Many-Argument Relations

Edmund Woronowicz¹ Warsaw University Białystok

Summary. Definitions of relations based on finite sequences. The arity of relation, the set of logical values *Boolean* consisting of *false* and *true* and the operations of negation and conjunction on them are defined.

MML Identifier: MARGREL1.

The notation and terminology used in this paper have been introduced in the following papers: [5], [2], [1], [3], and [4]. In the sequel x, y will be arbitrary, k will denote a natural number, and D will denote a non-empty set. Let B, A be non-empty sets, and let b be an element of B. Then $A \mapsto b$ is an element of B^A .

A set is said to be a relation if:

for an arbitrary x such that $x \in \text{it holds } x$ is a finite sequence and for all finite sequences a, b such that $a \in \text{it and } b \in \text{it holds len } a = \text{len } b$.

We follow a convention: X denotes a set, p, r denote relations, and a, b denote finite sequences. We now state several propositions:

- (4)² For every X such that for every x such that $x \in X$ holds x is a finite sequence and for all a, b such that $a \in X$ and $b \in X$ holds len a = len b holds X is a relation.
- (5) If $x \in p$, then x is a finite sequence.
- (6) If $a \in p$ and $b \in p$, then $\operatorname{len} a = \operatorname{len} b$.
- (7) If $X \subseteq p$, then X is a relation.
- (8) $\{a\}$ is a relation.
- (9) $\{\langle x, y \rangle\}$ is a relation.

The scheme *rel_exist* concerns a set \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

733

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP III.24 C1

²The propositions (1)–(3) became obvious.

there exists r such that for every a holds $a \in r$ if and only if $a \in \mathcal{A}$ and $\mathcal{P}[a]$ provided the parameters satisfy the following condition:

• for all a, b such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds len a = len b.

Let us consider p, r. Let us note that one can characterize the predicate p = r by the following (equivalent) condition: for every a holds $a \in p$ if and only if $a \in r$.

We now state the proposition

(10) p = r if and only if for every a holds $a \in p$ if and only if $a \in r$.

The relation \emptyset is defined by:

 $a \notin \emptyset$.

One can prove the following propositions:

- (11) $a \notin \emptyset$.
- (12) $p = \emptyset$ if and only if for no *a* holds $a \in p$.
- (13) $\emptyset = \emptyset.$

Let us consider p. Let us assume that $p \neq \emptyset$. The functor $\operatorname{Arity}(p)$ yielding a natural number is defined by:

for every a such that $a \in p$ holds $\operatorname{Arity}(p) = \operatorname{len} a$.

We now state two propositions:

- (14) If $p \neq \emptyset$, then for every k holds $k = \operatorname{Arity}(p)$ if and only if for every a such that $a \in p$ holds $k = \operatorname{len} a$.
- (15) If $a \in p$ and $p \neq \emptyset$, then $\operatorname{Arity}(p) = \operatorname{len} a$.

Let us consider k. A relation is called a k-ary relation if:

for every a such that $a \in it$ holds len a = k.

One can prove the following two propositions:

- (16) For all k, r such that for every a such that $a \in r$ holds len a = k holds r is a k-ary relation.
- (17) For every k-ary relation r such that $a \in r$ holds len a = k.

Let X be a set. A relation is called a relation on X if:

for every a such that $a \in \text{it holds rng } a \subseteq X$.

In the sequel X denotes a set. Next we state four propositions:

- (18) For all X, r such that for every a such that $a \in r$ holds $\operatorname{rng} a \subseteq X$ holds r is a relation on X.
- (19) For every relation r on X such that $a \in r$ holds rng $a \subseteq X$.
- (20) \emptyset is a relation on X.
- (21) \emptyset is a *k*-ary relation.

Let us consider X, k. A relation is called a k-ary relation of X if: it is a relation on X and it is a k-ary relation.

Next we state two propositions:

(22) For every relation r holds r is a k-ary relation of X if and only if r is a relation on X and r is a k-ary relation.

(23) For every k-ary relation R of X holds R is a relation on X and R is a k-ary relation.

Let us consider D. The functor $\operatorname{Rel}(D)$ yielding a non-empty family of sets is defined as follows:

for every X holds $X \in \operatorname{Rel}(D)$ if and only if $X \subseteq D^*$ and for all finite sequences a, b of elements of D such that $a \in X$ and $b \in X$ holds $\operatorname{len} a = \operatorname{len} b$.

The following propositions are true:

- (24) For every non-empty set D and for every non-empty family S of sets holds $S = \operatorname{Rel}(D)$ if and only if for every X holds $X \in S$ if and only if $X \subseteq D^*$ and for all finite sequences a, b of elements of D such that $a \in X$ and $b \in X$ holds len $a = \operatorname{len} b$.
- (25) $X \in \operatorname{Rel}(D)$ if and only if $X \subseteq D^*$ and for all finite sequences a, b of elements of D such that $a \in X$ and $b \in X$ holds $\operatorname{len} a = \operatorname{len} b$.

