Real Function Differentiability¹

Konrad Raczkowski Warsaw University Białystok Paweł Sadowski Warsaw University Białystok

Summary. For a real valued function defined on its domain in real numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential real functions are shown.

MML Identifier: FDIFF_1.

The terminology and notation used here have been introduced in the following articles: [11], [2], [8], [3], [4], [1], [5], [6], [7], [10], and [9]. For simplicity we follow the rules: x, x_0, r, p will be real numbers, n will be a natural number, Y will be a subset of \mathbb{R} , Z will be a real open subset, X will be a set, s_1 will be a sequence of real numbers, and f, f_1, f_2 will be partial functions from \mathbb{R} to \mathbb{R} . We now state the proposition

(1) For every r holds $r \in Y$ if and only if $r \in \mathbb{R}$ if and only if $Y = \mathbb{R}$.

A sequence of real numbers is called a real sequence convergent to 0 if: it is non-zero and it is convergent and $\lim it = 0$.

The following proposition is true

(2) For every s_1 holds s_1 is a real sequence convergent to 0 if and only if s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$.

A sequence of real numbers is called a constant real sequence if: it is constant.

We now state the proposition

(3) For every s_1 holds s_1 is a constant real sequence if and only if s_1 is constant.

In the sequel h will be a real sequence convergent to 0 and c will be a constant real sequence. A partial function from \mathbb{R} to \mathbb{R} is called a rest if:

¹Supported by RPBP.III-24.C8.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 it is total and for every h holds $h^{-1} \diamond(it \cdot h)$ is convergent and $\lim(h^{-1} \diamond(it \cdot h)) =$

One can prove the following proposition

(4) For every f holds f is a rest if and only if f is total and for every h holds $h^{-1} \diamond (f \cdot h)$ is convergent and $\lim(h^{-1} \diamond (f \cdot h)) = 0$.

A partial function from \mathbb{R} to \mathbb{R} is called a linear function if:

it is total and there exists r such that for every p holds $it(p) = r \cdot p$.

The following proposition is true

(5) For every f holds f is a linear function if and only if f is total and there exists r such that for every p holds $f(p) = r \cdot p$.

We follow the rules: R, R_1 , R_2 are rests and L, L_1 , L_2 are linear functions. We now state several propositions:

- (6) For all L_1 , L_2 holds $L_1 + L_2$ is a linear function and $L_1 L_2$ is a linear function.
- (7) For all r, L holds $r \diamond L$ is a linear function.
- (8) For all R_1 , R_2 holds $R_1 + R_2$ is a rest and $R_1 R_2$ is a rest and $R_1 \diamond R_2$ is a rest.
- (9) For all r, R holds $r \diamond R$ is a rest.
- (10) $L_1 \diamond L_2$ is a rest.
- (11) $R \diamond L$ is a rest and $L \diamond R$ is a rest.

Let us consider f, x_0 . We say that f is differentiable in x_0 if and only if:

there exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every x such that $x \in N$ holds $f(x) - f(x_0) = L(x - x_0) + R(x - x_0)$.

The following proposition is true

(12) For all f, x_0 holds f is differentiable in x_0 if and only if there exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every x such that $x \in N$ holds $f(x) - f(x_0) = L(x-x_0) + R(x-x_0)$.

Let us consider f, x_0 . Let us assume that f is differentiable in x_0 . The functor $f'(x_0)$ yields a real number and is defined as follows:

there exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that $f'(x_0) = L(1)$ and for every x such that $x \in N$ holds $f(x) - f(x_0) = L(x - x_0) + R(x - x_0)$.

The following proposition is true

(13) Given r, f, x_0 . Suppose f is differentiable in x_0 . Then $r = f'(x_0)$ if and only if there exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that r = L(1) and for every x such that $x \in N$ holds $f(x) - f(x_0) = L(x - x_0) + R(x - x_0)$.

Let us consider f, X. We say that f is differentiable on X if and only if: $X \subseteq \text{dom } f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in

x.

The following four propositions are true:

0.

- (14) For all f, X holds f is differentiable on X if and only if $X \subseteq \text{dom } f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.
- (15) If f is differentiable on X, then X is a subset of \mathbb{R} .
- (16) f is differentiable on Z if and only if $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds f is differentiable in x.
- (17) If f is differentiable on Y, then Y is open.

