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Summary. The aim is to construct a language for the classical
predicate calculus. The language is defined as a subset of the language
constructed in [8]. Well-formed formulas of this language are defined and
some usual connectives and quantifiers of [8,1] are accordingly. We prove
inductive and definitional schemes for formulas of our language. Substi-
tution for individual variables in formulas of the introduced language is
defined. This definition is borrowed from [7]. For such purpose some
auxiliary notation and propositions are introduced.

MML Identifier: CQC LANG.

The articles [10], [3], [4], [5], [9], [2], [8], [1], and [6] provide the notation and
terminology for this paper. In the sequel i, j, k will denote natural numbers.
One can prove the following proposition

(1) For every non-empty set D and for every finite sequence l of elements
of D such that k ∈ Seg(len l) holds l(k) ∈ D.

Let x, y, a, b be arbitrary. The functor (x = y → a, b) is defined as follows:
(x = y → a, b) = a if x = y, (x = y → a, b) = b, otherwise.

One can prove the following propositions:

(2) For arbitrary x, y, a, b such that x = y holds (x = y → a, b) = a.

(3) For arbitrary x, y, a, b such that x 6= y holds (x = y → a, b) = b.

Let x, y be arbitrary. The functor x7−→. y yields a function and is defined as
follows:

x7−→. y = {x} 7−→ y.

One can prove the following three propositions:

(4) For arbitrary x, y holds x7−→. y = {x} 7−→ y.

(5) For arbitrary x, y holds dom(x7−→. y) = {x} and rng(x7−→. y) = {y}.

(6) For arbitrary x, y holds (x7−→. y)(x) = y.
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For simplicity we follow the rules: x, y are bound variables, a is a free
variable, p, q are elements of WFF, l, ll are finite sequences of elements of Var,
and P is a predicate symbol. Let F be a function from WFF into WFF, and
let us consider p. Then F (p) is an element of WFF.

One can prove the following proposition

(7) For an arbitrary x holds x ∈ Var if and only if x ∈ FixedVar or x ∈
FreeVar or x ∈ BoundVar.

A substitution is a partial function from FreeVar to Var.

In the sequel f will be a substitution. Let us consider l, f . The functor l[f ]
yielding a finite sequence of elements of Var is defined as follows:

len(l[f ]) = len l and for every k such that 1 ≤ k and k ≤ len l holds if
l(k) ∈ dom f , then (l[f ])(k) = f(l(k)) but if l(k) /∈ dom f , then (l[f ])(k) = l(k).

The following proposition is true

(9)2 ll = l[f ] if and only if the following conditions are satisfied:
(i) len ll = len l,

(ii) for every k such that 1 ≤ k and k ≤ len l holds if l(k) ∈ dom f , then
ll(k) = f(l(k)) but if l(k) /∈ dom f , then ll(k) = l(k).

Let us consider k, and let l be a list of variables of the length k, and let us
consider f . Then l[f ] is a list of variables of the length k.

One can prove the following proposition

(10) a7−→. x is a substitution.

Let us consider a, x. Then a7−→. x is a substitution.

We now state the proposition

(11) If f = a7−→. x and ll = l[f ] and 1 ≤ k and k ≤ len l, then if l(k) = a,
then ll(k) = x but if l(k) 6= a, then ll(k) = l(k).

Let A be a non-empty subset of WFF. We see that it makes sense to consider
the following mode for restricted scopes of arguments. Then all the objests of
the mode element of A are a formula.

The non-empty subset WFFCQC of WFF is defined as follows:
WFFCQC = {s : Fixed s = ∅ ∧ Free s = ∅}.

The following propositions are true:

(12) WFFCQC = {s : Fixed s = ∅ ∧ Free s = ∅}.

(13) p is an element of WFFCQC if and only if Fixed p = ∅ and Free p = ∅.

Let us consider k. A list of variables of the length k is said to be a variables
list of k if:

{it(i) : 1 ≤ i ∧ i ≤ len it} ⊆ BoundVar.

One can prove the following propositions:

(14) For every list of variables l of the length k holds l is a variables list of
k if and only if {l(i) : 1 ≤ i ∧ i ≤ len l} ⊆ BoundVar.

2The proposition (8) became obvious.
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(15) Let l be a list of variables of the length k. Then l is a variables list
of k if and only if {l(i) : 1 ≤ i ∧ i ≤ len l ∧ l(i) ∈ FreeVar} = ∅ and
{l(j) : 1 ≤ j ∧ j ≤ len l ∧ l(j) ∈ FixedVar} = ∅.

In the sequel r, s denote elements of WFFCQC. Next we state two proposi-
tions:

(16) VERUM is an element of WFFCQC.

