Partial Functions from a Domain to a Domain

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. The value of a partial function from a domain to a domain and a inverse partial function are introduced. The value and inverse function were defined in the article [1], but new definitions are introduced. The basic properties of the value, the inverse partial function, the identity partial function, the composition of partial function, the 1-1 partial function, the restriction of a partial function, the image, the inverse image and the graph are proved. Constant partial function are introduced, too.

MML Identifier: PARTFUN2.

The terminology and notation used here are introduced in the following papers: [5], [1], [2], [6], [4], and [3]. For simplicity we follow the rules: x, y are arbitrary, X, Y denote sets, C, D, E denote non-empty sets, SC denotes a subset of C, SD denotes a subset of D, SE denotes a subset of E, c, c_1, c_2 denote elements of C, d denotes an element of D, e denotes an element of E, f, f_1, g denote partial functions from C to D, t denotes a partial function from D to C, s denotes a partial function from D to E, h denotes a partial function from C to t to t denotes a partial function from D to t to t to t the denotes a partial function from t to t to t to t to t denotes a partial function from t to t. The following proposition is true

(1) x is an element of E if and only if $x \in E$.

Let us consider C, D, f, c. Let us assume that $c \in \text{dom } f$. The functor f(c) yielding an element of D is defined by:

 $f(c) = (f \mathbf{qua} \text{ a function})(c).$

Next we state four propositions:

(2) If $c \in \text{dom } f$, then $f(c) = (f \mathbf{qua} \text{ a function})(c)$.

¹Supported by RPBP.III-24.C8

697

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

JAROSŁAW KOTOWICZ

- (3) If dom f = dom g and for every c such that $c \in \text{dom } f$ holds f(c) = g(c), then f = g.
- (4) $y \in \operatorname{rng} f$ if and only if there exists c such that $c \in \operatorname{dom} f$ and y = f(c).
- (5) If $c \in \text{dom } f$, then $f(c) \in \text{rng } f$.

Let us consider D, C, f. Then dom f is a subset of C. Then rng f is a subset of D.

The following propositions are true:

- (6) $h = s \cdot f$ if and only if for every c holds $c \in \operatorname{dom} h$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$ and for every c such that $c \in \operatorname{dom} h$ holds h(c) = s(f(c)).
- (7) $c \in \operatorname{dom}(s \cdot f)$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$.
- (8) If $c \in \operatorname{dom}(s \cdot f)$, then $(s \cdot f)(c) = s(f(c))$.
- (9) If $c \in \text{dom } f$ and $f(c) \in \text{dom } s$, then $(s \cdot f)(c) = s(f(c))$.
- (10) If rng $f \subseteq \text{dom } s$ and $c \in \text{dom } f$, then $(s \cdot f)(c) = s(f(c))$.
- (11) If rng $f = \operatorname{dom} s$ and $c \in \operatorname{dom} f$, then $(s \cdot f)(c) = s(f(c))$.

Let us consider D, SD. Then id_{SD} is a partial function from D to D. Next we state several propositions:

- (12) $F = \operatorname{id}_{SD}$ if and only if dom F = SD and for every d such that $d \in SD$ holds F(d) = d.
- (13) If $d \in SD$, then $\operatorname{id}_{SD}(d) = d$.
- (14) If $d \in \operatorname{dom} F \cap SD$, then $F(d) = (F \cdot \operatorname{id}_{SD})(d)$.
- (15) $d \in \operatorname{dom}(\operatorname{id}_{SD} \cdot F)$ if and only if $d \in \operatorname{dom} F$ and $F(d) \in SD$.
- (16) f is one-to-one if and only if for all c_1, c_2 such that $c_1 \in \text{dom } f$ and $c_2 \in \text{dom } f$ and $f(c_1) = f(c_2)$ holds $c_1 = c_2$.

Let us consider C, D, and let f be a partial function from C to D. Let us assume that f is one-to-one. The functor f^{-1} yields a partial function from D to C and is defined as follows:

 $f^{-1} = (f \operatorname{\mathbf{qua}} \operatorname{a function})^{-1}.$

One can prove the following propositions:

- (17) If f is one-to-one, then for every partial function g from D to C holds $g = f^{-1}$ if and only if $g = (f \operatorname{\mathbf{qua}} a \operatorname{function})^{-1}$.
- (18) If f is one-to-one, then for every partial function g from D to C holds $g = f^{-1}$ if and only if dom $g = \operatorname{rng} f$ and for all d, c holds $d \in \operatorname{rng} f$ and c = g(d) if and only if $c \in \operatorname{dom} f$ and d = f(c).
- (19) If f is one-to-one, then $\operatorname{rng} f = \operatorname{dom}(f^{-1})$ and $\operatorname{dom} f = \operatorname{rng}(f^{-1})$.
- (20) If f is one-to-one, then dom $(f^{-1} \cdot f) = \text{dom } f$ and $\text{rng}(f^{-1} \cdot f) = \text{dom } f$.
- (21) If f is one-to-one, then dom $(f \cdot f^{-1}) = \operatorname{rng} f$ and $\operatorname{rng}(f \cdot f^{-1}) = \operatorname{rng} f$.
- (22) If f is one-to-one and $c \in \text{dom } f$, then $c = f^{-1}(f(c))$ and $c = (f^{-1} \cdot f)(c)$.
- (23) If f is one-to-one and $d \in \operatorname{rng} f$, then $d = f(f^{-1}(d))$ and $d = (f \cdot f^{-1})(d)$.

