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Summary. For a real valued function defined on its domain in
real numbers the differentiability in a single point and on a subset of the
domain is presented. The main elements of differential calculus are de-
veloped. The algebraic properties of differential real functions are shown.
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The terminology and notation used here have been introduced in the following
articles: [11], [2], [8], [3], [4], [1], [5], [6], [7], [10], and [9]. For simplicity we
follow the rules: x, x0, r, p will be real numbers, n will be a natural number,
Y will be a subset of � , Z will be a real open subset, X will be a set, s1 will
be a sequence of real numbers, and f , f1, f2 will be partial functions from � to

� . We now state the proposition

(1) For every r holds r ∈ Y if and only if r ∈ � if and only if Y = � .

A sequence of real numbers is called a real sequence convergent to 0 if:
it is non-zero and it is convergent and lim it = 0.

The following proposition is true

(2) For every s1 holds s1 is a real sequence convergent to 0 if and only if s1

is non-zero and s1 is convergent and lim s1 = 0.

A sequence of real numbers is called a constant real sequence if:
it is constant.

We now state the proposition

(3) For every s1 holds s1 is a constant real sequence if and only if s1 is
constant.

In the sequel h will be a real sequence convergent to 0 and c will be a constant
real sequence. A partial function from � to � is called a rest if:
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it is total and for every h holds h−1⋄(it·h) is convergent and lim(h−1⋄(it·h)) =
0.

One can prove the following proposition

(4) For every f holds f is a rest if and only if f is total and for every h

holds h−1 ⋄ (f · h) is convergent and lim(h−1 ⋄ (f · h)) = 0.

A partial function from � to � is called a linear function if:
it is total and there exists r such that for every p holds it(p) = r · p.

The following proposition is true

(5) For every f holds f is a linear function if and only if f is total and there
exists r such that for every p holds f(p) = r · p.

We follow the rules: R, R1, R2 are rests and L, L1, L2 are linear functions.
We now state several propositions:

(6) For all L1, L2 holds L1 + L2 is a linear function and L1 −L2 is a linear
function.

(7) For all r, L holds r ⋄ L is a linear function.

(8) For all R1, R2 holds R1 + R2 is a rest and R1 −R2 is a rest and R1 ⋄R2

is a rest.

(9) For all r, R holds r ⋄ R is a rest.

(10) L1 ⋄ L2 is a rest.

(11) R ⋄ L is a rest and L ⋄ R is a rest.

Let us consider f , x0. We say that f is differentiable in x0 if and only if:
there exists a neighbourhood N of x0 such that N ⊆ dom f and there exist

L, R such that for every x such that x ∈ N holds f(x) − f(x0) = L(x − x0) +
R(x − x0).

The following proposition is true

(12) For all f , x0 holds f is differentiable in x0 if and only if there exists a
neighbourhood N of x0 such that N ⊆ dom f and there exist L, R such
that for every x such that x ∈ N holds f(x)−f(x0) = L(x−x0)+R(x−x0).

Let us consider f , x0. Let us assume that f is differentiable in x0. The
functor f ′(x0) yields a real number and is defined as follows:

there exists a neighbourhood N of x0 such that N ⊆ dom f and there exist L,
R such that f ′(x0) = L(1) and for every x such that x ∈ N holds f(x)−f(x0) =
L(x − x0) + R(x − x0).

The following proposition is true

(13) Given r, f , x0. Suppose f is differentiable in x0. Then r = f ′(x0) if
and only if there exists a neighbourhood N of x0 such that N ⊆ dom f

and there exist L, R such that r = L(1) and for every x such that x ∈ N

holds f(x) − f(x0) = L(x − x0) + R(x − x0).

Let us consider f , X. We say that f is differentiable on X if and only if:
X ⊆ dom f and for every x such that x ∈ X holds f � X is differentiable in

x.

The following four propositions are true:
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(14) For all f , X holds f is differentiable on X if and only if X ⊆ dom f

and for every x such that x ∈ X holds f � X is differentiable in x.

(15) If f is differentiable on X, then X is a subset of � .

(16) f is differentiable on Z if and only if Z ⊆ dom f and for every x such
that x ∈ Z holds f is differentiable in x.

(17) If f is differentiable on Y , then Y is open.

