A Classical First Order Language

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The aim is to construct a language for the classical predicate calculus. The language is defined as a subset of the language constructed in [8]. Well-formed formulas of this language are defined and some usual connectives and quantifiers of $[8,1]$ are accordingly. We prove inductive and definitional schemes for formulas of our language. Substitution for individual variables in formulas of the introduced language is defined. This definition is borrowed from [7]. For such purpose some auxiliary notation and propositions are introduced.

MML Identifier: CQC_LANG.

The articles [10], [3], [4], [5], [9], [2], [8], [1], and [6] provide the notation and terminology for this paper. In the sequel i, j, k will denote natural numbers. One can prove the following proposition
(1) For every non-empty set D and for every finite sequence l of elements of D such that $k \in \operatorname{Seg}(\operatorname{len} l)$ holds $l(k) \in D$.
Let x, y, a, b be arbitrary. The functor $(x=y \rightarrow a, b)$ is defined as follows: $(x=y \rightarrow a, b)=a$ if $x=y,(x=y \rightarrow a, b)=b$, otherwise.
One can prove the following propositions:
(2) For arbitrary x, y, a, b such that $x=y$ holds $(x=y \rightarrow a, b)=a$.
(3) For arbitrary x, y, a, b such that $x \neq y$ holds $(x=y \rightarrow a, b)=b$.

Let x, y be arbitrary. The functor $x \longmapsto y$ yields a function and is defined as follows:
$x \longmapsto y=\{x\} \longmapsto y$.
One can prove the following three propositions:
(4) For arbitrary x, y holds $x \longmapsto y=\{x\} \longmapsto y$.
(5) For arbitrary x, y holds $\operatorname{dom}(x \longmapsto y)=\{x\}$ and $\operatorname{rng}(x \longmapsto y)=\{y\}$.
(6) For arbitrary x, y holds $(x \longmapsto y)(x)=y$.

[^0]For simplicity we follow the rules: x, y are bound variables, a is a free variable, p, q are elements of WFF, $l, l l$ are finite sequences of elements of Var, and P is a predicate symbol. Let F be a function from WFF into WFF, and let us consider p. Then $F(p)$ is an element of WFF.

One can prove the following proposition
(7) For an arbitrary x holds $x \in \operatorname{Var}$ if and only if $x \in$ FixedVar or $x \in$ FreeVar or $x \in$ BoundVar.
A substitution is a partial function from FreeVar to Var.
In the sequel f will be a substitution. Let us consider l, f. The functor $l[f]$ yielding a finite sequence of elements of Var is defined as follows:
$\operatorname{len}(l[f])=\operatorname{len} l$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} l$ holds if $l(k) \in \operatorname{dom} f$, then $(l[f])(k)=f(l(k))$ but if $l(k) \notin \operatorname{dom} f$, then $(l[f])(k)=l(k)$.

The following proposition is true
$(9)^{2} \quad l l=l[f]$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} l l=\operatorname{len} l$,
(ii) for every k such that $1 \leq k$ and $k \leq \operatorname{len} l$ holds if $l(k) \in \operatorname{dom} f$, then $l l(k)=f(l(k))$ but if $l(k) \notin \operatorname{dom} f$, then $l l(k)=l(k)$.
Let us consider k, and let l be a list of variables of the length k, and let us consider f. Then $l[f]$ is a list of variables of the length k.

One can prove the following proposition

$$
\begin{equation*}
a \longmapsto x \text { is a substitution. } \tag{10}
\end{equation*}
$$

Let us consider a, x. Then $a \longmapsto r x$ is a substitution.
We now state the proposition
(11) If $f=a \longmapsto x$ and $l l=l[f]$ and $1 \leq k$ and $k \leq \operatorname{len} l$, then if $l(k)=a$, then $l l(k)=x$ but if $l(k) \neq a$, then $l l(k)=l(k)$.
Let A be a non-empty subset of WFF. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of A are a formula.

The non-empty subset $\mathrm{WFF}_{\mathrm{CQC}}$ of WFF is defined as follows:
$\mathrm{WFF}_{\mathrm{CQC}}=\{s$: Fixed $s=\emptyset \wedge$ Free $s=\emptyset\}$.
The following propositions are true:
(12) $\mathrm{WFF}_{\mathrm{CQC}}=\{s:$ Fixed $s=\emptyset \wedge$ Free $s=\emptyset\}$.
(13) p is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if Fixed $p=\emptyset$ and Free $p=\emptyset$.

