Real Function Differentiability ${ }^{1}$

Konrad Raczkowski
Warsaw University
Białystok

Paweł Sadowski
Warsaw University
Białystok

Abstract

Summary. For a real valued function defined on its domain in real numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential real functions are shown.

MML Identifier: FDIFF_1.

The terminology and notation used here have been introduced in the following articles: [11], [2], [8], [3], [4], [1], [5], [6], [7], [10], and [9]. For simplicity we follow the rules: x, x_{0}, r, p will be real numbers, n will be a natural number, Y will be a subset of \mathbb{R}, Z will be a real open subset, X will be a set, s_{1} will be a sequence of real numbers, and f, f_{1}, f_{2} will be partial functions from \mathbb{R} to \mathbb{R}. We now state the proposition
(1) For every r holds $r \in Y$ if and only if $r \in \mathbb{R}$ if and only if $Y=\mathbb{R}$.

A sequence of real numbers is called a real sequence convergent to 0 if:
it is non-zero and it is convergent and \lim it $=0$.
The following proposition is true
(2) For every s_{1} holds s_{1} is a real sequence convergent to 0 if and only if s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$.
A sequence of real numbers is called a constant real sequence if:
it is constant.
We now state the proposition
(3) For every s_{1} holds s_{1} is a constant real sequence if and only if s_{1} is constant.
In the sequel h will be a real sequence convergent to 0 and c will be a constant real sequence. A partial function from \mathbb{R} to \mathbb{R} is called a rest if:

[^0]it is total and for every h holds $h^{-1} \diamond(\mathrm{it} \cdot h)$ is convergent and $\lim \left(h^{-1} \diamond(\mathrm{it} \cdot h)\right)=$ 0.

One can prove the following proposition
(4) For every f holds f is a rest if and only if f is total and for every h holds $h^{-1} \diamond(f \cdot h)$ is convergent and $\lim \left(h^{-1} \diamond(f \cdot h)\right)=0$.
A partial function from \mathbb{R} to \mathbb{R} is called a linear function if:
it is total and there exists r such that for every p holds it $(p)=r \cdot p$.
The following proposition is true
(5) For every f holds f is a linear function if and only if f is total and there exists r such that for every p holds $f(p)=r \cdot p$.
We follow the rules: R, R_{1}, R_{2} are rests and L, L_{1}, L_{2} are linear functions. We now state several propositions:
(6) For all L_{1}, L_{2} holds $L_{1}+L_{2}$ is a linear function and $L_{1}-L_{2}$ is a linear function.
(7) For all r, L holds $r \diamond L$ is a linear function.
(8) For all R_{1}, R_{2} holds $R_{1}+R_{2}$ is a rest and $R_{1}-R_{2}$ is a rest and $R_{1} \diamond R_{2}$ is a rest.
(9) For all r, R holds $r \diamond R$ is a rest.
(10) $L_{1} \diamond L_{2}$ is a rest.
(11) $R \diamond L$ is a rest and $L \diamond R$ is a rest.

Let us consider f, x_{0}. We say that f is differentiable in x_{0} if and only if:
there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that for every x such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+$ $R\left(x-x_{0}\right)$.

The following proposition is true
(12) For all f, x_{0} holds f is differentiable in x_{0} if and only if there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that for every x such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let us consider f, x_{0}. Let us assume that f is differentiable in x_{0}. The functor $f^{\prime}\left(x_{0}\right)$ yields a real number and is defined as follows:
there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that $f^{\prime}\left(x_{0}\right)=L(1)$ and for every x such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=$ $L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.

The following proposition is true
(13) Given r, f, x_{0}. Suppose f is differentiable in x_{0}. Then $r=f^{\prime}\left(x_{0}\right)$ if and only if there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that $r=L(1)$ and for every x such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let us consider f, X. We say that f is differentiable on X if and only if:
$X \subseteq \operatorname{dom} f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

The following four propositions are true:
(17) If f is differentiable on Y, then Y is open.