(17) Let P be a k-ary predicate symbol. Let l be a list of variables of the
length k. Then P [l] is an element of WFFCQC if and only if {l(i) : 1 ≤
i ∧ i ≤ len l ∧ l(i) ∈ FreeVar} = ∅ and {l(j) : 1 ≤ j ∧ j ≤ len l ∧ l(j) ∈
FixedVar} = ∅.

Let us consider k, and let P be a k-ary predicate symbol, and let l be a
variables list of k. Then P [l] is an element of WFFCQC.

We now state two propositions:

(18) ¬p is an element of WFFCQC if and only if p is an element of WFFCQC.

(19) p∧q is an element of WFFCQC if and only if p is an element of WFFCQC

and q is an element of WFFCQC.

Let us note that it makes sense to consider the following constant. Then
VERUM is an element of WFFCQC. Let us consider r. Then ¬r is an element
of WFFCQC. Let us consider s. Then r ∧ s is an element of WFFCQC.

One can prove the following three propositions:

(20) r ⇒ s is an element of WFFCQC.

(21) r ∨ s is an element of WFFCQC.

(22) r ⇔ s is an element of WFFCQC.

Let us consider r, s. Then r ⇒ s is an element of WFFCQC. Then r ∨ s is
an element of WFFCQC. Then r ⇔ s is an element of WFFCQC.

We now state the proposition

(23) ∀xp is an element of WFFCQC if and only if p is an element of WFFCQC.

Let us consider x, r. Then ∀xr is an element of WFFCQC.

We now state the proposition

(24) ∃xr is an element of WFFCQC.

Let us consider x, r. Then ∃xr is an element of WFFCQC.

Let D be a non-empty set, and let F be a function from WFFCQC into D,
and let us consider r. Then F (r) is an element of D.

In this article we present several logical schemes. The scheme CQC Ind

concerns a unary predicate P, and states that:

for every r holds P[r]

provided the parameter satisfies the following condition:

• for all r, s, x, k and for every variables list l of k and for every k-ary
predicate symbol P holds P[VERUM] and P[P [l]] but if P[r], then
P[¬r] but if P[r] and P[s], then P[r ∧ s] but if P[r], then P[∀xr].
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The scheme CQC Func Ex concerns a non-empty set A, an element B of A,
a ternary functor F yielding an element of A, a unary functor G yielding an
element of A, a binary functor H yielding an element of A, and a binary functor
I yielding an element of A and states that:

there exists a function F from WFFCQC into A such that for all r, s, x, k and
for every variables list l of k and for every k-ary predicate symbol P and for all
elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds F (VERUM) = B
and F (P [l]) = F(k, P, l) and F (¬r) = G(r′) and F (r ∧ s) = H(r′, s′) and
F (∀xr) = I(x, r′)
for all values of the parameters.

The scheme CQC Func Uniq concerns a non-empty set A, a function B from
WFFCQC into A, a function C from WFFCQC into A, an element D of A, a
ternary functor F yielding an element of A, a unary functor G yielding an
element of A, a binary functor H yielding an element of A, and a binary functor
I yielding an element of A and states that:

B = C
provided the parameters satisfy the following conditions:

• Given r, s, x, k. Let l be a variables list of k. Let P be a k-ary
predicate symbol. Let r′, s′ be elements of A. Suppose r′ = B(r)
and s′ = B(s). Then B(VERUM) = D and B(P [l]) = F(k, P, l) and
B(¬r) = G(r′) and B(r ∧ s) = H(r′, s′) and B(∀xr) = I(x, r′),

• Given r, s, x, k. Let l be a variables list of k. Let P be a k-ary
predicate symbol. Let r′, s′ be elements of A. Suppose r′ = C(r)
and s′ = C(s). Then C(VERUM) = D and C(P [l]) = F(k, P, l) and
C(¬r) = G(r′) and C(r ∧ s) = H(r′, s′) and C(∀xr) = I(x, r′).

The scheme CQC Def correctn concerns a non-empty set A, an element B
of WFFCQC, an element C of A, a ternary functor F yielding an element of
A, a unary functor G yielding an element of A, a binary functor H yielding an
element of A, and a binary functor I yielding an element of A and states that:
(i) there exists an element d of A and there exists a function F from WFFCQC