Let us consider k. A list of variables of the length k is said to be a variables list of k if:
$\{\operatorname{it}(i): 1 \leq i \wedge i \leq$ len it $\} \subseteq$ BoundVar.
One can prove the following propositions:
(14) For every list of variables l of the length k holds l is a variables list of k if and only if $\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l\} \subseteq$ BoundVar.

[^1](15)

Let l be a list of variables of the length k. Then l is a variables list of k if and only if $\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FreeVar $\}=\emptyset$ and $\{l(j): 1 \leq j \wedge j \leq \operatorname{len} l \wedge l(j) \in$ FixedVar $\}=\emptyset$.
In the sequel r, s denote elements of $\mathrm{WFF}_{\mathrm{CQC}}$. Next we state two propositions:
(16) VERUM is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
(17) Let P be a k-ary predicate symbol. Let l be a list of variables of the length k. Then $P[l]$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if $\{l(i): 1 \leq$ $i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FreeVar $\}=\emptyset$ and $\{l(j): 1 \leq j \wedge j \leq \operatorname{len} l \wedge l(j) \in$ FixedVar $\}=\emptyset$.
Let us consider k, and let P be a k-ary predicate symbol, and let l be a variables list of k. Then $P[l]$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

We now state two propositions:
(18) $\neg p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if p is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
(19) $p \wedge q$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if p is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ and q is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
Let us note that it makes sense to consider the following constant. Then VERUM is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let us consider r. Then $\neg r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let us consider s. Then $r \wedge s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

One can prove the following three propositions:
(20) $r \Rightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
(21) $r \vee s$ is an element of $W_{F F}^{C Q C}$.
(22) $r \Leftrightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider r, s. Then $r \Rightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $r \vee s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $r \Leftrightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

We now state the proposition
(23) $\forall_{x} p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if p is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider x, r. Then $\forall_{x} r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
We now state the proposition
(24) $\exists_{x} r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider x, r. Then $\exists_{x} r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
Let D be a non-empty set, and let F be a function from $\mathrm{WFF}_{\mathrm{CQC}}$ into D, and let us consider r. Then $F(r)$ is an element of D.

In this article we present several logical schemes. The scheme CQC_Ind concerns a unary predicate \mathcal{P}, and states that:
for every r holds $\mathcal{P}[r]$
provided the parameter satisfies the following condition:

- for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P holds $\mathcal{P}[$ VERUM $]$ and $\mathcal{P}[P[l]]$ but if $\mathcal{P}[r]$, then $\mathcal{P}[\neg r]$ but if $\mathcal{P}[r]$ and $\mathcal{P}[s]$, then $\mathcal{P}[r \wedge s]$ but if $\mathcal{P}[r]$, then $\mathcal{P}\left[\forall_{x} r\right]$.

The scheme CQC_Func_Ex concerns a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a ternary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:
there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$ for all values of the parameters.

The scheme $C Q C_{-}$Func_Uniq concerns a non-empty set \mathcal{A}, a function \mathcal{B} from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A}, a function \mathcal{C} from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A}, an element \mathcal{D} of \mathcal{A}, a ternary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters satisfy the following conditions:

