Real Function Continuity

Konrad Raczkowski
Warsaw University
Białystok

Paweł Sadowski
Warsaw University
Białystok

Abstract

Summary. The continuity of real functions is discussed. There is a function defined on some domain in real numbers which is continuous in a single point and on a subset of domain of the function. Main properties of real continuous functions are proved. Among them there is the Weierstraß Theorem. Algebraic features for real continuous functions are shown. Lipschitzian functions are introduced. The Lipschitz condition entails continuity.

MML Identifier: FCONT_1.

The papers [11], [2], [9], [8], [4], [3], [12], [1], [5], [6], [7], and [10] provide the terminology and notation for this paper. For simplicity we adopt the following rules: n is a natural number, X, X_{1}, Z, Z_{1} are sets, $s, g, r, p, x_{0}, x_{1}, x_{2}$ are real numbers, s_{1} is a sequence of real numbers, Y is a subset of \mathbb{R}, and f, f_{1}, f_{2} are partial functions from \mathbb{R} to \mathbb{R}. Let us consider f, x_{0}. We say that f is continuous in x_{0} if and only if:
$x_{0} \in \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.

Next we state a number of propositions:
(1) For all f, x_{0} holds f is continuous in x_{0} if and only if $x_{0} \in \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.
(2) $\quad f$ is continuous in x_{0} if and only if $x_{0} \in \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ and for every n holds $s_{1}(n) \neq x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.
(3) $\quad f$ is continuous in x_{0} if and only if $x_{0} \in \operatorname{dom} f$ and for every r such that $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|<r$.

[^0](4) For all f, x_{0} holds f is continuous in x_{0} if and only if $x_{0} \in \operatorname{dom} f$ and for every neighbourhood N_{1} of $f\left(x_{0}\right)$ there exists a neighbourhood N of x_{0} such that for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f\left(x_{1}\right) \in N_{1}$.
(5) For all f, x_{0} holds f is continuous in x_{0} if and only if $x_{0} \in \operatorname{dom} f$ and for every neighbourhood N_{1} of $f\left(x_{0}\right)$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq N_{1}$.
(6) If $x_{0} \in \operatorname{dom} f$ and there exists a neighbourhood N of x_{0} such that dom $f \cap N=\left\{x_{0}\right\}$, then f is continuous in x_{0}.
(7) If f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}, then $f_{1}+f_{2}$ is continuous in x_{0} and $f_{1}-f_{2}$ is continuous in x_{0} and $f_{1} \diamond f_{2}$ is continuous in x_{0}.
(8) If f is continuous in x_{0}, then $r \diamond f$ is continuous in x_{0}.
(9) If f is continuous in x_{0}, then $|f|$ is continuous in x_{0} and $-f$ is continuous in x_{0}.
(10) If f is continuous in x_{0} and $f\left(x_{0}\right) \neq 0$, then $\frac{1}{f}$ is continuous in x_{0}.
(11) If f_{1} is continuous in x_{0} and $f_{1}\left(x_{0}\right) \neq 0$ and f_{2} is continuous in x_{0}, then $\frac{f_{2}}{f_{1}}$ is continuous in x_{0}.
(12) If f_{1} is continuous in x_{0} and f_{2} is continuous in $f_{1}\left(x_{0}\right)$, then $f_{2} \cdot f_{1}$ is continuous in x_{0}.
Let us consider f, X. We say that f is continuous on X if and only if:
$X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.

