}\right)=f\left(c_{2}\right)$.
If $X \cap \operatorname{dom} f \neq \emptyset$, then f is a constant on X if and only if there exists d such that $\operatorname{rng}(f \upharpoonright X)=\{d\}$.
(57) If f is a constant on X and $Y \subseteq X$, then f is a constant on Y.
(58) If $X \cap \operatorname{dom} f=\emptyset$, then f is a constant on X.
(59) If $f \upharpoonright S C=\operatorname{dom}(f \upharpoonright S C) \longmapsto d$, then f is a constant on $S C$.
(60) f is a constant on $\{x\}$.
(61) If f is a constant on X and f is a constant on Y and $(X \cap Y) \cap \operatorname{dom} f \neq \emptyset$, then f is a constant on $X \cup Y$.
(62) If f is a constant on Y, then $f \upharpoonright X$ is a constant on Y.
(63) $\quad S C \longmapsto d$ is a constant on $S C$.
(64) graph $f \subseteq \operatorname{graph} g$ if and only if $\operatorname{dom} f \subseteq \operatorname{dom} g$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=g(c)$.
(65) $\quad c \in \operatorname{dom} f$ and $d=f(c)$ if and only if $\langle c, d\rangle \in \operatorname{graph} f$.
(66) If $\langle c, e\rangle \in \operatorname{graph}(s \cdot f)$, then $\langle c, f(c)\rangle \in \operatorname{graph} f$ and $\langle f(c), e\rangle \in \operatorname{graph} s$.
(67) If graph $f=\{\langle c, d\rangle\}$, then $f(c)=d$.
(68) If $\operatorname{dom} f=\{c\}$, then graph $f=\{\langle c, f(c)\rangle\}$.
(69) If graph $f_{1}=\operatorname{graph} f \cap \operatorname{graph} g$ and $c \in \operatorname{dom} f_{1}$, then $f_{1}(c)=f(c)$ and $f_{1}(c)=g(c)$.
(70) If $c \in \operatorname{dom} f$ and graph $f_{1}=\operatorname{graph} f \cup \operatorname{graph} g$, then $f_{1}(c)=f(c)$.
(71) If $c \in \operatorname{dom} g$ and graph $f_{1}=\operatorname{graph} f \cup \operatorname{graph} g$, then $f_{1}(c)=g(c)$.
(72) If $c \in \operatorname{dom} f_{1}$ and graph $f_{1}=\operatorname{graph} f \cup \operatorname{graph} g$, then $f_{1}(c)=f(c)$ or $f_{1}(c)=g(c)$.
(73) $\quad c \in \operatorname{dom} f$ and $c \in S C$ if and only if $\langle c, f(c)\rangle \in \operatorname{graph}(f \upharpoonright S C)$.
(74) $\quad c \in \operatorname{dom} f$ and $f(c) \in S D$ if and only if $\langle c, f(c)\rangle \in \operatorname{graph}(S D \upharpoonright f)$.
(75) $\quad c \in f^{-1} S D$ if and only if $\langle c, f(c)\rangle \in \operatorname{graph} f$ and $f(c) \in S D$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[4] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):6771, 1990.

Received May 31, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

