Many-Argument Relations

Edmund Woronowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Definitions of relations based on finite sequences. The arity of relation, the set of logical values Boolean consisting of false and true and the operations of negation and conjunction on them are defined.

MML Identifier: MARGREL1.

The notation and terminology used in this paper have been introduced in the following papers: [5], [2], [1], [3], and [4]. In the sequel x, y will be arbitrary, k will denote a natural number, and D will denote a non-empty set. Let B, A be non-empty sets, and let b be an element of B. Then $A \longmapsto b$ is an element of B^{A}.

A set is said to be a relation if:
for an arbitrary x such that $x \in$ it holds x is a finite sequence and for all finite sequences a, b such that $a \in$ it and $b \in$ it holds len $a=$ len b.

We follow a convention: X denotes a set, p, r denote relations, and a, b denote finite sequences. We now state several propositions:
(4) ${ }^{2}$ For every X such that for every x such that $x \in X$ holds x is a finite sequence and for all a, b such that $a \in X$ and $b \in X$ holds len $a=\operatorname{len} b$ holds X is a relation.
(5) If $x \in p$, then x is a finite sequence.
(6) If $a \in p$ and $b \in p$, then len $a=\operatorname{len} b$.
(7) If $X \subseteq p$, then X is a relation.
(8) $\{a\}$ is a relation.
(9) $\{\langle x, y\rangle\}$ is a relation.

The scheme rel_exist concerns a set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:

[^0]there exists r such that for every a holds $a \in r$ if and only if $a \in \mathcal{A}$ and $\mathcal{P}[a]$ provided the parameters satisfy the following condition:

- for all a, b such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds len $a=\operatorname{len} b$.

Let us consider p, r. Let us note that one can characterize the predicate $p=r$ by the following (equivalent) condition: for every a holds $a \in p$ if and only if $a \in r$.

We now state the proposition
(10) $p=r$ if and only if for every a holds $a \in p$ if and only if $a \in r$.

The relation \varnothing is defined by:
$a \notin \varnothing$.
One can prove the following propositions:

$$
\begin{equation*}
a \notin \varnothing . \tag{11}
\end{equation*}
$$

$p=\varnothing$ if and only if for no a holds $a \in p$.
(13) $\varnothing=\emptyset$.

Let us consider p. Let us assume that $p \neq \varnothing$. The functor $\operatorname{Arity}(p)$ yielding a natural number is defined by:
for every a such that $a \in p$ holds $\operatorname{Arity}(p)=\operatorname{len} a$.
We now state two propositions:
(14) If $p \neq \varnothing$, then for every k holds $k=\operatorname{Arity}(p)$ if and only if for every a such that $a \in p$ holds $k=\operatorname{len} a$.
(15) If $a \in p$ and $p \neq \varnothing$, then $\operatorname{Arity}(p)=\operatorname{len} a$.

Let us consider k. A relation is called a k-ary relation if:
for every a such that $a \in$ it holds len $a=k$.
One can prove the following two propositions:
(16) For all k, r such that for every a such that $a \in r$ holds len $a=k$ holds r is a k-ary relation.
(17) For every k-ary relation r such that $a \in r$ holds len $a=k$.

Let X be a set. A relation is called a relation on X if:
for every a such that $a \in$ it holds rng $a \subseteq X$.
In the sequel X denotes a set. Next we state four propositions:
(18) For all X, r such that for every a such that $a \in r$ holds $\operatorname{rng} a \subseteq X$ holds r is a relation on X.
(19) For every relation r on X such that $a \in r$ holds $\operatorname{rng} a \subseteq X$.
(20) \varnothing is a relation on X.
(21) \varnothing is a k-ary relation.

Let us consider X, k. A relation is called a k-ary relation of X if:
it is a relation on X and it is a k-ary relation.
Next we state two propositions:
(22) For every relation r holds r is a k-ary relation of X if and only if r is a relation on X and r is a k-ary relation.

For every k-ary relation R of X holds R is a relation on X and R is a k-ary relation.
Let us consider D. The functor $\operatorname{Rel}(D)$ yielding a non-empty family of sets is defined as follows:
for every X holds $X \in \operatorname{Rel}(D)$ if and only if $X \subseteq D^{*}$ and for all finite sequences a, b of elements of D such that $a \in X$ and $b \in X$ holds len $a=\operatorname{len} b$.

The following propositions are true:
(24) For every non-empty set D and for every non-empty family S of sets holds $S=\operatorname{Rel}(D)$ if and only if for every X holds $X \in S$ if and only if $X \subseteq D^{*}$ and for all finite sequences a, b of elements of D such that $a \in X$ and $b \in X$ holds len $a=\operatorname{len} b$.
(25) $\quad X \in \operatorname{Rel}(D)$ if and only if $X \subseteq D^{*}$ and for all finite sequences a, b of elements of D such that $a \in X$ and $b \in X$ holds len $a=\operatorname{len} b$.
Let D be a non-empty set. A relation on D is an element of $\operatorname{Rel}(D)$.
In the sequel a will denote a finite sequence of elements of D and p, r will denote elements of $\operatorname{Rel}(D)$. Next we state three propositions:
(26) If $X \subseteq r$, then X is an element of $\operatorname{Rel}(D)$.
(27) $\{a\}$ is an element of $\operatorname{Rel}(D)$.
(28) For all elements x, y of D holds $\{\langle x, y\rangle\}$ is an element of $\operatorname{Rel}(D)$.