- Given r, s, x, k. Let l be a variables list of k. Let P be a k-ary predicate symbol. Let r^{\prime}, s^{\prime} be elements of \mathcal{A}. Suppose $r^{\prime}=\mathcal{B}(r)$ and $s^{\prime}=\mathcal{B}(s)$. Then $\mathcal{B}($ VERUM $)=\mathcal{D}$ and $\mathcal{B}(P[l])=\mathcal{F}(k, P, l)$ and $\mathcal{B}(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $\mathcal{B}(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $\mathcal{B}\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$,
- Given r, s, x, k. Let l be a variables list of k. Let P be a k-ary predicate symbol. Let r^{\prime}, s^{\prime} be elements of \mathcal{A}. Suppose $r^{\prime}=\mathcal{C}(r)$ and $s^{\prime}=\mathcal{C}(s)$. Then $\mathcal{C}($ VERUM $)=\mathcal{D}$ and $\mathcal{C}(P[l])=\mathcal{F}(k, P, l)$ and $\mathcal{C}(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $\mathcal{C}(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $\mathcal{C}\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$.
The scheme CQC_Def_correctn concerns a non-empty set \mathcal{A}, an element \mathcal{B} of $\mathrm{WFF}_{\mathrm{CQC}}$, an element \mathcal{C} of \mathcal{A}, a ternary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:
(i) there exists an element d of \mathcal{A} and there exists a function F from WFF ${ }_{\mathrm{CQC}}$ into \mathcal{A} such that $d=F(\mathcal{B})$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F(\mathrm{VERUM})=\mathcal{C}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$,
(ii) for all elements d_{1}, d_{2} of \mathcal{A} such that there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that $d_{1}=F(\mathcal{B})$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{C}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=$ $\mathcal{I}\left(x, r^{\prime}\right)$ and there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that $d_{2}=F(\mathcal{B})$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F(\mathrm{VERUM})=\mathcal{C}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$ holds $d_{1}=d_{2}$ for all values of the parameters.

The scheme CQC_Def_VERUM concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a ternary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{F}($ VERUM $)=\mathcal{B}$
provided the parameters satisfy the following condition:

- Let p be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let d be an element of \mathcal{A}. Then $d=\mathcal{F}(p)$ if and only if there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that $d=F(p)$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme CQC_Def_atomic concerns a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a ternary functor \mathcal{G} yielding an element of \mathcal{A}, a natural number \mathcal{C}, a \mathcal{C}-ary predicate symbol \mathcal{D}, a variables list \mathcal{E} of \mathcal{C}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

$$
\mathcal{F}(\mathcal{D}[\mathcal{E}])=\mathcal{G}(\mathcal{C}, \mathcal{D}, \mathcal{E})
$$

provided the following requirement is met:

- Let p be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let d be an element of \mathcal{A}. Then $d=\mathcal{F}(p)$ if and only if there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that $d=F(p)$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme CQC_Def_negative deals with a non-empty set \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a ternary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, an element \mathcal{C} of $\mathrm{WFF}_{\mathrm{CQC}}$, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{F}(\neg \mathcal{C})=\mathcal{H}(\mathcal{F}(\mathcal{C}))$
provided the parameters satisfy the following condition:
- Let p be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let d be an element of \mathcal{A}. Then $d=\mathcal{F}(p)$ if and only if there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that $d=F(p)$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F(\mathrm{VERUM})=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme QC_Def_conjuncti concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a ternary functor \mathcal{G} yielding an
element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, an element \mathcal{C} of $\mathrm{WFF}_{\mathrm{CQC}}$, an element \mathcal{D} of $\mathrm{WFF}_{\mathrm{CQC}}$, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{F}(\mathcal{C} \wedge \mathcal{D})=\mathcal{I}(\mathcal{F}(\mathcal{C}), \mathcal{F}(\mathcal{D}))$
provided the following condition is satisfied:
- Let p be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let d be an element of \mathcal{A}. Then $d=\mathcal{F}(p)$ if and only if there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that $d=F(p)$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme QC_Def_universal concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a ternary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, a binary functor \mathcal{J} yielding an element of \mathcal{A}, a bound variable \mathcal{C}, and an element \mathcal{D} of $\mathrm{WFF}_{\mathrm{CQC}}$ and states that:
$\mathcal{F}\left(\forall_{\mathcal{C}} \mathcal{D}\right)=\mathcal{J}(\mathcal{C}, \mathcal{F}(\mathcal{D}))$
provided the following condition is satisfied:
- Let p be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let d be an element of \mathcal{A}. Then $d=\mathcal{F}(p)$ if and only if there exists a function F from $\mathrm{WFF}_{\mathrm{CQC}}$ into \mathcal{A} such that $d=F(p)$ and for all r, s, x, k and for every variables list l of k and for every k-ary predicate symbol P and for all elements r^{\prime}, s^{\prime} of \mathcal{A} such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
We now state the proposition
(25) If $\operatorname{Arity}(P)=\operatorname{len} l$, then $P[l]=\langle P\rangle \sim l$.