Let us consider f, X. Let us assume that f is differentiable on X. The functor $f_{\mid X}^{\prime}$ yielding a partial function from \mathbb{R} to \mathbb{R} is defined by:
$\operatorname{dom}\left(f_{\lceil X}^{\prime}\right)=X$ and for every x such that $x \in X$ holds $\left(f_{\mid X}^{\prime}\right)(x)=f^{\prime}(x)$.
One can prove the following two propositions:
(18) For all f, X and for every partial function F from \mathbb{R} to \mathbb{R} such that f is differentiable on X holds $F=f_{\mid X}^{\prime}$ if and only if $\operatorname{dom} F=X$ and for every x such that $x \in X$ holds $F(x)=f^{\prime}(x)$.
(19) For all f, Z such that $Z \subseteq \operatorname{dom} f$ and there exists r such that $\operatorname{rng} f=$ $\{r\}$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)(x)=0$.
Let us consider h, n. Then $h^{\wedge} n$ is a real sequence convergent to 0 .
Let us consider c, n. Then $c^{\wedge} n$ is a constant real sequence.
Next we state a number of propositions:
(20) Given f, x_{0}. Let N be a neighbourhood of x_{0}. Suppose f is differentiable in x_{0} and $N \subseteq \operatorname{dom} f$. Then for all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq N$ holds $h^{-1} \diamond(f \cdot(h+c)-f \cdot c)$ is convergent and $f^{\prime}\left(x_{0}\right)=\lim \left(h^{-1} \diamond(f \cdot(h+c)-f \cdot c)\right)$.
(21) For all f_{1}, f_{2}, x_{0} such that f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0} holds $f_{1}+f_{2}$ is differentiable in x_{0} and $\left(f_{1}+f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}^{\prime}\left(x_{0}\right)+f_{2}^{\prime}\left(x_{0}\right)$.
(22) For all f_{1}, f_{2}, x_{0} such that f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0} holds $f_{1}-f_{2}$ is differentiable in x_{0} and $\left(f_{1}-f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}^{\prime}\left(x_{0}\right)-f_{2}^{\prime}\left(x_{0}\right)$.
(23) For all r, f, x_{0} such that f is differentiable in x_{0} holds $r \diamond f$ is differentiable in x_{0} and $(r \diamond f)^{\prime}\left(x_{0}\right)=r \cdot\left(f^{\prime}\left(x_{0}\right)\right)$.
(24) For all f_{1}, f_{2}, x_{0} such that f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0} holds $f_{1} \diamond f_{2}$ is differentiable in x_{0} and $\left(f_{1} \diamond f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{2}\left(x_{0}\right) \cdot\left(f_{1}^{\prime}\left(x_{0}\right)\right)+f_{1}\left(x_{0}\right) \cdot\left(f_{2}^{\prime}\left(x_{0}\right)\right)$.
(25) For all f, Z such that $Z \subseteq \operatorname{dom} f$ and $f \upharpoonright Z=\operatorname{id}_{Z}$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\mid}^{\prime}\right)(x)=1$.
(26) For all f_{1}, f_{2}, Z such that $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z holds $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(f_{1}+f_{2}\right)_{\vdash Z}^{\prime}\right)(x)=f_{1}^{\prime}(x)+f_{2}^{\prime}(x)$.
For all f_{1}, f_{2}, Z such that $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z holds $f_{1}-f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(f_{1}-f_{2}\right)^{\prime} Z\right)(x)=f_{1}^{\prime}(x)-f_{2}^{\prime}(x)$.
(28) For all r, f, Z such that $Z \subseteq \operatorname{dom}(r \diamond f)$ and f is differentiable on Z holds $r \diamond f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left((r \diamond f)^{\prime} Z\right)(x)=r \cdot\left(f^{\prime}(x)\right)$.
(29) Given f_{1}, f_{2}, Z. Then if $Z \subseteq \operatorname{dom}\left(f_{1} \diamond f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z, then $f_{1} \diamond f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(f_{1} \diamond f_{2}\right)^{\prime}{ }_{Z}\right)(x)=f_{2}(x) \cdot\left(f_{1}^{\prime}(x)\right)+f_{1}(x) \cdot\left(f_{2}^{\prime}(x)\right)$.
(30) If $Z \subseteq \operatorname{dom} f$ and f is a constant on Z, then f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)(x)=0$.
(31) If $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x+p$, then f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)(x)=r$.
(32) If f is differentiable in x_{0}, then f is continuous in x_{0}.
(33) If f is differentiable on X, then f is continuous on X.
(34) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
(35) If f is differentiable in x_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0 .

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 18, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8.