Let us consider f, X. Let us assume that f is differentiable on X. The functor f'_{tX} yielding a partial function from \mathbb{R} to \mathbb{R} is defined by:

dom $(f'_{\uparrow X}) = X$ and for every x such that $x \in X$ holds $(f'_{\uparrow X})(x) = f'(x)$. One can prove the following two propositions:

- (18) For all f, X and for every partial function F from \mathbb{R} to \mathbb{R} such that f is differentiable on X holds $F = f'_{\uparrow X}$ if and only if dom F = X and for every x such that $x \in X$ holds F(x) = f'(x).
- (19) For all f, Z such that $Z \subseteq \text{dom } f$ and there exists r such that $\text{rng } f = \{r\}$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{\uparrow Z})(x) = 0.$

Let us consider h, n. Then $h \cap n$ is a real sequence convergent to 0.

Let us consider c, n. Then $c \cap n$ is a constant real sequence.

Next we state a number of propositions:

- (20) Given f, x_0 . Let N be a neighbourhood of x_0 . Suppose f is differentiable in x_0 and $N \subseteq \text{dom } f$. Then for all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq N$ holds $h^{-1} \diamond (f \cdot (h+c) - f \cdot c)$ is convergent and $f'(x_0) = \lim(h^{-1} \diamond (f \cdot (h+c) - f \cdot c)).$
- (21) For all f_1 , f_2 , x_0 such that f_1 is differentiable in x_0 and f_2 is differentiable in x_0 holds $f_1 + f_2$ is differentiable in x_0 and $(f_1 + f_2)'(x_0) = f'_1(x_0) + f'_2(x_0)$.
- (22) For all f_1 , f_2 , x_0 such that f_1 is differentiable in x_0 and f_2 is differentiable in x_0 holds $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = f'_1(x_0) f'_2(x_0)$.
- (23) For all r, f, x_0 such that f is differentiable in x_0 holds $r \diamond f$ is differentiable in x_0 and $(r \diamond f)'(x_0) = r \cdot (f'(x_0))$.
- (24) For all f_1 , f_2 , x_0 such that f_1 is differentiable in x_0 and f_2 is differentiable in x_0 holds $f_1 \diamond f_2$ is differentiable in x_0 and $(f_1 \diamond f_2)'(x_0) = f_2(x_0) \cdot (f'_1(x_0)) + f_1(x_0) \cdot (f'_2(x_0)).$
- (25) For all f, Z such that $Z \subseteq \text{dom } f$ and $f \upharpoonright Z = \text{id}_Z$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{|Z|})(x) = 1$.
- (26) For all f_1 , f_2 , Z such that $Z \subseteq \text{dom}(f_1 + f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z holds $f_1 + f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 + f_2)'_{|Z})(x) = f'_1(x) + f'_2(x)$.
- (27) For all f_1 , f_2 , Z such that $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z holds $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 f_2)'_{|Z})(x) = f'_1(x) f'_2(x)$.

- (28) For all r, f, Z such that $Z \subseteq \operatorname{dom}(r \diamond f)$ and f is differentiable on Z holds $r \diamond f$ is differentiable on Z and for every x such that $x \in Z$ holds $((r \diamond f)'_{tZ})(x) = r \cdot (f'(x)).$
- (29) Given f_1 , f_2 , Z. Then if $Z \subseteq \text{dom}(f_1 \diamond f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z, then $f_1 \diamond f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 \diamond f_2)'_{|Z})(x) = f_2(x) \cdot (f'_1(x)) + f_1(x) \cdot (f'_2(x)).$
- (30) If $Z \subseteq \text{dom } f$ and f is a constant on Z, then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{1Z})(x) = 0$.
- (31) If $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds $f(x) = r \cdot x + p$, then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{\uparrow Z})(x) = r$.
- (32) If f is differentiable in x_0 , then f is continuous in x_0 .
- (33) If f is differentiable on X, then f is continuous on X.
- (34) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
- (35) If f is differentiable in x_0 , then there exists R such that R(0) = 0 and R is continuous in 0.

References

- Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357– 367, 1990.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(4):777–780, 1990.

[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received June 18, 1990