Let us consider D, p, r. Let us note that one can characterize the predicate $p=r$ by the following (equivalent) condition: for every a holds $a \in p$ if and only if $a \in r$.

One can prove the following proposition
(29) $\quad p=r$ if and only if for every a holds $a \in p$ if and only if $a \in r$.

The scheme rel_D_exist deals with a non-empty set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists an element r of $\operatorname{Rel}(\mathcal{A})$ such that for every finite sequence a of elements of \mathcal{A} holds $a \in r$ if and only if $\mathcal{P}[a]$
provided the parameters satisfy the following condition:

- for all finite sequences a, b of elements of \mathcal{A} such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds len $a=\operatorname{len} b$.
Let us consider D. The functor \varnothing_{D} yielding an element of $\operatorname{Rel}(D)$ is defined as follows:
$a \notin \varnothing_{D}$.
The following three propositions are true:

$$
\begin{equation*}
r=\varnothing_{D} \text { if and only if for no } a \text { holds } a \in r \tag{30}
\end{equation*}
$$

(31) $a \notin \varnothing_{D}$.
(32) $\quad \varnothing_{D}=\emptyset$.

Let us consider D, p. Let us assume that $p \neq \varnothing_{D}$. The functor $\operatorname{Arity}(p)$ yielding a natural number is defined by:
if $a \in p$, then $\operatorname{Arity}(p)=\operatorname{len} a$.
Next we state two propositions:
(33) If $p \neq \varnothing_{D}$, then for every k holds $k=\operatorname{Arity}(p)$ if and only if for every a such that $a \in p$ holds $k=\operatorname{len} a$.
(34) If $a \in p$ and $p \neq \varnothing_{D}$, then $\operatorname{Arity}(p)=\operatorname{len} a$.

The scheme rel_D_exist2 concerns a non-empty set \mathcal{A}, a natural number \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
there exists an element r of $\operatorname{Rel}(\mathcal{A})$ such that for every finite sequence a of elements of \mathcal{A} such that len $a=\mathcal{B}$ holds $a \in r$ if and only if $\mathcal{P}[a]$
for all values of the parameters.
The non-empty set Boolean is defined by:
Boolean $=\{0,1\}$.
We now define two new functors. The element false of Boolean is defined by:
false $=0$.
The element true of Boolean is defined as follows:
true $=1$.
The following four propositions are true:
(35) Boolean $=\{0,1\}$.
(37) Boolean $=\{$ false, true $\}$.
(38) false \neq true.

In the sequel u, v, w will denote elements of Boolean. Next we state the proposition
(39) $\quad v=$ false or $v=$ true.

We now define two new functors. Let us consider v. The functor $\neg v$ yielding an element of Boolean is defined by:
$\neg v=$ true if $v=$ false, $\neg v=$ false if $v=$ true.
Let us consider w. The functor $v \wedge w$ yielding an element of Boolean is defined by:
$v \wedge w=$ true if $v=$ true and $w=$ true, $v \wedge w=$ false, otherwise.
The following propositions are true:
(40) $\neg(\neg v)=v$.
(41) $\quad v=$ false if and only if $\neg v=$ true but $v=$ true if and only if $\neg v=$ false.
(42) If $v \neq$ false, then $v=$ true but if $v \neq$ true, then $v=$ false.
(43) $\quad v \neq$ true if and only if $v=$ false.
(44) It is not true that: $v=$ true and $w=$ true if and only if $v=$ false or $w=$ false.
(45) $\quad v \wedge w=$ true if and only if $v=$ true and $w=$ true but $v \wedge w=$ false if and only if $v=$ false or $w=$ false.
(48) $v \wedge w=w \wedge v$.
$v \wedge \neg v=$ false.
$\neg(v \wedge \neg v)=$ true.
false $\wedge v=$ false.
(50) \quad true $\wedge v=v$.
(51) If $v \wedge v=$ false, then $v=$ false.
(52) $\quad v \wedge(w \wedge u)=(v \wedge w) \wedge u$.

Let us consider X. The functor Boolean (false $\notin X)$ yields an element of Boolean and is defined as follows:

Boolean $($ false $\notin X)=$ true if false $\notin X$, Boolean $($ false $\notin X)=$ false, otherwise.

One can prove the following proposition
(53) false $\notin X$ if and only if Boolean (false $\notin X)=$ true but false $\in X$ if and only if Boolean(false $\notin X)=$ false.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[4] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 1, 1990

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C1
 ${ }^{2}$ The propositions (1)-(3) became obvious.