Let us consider x, y, p, q. Then $(x=y \rightarrow p, q)$ is an element of WFF.
Let us consider p, x. The functor $p(x)$ yields an element of WFF and is defined as follows:
there exists a function F from WFF into WFF such that $p(x)=F(p)$ and for every q holds F (VERUM) $=$ VERUM but if q is atomic, then $F(q)=$ $\operatorname{PredSym}(q)\left[\operatorname{Args}(q)\left[\mathbf{a}_{0} \bullet x\right]\right]$ but if q is negative, then $F(q)=\neg(F(\operatorname{Arg}(q)))$ but if q is conjunctive, then $F(q)=(F(\operatorname{Left} \operatorname{Arg}(q))) \wedge(F(\operatorname{Right} \operatorname{Arg}(q)))$ but if q is universal, then $F(q)=\left(\operatorname{Bound}(q)=x \rightarrow q, \forall_{\operatorname{Bound}(q)}(F(\operatorname{Scope}(q)))\right)$.

We now state a number of propositions:
$(27)^{3}$ Let r be an element of WFF. Then $r=p(x)$ if and only if there exists a function F from WFF into WFF such that $r=F(p)$ and for every q holds F (VERUM) $=$ VERUM but if q is atomic, then $F(q)=$ $\operatorname{PredSym}(q)\left[\operatorname{Args}(q)\left[\mathbf{a}_{0} \longmapsto x\right]\right]$ but if q is negative, then $F(q)=\neg(F(\operatorname{Arg}(q)))$ but if q is conjunctive, then $F(q)=(F(\operatorname{Left} \operatorname{Arg}(q))) \wedge(F(\operatorname{Right} \operatorname{Arg}(q)))$ but if q is universal, then

[^2]$$
F(q)=\left(\operatorname{Bound}(q)=x \rightarrow q, \forall_{\operatorname{Bound}(q)}(F(\operatorname{Scope}(q)))\right) .
$$
(28) $\operatorname{VERUM}(x)=\operatorname{VERUM}$.
(29) If p is atomic, then $p(x)=\operatorname{PredSym}(p)\left[\operatorname{Args}(p)\left[\mathbf{a}_{0} \longmapsto x\right]\right]$.
(30) For every k-ary predicate symbol P and for every list of variables l of the length k holds $(P[l])(x)=P\left[l\left[\mathbf{a}_{0} \longmapsto x\right]\right]$.
(31) If p is negative, then $p(x)=\neg(\operatorname{Arg}(p)(x))$.
(32) $\quad \neg p(x)=\neg(p(x))$.
(33) If p is conjunctive, then $p(x)=(\operatorname{Left} \operatorname{Arg}(p)(x)) \wedge(\operatorname{Right} \operatorname{Arg}(p)(x))$.
(34) $p \wedge q(x)=(p(x)) \wedge(q(x))$.
(35) If p is universal and $\operatorname{Bound}(p)=x$, then $p(x)=p$.
(36) If p is universal and $\operatorname{Bound}(p) \neq x$, then $p(x)=\forall_{\operatorname{Bound}(p)}(\operatorname{Scope}(p)(x))$.
(37) $\forall_{x} p(x)=\forall_{x} p$.
(38) If $x \neq y$, then $\forall_{x} p(y)=\forall_{x}(p(y))$.
(39) If Free $p=\emptyset$, then $p(x)=p$.
(40) $r(x)=r$.
(41) $\operatorname{Fixed}(p(x))=\operatorname{Fixed} p$.

References

[1] Grzegorz Bancerek. Connectives and subformulae of the first order language. Formalized Mathematics, 1(3):451-458, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[6] Czesław Byliński and Grzegorz Bancerek. Variables in formulae of the first order language. Formalized Mathematics, 1(3):459-469, 1990.
[7] Witold A. Pogorzelski and Tadeusz Prucnal. The substitution rule for predicate letters in the first-order predicate calculus. Reports on Mathematical Logic, (5), 1975.
[8] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received May 11, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

[^1]: ${ }^{2}$ The proposition (8) became obvious.

[^2]: ${ }^{3}$ The proposition (26) became obvious.