into A such that d = F (B) and for all r, s, x, k and for every variables list l of
k and for every k-ary predicate symbol P and for all elements r ′, s′ of A such
that r′ = F (r) and s′ = F (s) holds F (VERUM) = C and F (P [l]) = F(k, P, l)
and F (¬r) = G(r′) and F (r ∧ s) = H(r′, s′) and F (∀xr) = I(x, r′),
(ii) for all elements d1, d2 of A such that there exists a function F from
WFFCQC into A such that d1 = F (B) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for all elements
r′, s′ of A such that r′ = F (r) and s′ = F (s) holds F (VERUM) = C and
F (P [l]) = F(k, P, l) and F (¬r) = G(r′) and F (r ∧ s) = H(r′, s′) and F (∀xr) =
I(x, r′) and there exists a function F from WFFCQC into A such that d2 = F (B)
and for all r, s, x, k and for every variables list l of k and for every k-ary
predicate symbol P and for all elements r ′, s′ of A such that r′ = F (r) and
s′ = F (s) holds F (VERUM) = C and F (P [l]) = F(k, P, l) and F (¬r) = G(r ′)
and F (r ∧ s) = H(r′, s′) and F (∀xr) = I(x, r′) holds d1 = d2

for all values of the parameters.
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The scheme CQC Def VERUM concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
element of A, a unary functor H yielding an element of A, a binary functor I
yielding an element of A, and a binary functor J yielding an element of A and
states that:

F(VERUM) = B
provided the parameters satisfy the following condition:

• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme CQC Def atomic concerns a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a ternary functor G yielding an
element of A, a natural number C, a C-ary predicate symbol D, a variables list
E of C, a unary functor H yielding an element of A, a binary functor I yielding
an element of A, and a binary functor J yielding an element of A and states
that:

F(D[E ]) = G(C,D, E)
provided the following requirement is met:

• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme CQC Def negative deals with a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding
an element of A, a unary functor H yielding an element of A, an element C of
WFFCQC, a binary functor I yielding an element of A, and a binary functor J
yielding an element of A and states that:

F(¬C) = H(F(C))
provided the parameters satisfy the following condition:

• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme QC Def conjuncti concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
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element of A, a unary functor H yielding an element of A, a binary functor I
yielding an element of A, an element C of WFFCQC, an element D of WFFCQC,
and a binary functor J yielding an element of A and states that:

F(C ∧ D) = I(F(C),F(D))
provided the following condition is satisfied:

• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme QC Def universal concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
element of A, a unary functor H yielding an element of A, a binary functor I
yielding an element of A, a binary functor J yielding an element of A, a bound
variable C, and an element D of WFFCQC and states that:

F(∀CD) = J (C,F(D))
provided the following condition is satisfied:

• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

We now state the proposition

(25) If Arity(P ) = len l, then P [l] = 〈P 〉 � l.

Let us consider x, y, p, q. Then (x = y → p, q) is an element of WFF.

Let us consider p, x. The functor p(x) yields an element of WFF and is
defined as follows:

there exists a function F from WFF into WFF such that p(x) = F (p) and
for every q holds F (VERUM) = VERUM but if q is atomic, then F (q) =
PredSym(q)[Args(q)[a0 7−→

. x]] but if q is negative, then F (q) = ¬(F (Arg(q)))
but if q is conjunctive, then F (q) = (F (LeftArg(q))) ∧ (F (RightArg(q))) but if
q is universal, then F (q) = (Bound(q) = x → q,∀Bound(q)(F (Scope(q)))).

We now state a number of propositions:

(27)3 Let r be an element of WFF. Then r = p(x) if and only if there
exists a function F from WFF into WFF such that r = F (p) and for
every q holds F (VERUM) = VERUM but if q is atomic, then F (q) =
PredSym(q)[Args(q)[a0 7−→

. x]] but if q is negative, then F (q) = ¬(F (Arg(q)))
but if q is conjunctive, then F (q) = (F (LeftArg(q))) ∧ (F (RightArg(q)))
but if q is universal, then

3The proposition (26) became obvious.
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F (q) = (Bound(q) = x → q,∀Bound(q)(F (Scope(q)))).

(28) VERUM(x) = VERUM.

(29) If p is atomic, then p(x) = PredSym(p)[Args(p)[a0 7−→
. x]].

(30) For every k-ary predicate symbol P and for every list of variables l of
the length k holds (P [l])(x) = P [l[a0 7−→

. x]].

(31) If p is negative, then p(x) = ¬(Arg(p)(x)).

(32) ¬p(x) = ¬(p(x)).

(33) If p is conjunctive, then p(x) = (LeftArg(p)(x)) ∧ (RightArg(p)(x)).

(34) p ∧ q(x) = (p(x)) ∧ (q(x)).

(35) If p is universal and Bound(p) = x, then p(x) = p.

(36) If p is universal and Bound(p) 6= x, then p(x) = ∀Bound(p)(Scope(p)(x)).

(37) ∀xp(x) = ∀xp.

(38) If x 6= y, then ∀xp(y) = ∀x(p(y)).

(39) If Free p = ∅, then p(x) = p.

(40) r(x) = r.

(41) Fixed(p(x)) = Fixed p.
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