Let D be a non-empty set. A relation on D is an element of Rel(D).

In the sequel a will denote a finite sequence of elements of D and p, r will denote elements of Rel(D). Next we state three propositions:

- (26) If $X \subseteq r$, then X is an element of $\operatorname{Rel}(D)$.
- (27) $\{a\}$ is an element of $\operatorname{Rel}(D)$.
- (28) For all elements x, y of D holds $\{\langle x, y \rangle\}$ is an element of $\operatorname{Rel}(D)$.

Let us consider D, p, r. Let us note that one can characterize the predicate p = r by the following (equivalent) condition: for every a holds $a \in p$ if and only if $a \in r$.

One can prove the following proposition

(29) p = r if and only if for every a holds $a \in p$ if and only if $a \in r$.

The scheme *rel_D_exist* deals with a non-empty set \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists an element r of $\operatorname{Rel}(\mathcal{A})$ such that for every finite sequence a of elements of \mathcal{A} holds $a \in r$ if and only if $\mathcal{P}[a]$

provided the parameters satisfy the following condition:

• for all finite sequences a, b of elements of \mathcal{A} such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds len a = len b.

Let us consider D. The functor \emptyset_D yielding an element of $\operatorname{Rel}(D)$ is defined as follows:

 $a \notin \emptyset_D$.

The following three propositions are true:

(30) $r = \emptyset_D$ if and only if for no *a* holds $a \in r$.

(31)
$$a \notin \emptyset_D$$
.

Let us consider D, p. Let us assume that $p \neq \emptyset_D$. The functor $\operatorname{Arity}(p)$ yielding a natural number is defined by:

if $a \in p$, then $\operatorname{Arity}(p) = \operatorname{len} a$.

Next we state two propositions:

(33) If $p \neq \varnothing_D$, then for every k holds $k = \operatorname{Arity}(p)$ if and only if for every a such that $a \in p$ holds $k = \operatorname{len} a$.

(34) If $a \in p$ and $p \neq \emptyset_D$, then $\operatorname{Arity}(p) = \operatorname{len} a$.

The scheme *rel_D_exist2* concerns a non-empty set \mathcal{A} , a natural number \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

there exists an element r of $\operatorname{Rel}(\mathcal{A})$ such that for every finite sequence a of elements of \mathcal{A} such that $\operatorname{len} a = \mathcal{B}$ holds $a \in r$ if and only if $\mathcal{P}[a]$ for all values of the parameters.

The non-empty set *Boolean* is defined by:

 $Boolean = \{0, 1\}.$

We now define two new functors. The element *false* of *Boolean* is defined by: false = 0.

The element *true* of *Boolean* is defined as follows:

true = 1.

The following four propositions are true:

- (35) $Boolean = \{0, 1\}.$
- (36) false = 0 and true = 1.
- $(37) \quad Boolean = \{ false, true \}.$
- (38) $false \neq true.$

In the sequel u, v, w will denote elements of *Boolean*. Next we state the proposition

(39) v = false or v = true.

We now define two new functors. Let us consider v. The functor $\neg v$ yielding an element of *Boolean* is defined by:

 $\neg v = true \text{ if } v = false, \ \neg v = false \text{ if } v = true.$

Let us consider w. The functor $v \wedge w$ yielding an element of *Boolean* is defined by:

 $v \wedge w = true$ if v = true and w = true, $v \wedge w = false$, otherwise.

The following propositions are true:

- $(40) \quad \neg(\neg v) = v.$
- (41) v = false if and only if $\neg v = true$ but v = true if and only if $\neg v = false$.
- (42) If $v \neq false$, then v = true but if $v \neq true$, then v = false.
- (43) $v \neq true$ if and only if v = false.
- (44) It is not true that: v = true and w = true if and only if v = false or w = false.
- (45) $v \wedge w = true$ if and only if v = true and w = true but $v \wedge w = false$ if and only if v = false or w = false.
- (46) $v \wedge \neg v = false.$
- (47) $\neg (v \land \neg v) = true.$
- (48) $v \wedge w = w \wedge v.$
- (49) $false \wedge v = false.$

- (50) $true \wedge v = v.$
- (51) If $v \wedge v = false$, then v = false.
- (52) $v \wedge (w \wedge u) = (v \wedge w) \wedge u.$

Let us consider X. The functor $Boolean(false \notin X)$ yields an element of *Boolean* and is defined as follows:

 $Boolean(false \notin X) = true \text{ if } false \notin X, Boolean(false \notin X) = false, \text{ otherwise.}$

One can prove the following proposition

(53) $false \notin X$ if and only if $Boolean(false \notin X) = true$ but $false \in X$ if and only if $Boolean(false \notin X) = false$.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [4] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received June 1, 1990