Let us consider f , X. Let us assume that f is differentiable on X. The
functor f ′ X yielding a partial function from � to � is defined by:

dom(f ′ X ) = X and for every x such that x ∈ X holds (f ′ X )(x) = f ′(x).

One can prove the following two propositions:

(18) For all f , X and for every partial function F from � to � such that f

is differentiable on X holds F = f ′ X if and only if dom F = X and for
every x such that x ∈ X holds F (x) = f ′(x).

(19) For all f , Z such that Z ⊆ dom f and there exists r such that rng f =
{r} holds f is differentiable on Z and for every x such that x ∈ Z holds
(f ′ Z )(x) = 0.

Let us consider h, n. Then h � n is a real sequence convergent to 0.

Let us consider c, n. Then c � n is a constant real sequence.

Next we state a number of propositions:

(20) Given f , x0. Let N be a neighbourhood of x0. Suppose f is differen-
tiable in x0 and N ⊆ dom f . Then for all h, c such that rng c = {x0}
and rng(h + c) ⊆ N holds h−1 ⋄ (f · (h + c) − f · c) is convergent and
f ′(x0) = lim(h−1 ⋄ (f · (h + c) − f · c)).

(21) For all f1, f2, x0 such that f1 is differentiable in x0 and f2 is differ-
entiable in x0 holds f1 + f2 is differentiable in x0 and (f1 + f2)′(x0) =
f ′

1
(x0) + f ′

2
(x0).

(22) For all f1, f2, x0 such that f1 is differentiable in x0 and f2 is differ-
entiable in x0 holds f1 − f2 is differentiable in x0 and (f1 − f2)′(x0) =
f ′

1
(x0) − f ′

2
(x0).

(23) For all r, f , x0 such that f is differentiable in x0 holds r ⋄ f is differen-
tiable in x0 and (r ⋄ f)′(x0) = r · (f ′(x0)).

(24) For all f1, f2, x0 such that f1 is differentiable in x0 and f2 is differ-
entiable in x0 holds f1 ⋄ f2 is differentiable in x0 and (f1 ⋄ f2)′(x0) =
f2(x0) · (f ′

1
(x0)) + f1(x0) · (f ′

2
(x0)).

(25) For all f , Z such that Z ⊆ dom f and f � Z = idZ holds f is differen-
tiable on Z and for every x such that x ∈ Z holds (f ′ Z )(x) = 1.

(26) For all f1, f2, Z such that Z ⊆ dom(f1 + f2) and f1 is differentiable on
Z and f2 is differentiable on Z holds f1 + f2 is differentiable on Z and for
every x such that x ∈ Z holds ((f1 + f2)′ Z )(x) = f ′

1
(x) + f ′

2
(x).

(27) For all f1, f2, Z such that Z ⊆ dom(f1 − f2) and f1 is differentiable on
Z and f2 is differentiable on Z holds f1 − f2 is differentiable on Z and for
every x such that x ∈ Z holds ((f1 − f2)′ Z )(x) = f ′

1
(x) − f ′

2
(x).
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(28) For all r, f , Z such that Z ⊆ dom(r ⋄ f) and f is differentiable on Z

holds r ⋄ f is differentiable on Z and for every x such that x ∈ Z holds
((r ⋄ f)′ Z )(x) = r · (f ′(x)).

(29) Given f1, f2, Z. Then if Z ⊆ dom(f1 ⋄ f2) and f1 is differentiable on Z

and f2 is differentiable on Z, then f1⋄f2 is differentiable on Z and for every
x such that x ∈ Z holds ((f1 ⋄ f2)′ Z )(x) = f2(x) · (f ′

1
(x)) + f1(x) · (f ′

2
(x)).

(30) If Z ⊆ dom f and f is a constant on Z, then f is differentiable on Z

and for every x such that x ∈ Z holds (f ′ Z )(x) = 0.

(31) If Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = r ·x+p, then
f is differentiable on Z and for every x such that x ∈ Z holds (f ′ Z )(x) = r.

(32) If f is differentiable in x0, then f is continuous in x0.

(33) If f is differentiable on X, then f is continuous on X.

(34) If f is differentiable on X and Z ⊆ X, then f is differentiable on Z.

(35) If f is differentiable in x0, then there exists R such that R(0) = 0 and
R is continuous in 0.
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