One can prove the following propositions:
(13) For all f, X holds f is continuous on X if and only if $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
(14) For all X, f holds f is continuous on X if and only if $X \subseteq \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent and $\lim s_{1} \in X$ holds $f \cdot s_{1}$ is convergent and $f\left(\lim s_{1}\right)=\lim \left(f \cdot s_{1}\right)$.
(15) $\quad f$ is continuous on X if and only if $X \subseteq \operatorname{dom} f$ and for all x_{0}, r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|<r$.
f is continuous on X if and only if $f \upharpoonright X$ is continuous on X.
If f is continuous on X and $X_{1} \subseteq X$, then f is continuous on X_{1}.
If $x_{0} \in \operatorname{dom} f$, then f is continuous on $\left\{x_{0}\right\}$.
For all X, f_{1}, f_{2} such that f_{1} is continuous on X and f_{2} is continuous on X holds $f_{1}+f_{2}$ is continuous on X and $f_{1}-f_{2}$ is continuous on X and $f_{1} \diamond f_{2}$ is continuous on X.
(20) For all X, X_{1}, f_{1}, f_{2} such that f_{1} is continuous on X and f_{2} is continuous on X_{1} holds $f_{1}+f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1}-f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1} \diamond f_{2}$ is continuous on $X \cap X_{1}$.
(21) For all r, X, f such that f is continuous on X holds $r \diamond f$ is continuous on X.
(22) If f is continuous on X, then $|f|$ is continuous on X and $-f$ is continuous on X.
(23) If f is continuous on X and $f^{-1}\{0\}=\emptyset$, then $\frac{1}{f}$ is continuous on X.
(24) If f is continuous on X and $(f \upharpoonright X)^{-1}\{0\}=\emptyset$, then $\frac{1}{f}$ is continuous on X.
(25) If f_{1} is continuous on X and $f_{1}^{-1}\{0\}=\emptyset$ and f_{2} is continuous on X, then $\frac{f_{2}}{f_{1}}$ is continuous on X.
(26) If f_{1} is continuous on X and f_{2} is continuous on $f_{1}{ }^{\circ} X$, then $f_{2} \cdot f_{1}$ is continuous on X.
(27) If f_{1} is continuous on X and f_{2} is continuous on X_{1}, then $f_{2} \cdot f_{1}$ is continuous on $X \cap f_{1}^{-1} X_{1}$.
(28) If f is total and for all x_{1}, x_{2} holds $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$ and there exists x_{0} such that f is continuous in x_{0}, then f is continuous on \mathbb{R}.
(29) For every f such that $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$ holds $\operatorname{rng} f$ is compact.
(30) If $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y, then $f^{\circ} Y$ is compact.
(31) For every f such that $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$ there exist x_{1}, x_{2} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $f\left(x_{1}\right)=\sup (\operatorname{rng} f)$ and $f\left(x_{2}\right)=\inf (\operatorname{rng} f)$.
(32) For all f, Y such that $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y there exist x_{1}, x_{2} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f\left(x_{1}\right)=\sup \left(f^{\circ} Y\right)$ and $f\left(x_{2}\right)=\inf \left(f^{\circ} Y\right)$.
Let us consider f, X. We say that f is Lipschitzian on X if and only if:
$X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq r \cdot\left|x_{1}-x_{2}\right|$.

One can prove the following propositions:
(33) For every f holds f is Lipschitzian on X if and only if $X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq r \cdot\left|x_{1}-x_{2}\right|$.
(34) If f is Lipschitzian on X and $X_{1} \subseteq X$, then f is Lipschitzian on X_{1}.
(35) If f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}, then $f_{1}+f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(36) If f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}, then $f_{1}-f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(37) If f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1} and f_{1} is bounded on Z and f_{2} is bounded on Z_{1}, then $f_{1} \diamond f_{2}$ is Lipschitzian on $((X \cap Z) \cap$ $\left.X_{1}\right) \cap Z_{1}$.
(38) If f is Lipschitzian on X, then $p \diamond f$ is Lipschitzian on X.
(39) If f is Lipschitzian on X, then $-f$ is Lipschitzian on X and $|f|$ is Lipschitzian on X.
(40) If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is Lipschitzian on X.
(41) id_{Y} is Lipschitzian on Y.
(42) If f is Lipschitzian on X, then f is continuous on X.
(43) For every f such that there exists r such that $\operatorname{rng} f=\{r\}$ holds f is continuous on $\operatorname{dom} f$.
(44) If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is continuous on X.
(45) For every f such that for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=$ x_{0} holds f is continuous on $\operatorname{dom} f$.
(46) If $f=\operatorname{id}_{\operatorname{dom} f}$, then f is continuous on $\operatorname{dom} f$.
(47) If $Y \subseteq \operatorname{dom} f$ and $f \upharpoonright Y=\operatorname{id}_{Y}$, then f is continuous on Y.
(48) If $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f\left(x_{0}\right)=r \cdot x_{0}+p$, then f is continuous on X.
(49) If for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=x_{0}{ }^{2}$, then f is continuous on $\operatorname{dom} f$.
(50) If $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f\left(x_{0}\right)=x_{0}{ }^{\mathbf{2}}$, then f is continuous on X.
(51) If for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=\left|x_{0}\right|$, then f is continuous on $\operatorname{dom} f$.
(52) If $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f\left(x_{0}\right)=\left|x_{0}\right|$, then f is continuous on X.
(53) If $X \subseteq \operatorname{dom} f$ and f is monotone on X and there exist p, g such that $p \leq g$ and $f^{\circ} X=[p, g]$, then f is continuous on X.
(54) If $p \leq g$ and $[p, g] \subseteq \operatorname{dom} f$ but f is increasing on $[p, g]$ or f is decreasing on $[p, g]$, then $(f \upharpoonright[p, g])^{-1}$ is continuous on $f^{\circ}[p, g]$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received June 18, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8.