- (24) If f is one-to-one and dom $f = \operatorname{rng} t$ and $\operatorname{rng} f = \operatorname{dom} t$ and for all c, d such that $c \in \operatorname{dom} f$ and $d \in \operatorname{dom} t$ holds f(c) = d if and only if t(d) = c, then $t = f^{-1}$.
- (25) If f is one-to-one, then $f^{-1} \cdot f = \operatorname{id}_{\operatorname{dom} f}$ and $f \cdot f^{-1} = \operatorname{id}_{\operatorname{rng} f}$.
- (26) If f is one-to-one, then f^{-1} is one-to-one.
- (27) If f is one-to-one and rng $f = \operatorname{dom} s$ and $s \cdot f = \operatorname{id}_{\operatorname{dom} f}$, then $s = f^{-1}$.
- (28) If f is one-to-one and rng s = dom f and $f \cdot s = \text{id}_{\text{rng } f}$, then $s = f^{-1}$.
- (29) If f is one-to-one, then $(f^{-1})^{-1} = f$.
- (30) If f is one-to-one and s is one-to-one, then $(s \cdot f)^{-1} = f^{-1} \cdot s^{-1}$.
- (31) $(\mathrm{id}_{SC})^{-1} = \mathrm{id}_{SC}.$

Let us consider C, D, f, X. Then $f \upharpoonright X$ is a partial function from C to D. We now state several propositions:

- (32) $g = f \upharpoonright X$ if and only if dom $g = \text{dom } f \cap X$ and for every c such that $c \in \text{dom } g$ holds g(c) = f(c).
- (33) If $c \in \operatorname{dom}(f \upharpoonright X)$, then $(f \upharpoonright X)(c) = f(c)$.
- (34) If $c \in \text{dom } f \cap X$, then $(f \upharpoonright X)(c) = f(c)$.
- (35) If $c \in \text{dom } f$ and $c \in X$, then $(f \upharpoonright X)(c) = f(c)$.
- (36) If $c \in \text{dom } f$ and $c \in X$, then $f(c) \in \text{rng}(f \upharpoonright X)$.

Let us consider C, D, X, f. Then $X \upharpoonright f$ is a partial function from C to D. The following three propositions are true:

- (37) $g = X \upharpoonright f$ if and only if for every c holds $c \in \text{dom } g$ if and only if $c \in \text{dom } f$ and $f(c) \in X$ and for every c such that $c \in \text{dom } g$ holds g(c) = f(c).
- (38) $c \in \operatorname{dom}(X \upharpoonright f)$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$.
- (39) If $c \in \operatorname{dom}(X \upharpoonright f)$, then $(X \upharpoonright f)(c) = f(c)$.

Let us consider C, D, f, X. Then $f \circ X$ is a subset of D. The following propositions are true:

- (40) $SD = f \circ X$ if and only if for every d holds $d \in SD$ if and only if there exists c such that $c \in \text{dom } f$ and $c \in X$ and d = f(c).
- (41) $d \in f \circ X$ if and only if there exists c such that $c \in \text{dom } f$ and $c \in X$ and d = f(c).
- (42) If $c \in \operatorname{dom} f$, then $f \circ \{c\} = \{f(c)\}$.
- (43) If $c_1 \in \text{dom } f$ and $c_2 \in \text{dom } f$, then $f \circ \{c_1, c_2\} = \{f(c_1), f(c_2)\}$. Let us consider C, D, f, X. Then $f^{-1} X$ is a subset of C.

The following propositions are true:

- (44) $SC = f^{-1} X$ if and only if for every c holds $c \in SC$ if and only if $c \in \text{dom } f$ and $f(c) \in X$.
- (45) $c \in f^{-1} X$ if and only if $c \in \text{dom } f$ and $f(c) \in X$.
- (46) For every f there exists a function g from C into D such that for every c such that $c \in \text{dom } f$ holds g(c) = f(c).

(47) $f \approx g$ if and only if for every c such that $c \in \text{dom } f \cap \text{dom } g$ holds f(c) = g(c).

In this article we present several logical schemes. The scheme PartFuncExD deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element d of \mathcal{A} holds $d \in \text{dom } f$ if and only if there exists an element c of \mathcal{B} such that $\mathcal{P}[d, c]$ and for every element d of \mathcal{A} such that $d \in \text{dom } f$ holds $\mathcal{P}[d, f(d)]$ provided the following condition is satisfied:

• for every element d of \mathcal{A} and for all elements c_1 , c_2 of \mathcal{B} such that $\mathcal{P}[d, c_1]$ and $\mathcal{P}[d, c_2]$ holds $c_1 = c_2$.

The scheme LambdaPFD concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

there exists a partial function f from \mathcal{A} to \mathcal{B} such that for every element d of \mathcal{A} holds $d \in \text{dom } f$ if and only if $\mathcal{P}[d]$ and for every element d of \mathcal{A} such that $d \in \text{dom } f$ holds $f(d) = \mathcal{F}(d)$

for all values of the parameters.

The scheme UnPartFuncD deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a set \mathcal{C} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:

Let f, g be partial functions from \mathcal{A} to \mathcal{B} . Then if dom $f = \mathcal{C}$ and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds $f(c) = \mathcal{F}(c)$ and dom $g = \mathcal{C}$ and for every element c of \mathcal{A} such that $c \in \text{dom } g$ holds $g(c) = \mathcal{F}(c)$, then f = gfor all values of the parameters.

Let us consider C, D, SC, d. Then $SC \mapsto d$ is a partial function from C to D.

The following propositions are true:

- (48) If $c \in SC$, then $(SC \longmapsto d)(c) = d$.
- (49) If for every c such that $c \in \text{dom } f$ holds f(c) = d, then $f = \text{dom } f \longmapsto d$.
- (50) If $c \in \text{dom } f$, then $f \cdot (SE \longmapsto c) = SE \longmapsto f(c)$.
- (51) id_{SC} is total if and only if SC = C.
- (52) If $SC \mapsto d$ is total, then $SC \neq \emptyset$.
- (53) $SC \mapsto d$ is total if and only if SC = C.

Let us consider C, D, f, X. We say that f is a constant on X if and only if: there exists d such that for every c such that $c \in X \cap \text{dom } f$ holds f(c) = d. Next we state a number of propositions:

- (54) f is a constant on X if and only if there exists d such that for every c such that $c \in X \cap \text{dom } f$ holds f(c) = d.
- (55) f is a constant on X if and only if for all c_1, c_2 such that $c_1 \in X \cap \text{dom } f$ and $c_2 \in X \cap \text{dom } f$ holds $f(c_1) = f(c_2)$.
- (56) If $X \cap \text{dom } f \neq \emptyset$, then f is a constant on X if and only if there exists d such that $\text{rng}(f \upharpoonright X) = \{d\}$.
- (57) If f is a constant on X and $Y \subseteq X$, then f is a constant on Y.

- (58) If $X \cap \text{dom } f = \emptyset$, then f is a constant on X.
- (59) If $f \upharpoonright SC = \operatorname{dom}(f \upharpoonright SC) \longmapsto d$, then f is a constant on SC.
- (60) f is a constant on $\{x\}$.
- (61) If f is a constant on X and f is a constant on Y and $(X \cap Y) \cap \text{dom} f \neq \emptyset$, then f is a constant on $X \cup Y$.
- (62) If f is a constant on Y, then $f \upharpoonright X$ is a constant on Y.
- (63) $SC \mapsto d$ is a constant on SC.
- (64) graph $f \subseteq$ graph g if and only if dom $f \subseteq$ dom g and for every c such that $c \in$ dom f holds f(c) = g(c).
- (65) $c \in \text{dom } f \text{ and } d = f(c) \text{ if and only if } \langle c, d \rangle \in \text{graph } f.$
- (66) If $\langle c, e \rangle \in \operatorname{graph}(s \cdot f)$, then $\langle c, f(c) \rangle \in \operatorname{graph} f$ and $\langle f(c), e \rangle \in \operatorname{graph} s$.
- (67) If graph $f = \{ \langle c, d \rangle \}$, then f(c) = d.
- (68) If dom $f = \{c\}$, then graph $f = \{\langle c, f(c) \rangle\}$.
- (69) If graph $f_1 = \operatorname{graph} f \cap \operatorname{graph} g$ and $c \in \operatorname{dom} f_1$, then $f_1(c) = f(c)$ and $f_1(c) = g(c)$.
- (70) If $c \in \text{dom } f$ and graph $f_1 = \text{graph } f \cup \text{graph } g$, then $f_1(c) = f(c)$.
- (71) If $c \in \text{dom } g$ and graph $f_1 = \text{graph } f \cup \text{graph } g$, then $f_1(c) = g(c)$.
- (72) If $c \in \text{dom } f_1$ and graph $f_1 = \text{graph } f \cup \text{graph } g$, then $f_1(c) = f(c)$ or $f_1(c) = g(c)$.
- (73) $c \in \text{dom } f \text{ and } c \in SC \text{ if and only if } \langle c, f(c) \rangle \in \text{graph}(f \upharpoonright SC).$
- (74) $c \in \text{dom } f \text{ and } f(c) \in SD \text{ if and only if } \langle c, f(c) \rangle \in \text{graph}(SD \upharpoonright f).$
- (75) $c \in f^{-1} SD$ if and only if $\langle c, f(c) \rangle \in \operatorname{graph} f$ and $f(c) \in SD$.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357– 367, 1990.
- [4] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

 [6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67– 71, 1990.

Received May 31, 1990