The Collinearity Structure

Wojciech Skaba ${ }^{1}$
Nicolaus Copernicus University
Toruń

Abstract

Summary. The text includes basic axioms and theorems concerning the collinearity structure based on Wanda Szmielew [1], pp. 18-20. Collinearity is defined as a relation on Cartesian product $: S, S, S$: of set S. The basic text is preceeded with a few auxiliary theorems (e.g: ternary relation). Then come the two basic axioms of the collinearity structure: A1.1.1 and A1.1.2 and a few theorems. Another axiom: Aks dim, which states that there exist at least 3 non-collinear points, excludes the trivial structures (i.e. pairs $\langle S,[: S, S, S:\rangle\rangle$). Following it the notion of a line is included and several additional theorems are appended.

MML Identifier: COLLSP.

The articles [3], and [2] provide the notation and terminology for this paper. In the sequel R, X will denote sets. Let us consider X. A set is said to be a ternary relation on X if:
it $\subseteq: X, X, X:]$.
Next we state two propositions:
(1) $\quad R$ is a ternary relation on X if and only if $R \subseteq\{X, X, X:]$.
(2) $X=\emptyset$ or there exists arbitrary a such that $\{a\}=X$ or there exist arbitrary a, b such that $a \neq b$ and $a \in X$ and $b \in X$.
We consider collinearity structures which are systems
〈points, a collinearity relation),
where the points constitute a non-empty set and the collinearity relation is a ternary relation on the points. In the sequel $C S$ is a collinearity structure. Let us consider $C S$. A point of $C S$ is an element of the points of $C S$.

In the sequel a, b, c denote points of $C S$. Let us consider $C S, a, b, c$. We say that a, b and c are collinear if and only if:
$\langle a, b, c\rangle \in$ the collinearity relation of $C S$.
The following proposition is true

[^0]$(5)^{2} \quad a, b$ and c are collinear if and only if $\langle a, b, c\rangle \in$ the collinearity relation of $C S$.

A collinearity structure is said to be a collinearity space if:
Let a, b, c, p, q, r be points of it. Then
(i) if $a=b$ or $a=c$ or $b=c$, then $\langle a, b, c\rangle \in$ the collinearity relation of it,
(ii) if $a \neq b$ and $\langle a, b, p\rangle \in$ the collinearity relation of it and $\langle a, b, q\rangle \in$ the collinearity relation of it and $\langle a, b, r\rangle \in$ the collinearity relation of it, then $\langle p, q, r\rangle \in$ the collinearity relation of it.

Next we state the proposition
(6) $C S$ is a collinearity space if and only if for all points a, b, c, p, q, r of $C S$ holds if $a=b$ or $a=c$ or $b=c$, then $\langle a, b, c\rangle \in$ the collinearity relation of $C S$ but if $a \neq b$ and $\langle a, b, p\rangle \in$ the collinearity relation of $C S$ and $\langle a, b, q\rangle \in$ the collinearity relation of $C S$ and $\langle a, b, r\rangle \in$ the collinearity relation of $C S$, then $\langle p, q, r\rangle \in$ the collinearity relation of $C S$.
We adopt the following rules: $C L S P$ is a collinearity space and a, b, c, d, p, q, r are points of $C L S P$. We now state several propositions:
(7) If $a=b$ or $a=c$ or $b=c$, then a, b and c are collinear.
(8) If $a \neq b$ and a, b and p are collinear and a, b and q are collinear and a, b and r are collinear, then p, q and r are collinear.
(9) If a, b and c are collinear, then b, a and c are collinear and a, c and b are collinear.
(10) a, b and a are collinear.
(11) If $a \neq b$ and a, b and c are collinear and a, b and d are collinear, then a, c and d are collinear.
(12) If a, b and c are collinear, then b, a and c are collinear.
(13) If a, b and c are collinear, then b, c and a are collinear.
(14) If $p \neq q$ and a, b and p are collinear and a, b and q are collinear and p, q and r are collinear, then a, b and r are collinear.
Let us consider $C L S P, a, b$. The functor Line (a, b) yields a set and is defined as follows:

Line $(a, b)=\{p: a, b$ and p are collinear $\}$.
One can prove the following propositions:
$\operatorname{Line}(a, b)=\{p: a, b$ and p are collinear $\}$.
$a \in \operatorname{Line}(a, b)$ and $b \in \operatorname{Line}(a, b)$.
(17) $\quad a, b$ and r are collinear if and only if $r \in \operatorname{Line}(a, b)$.

A collinearity space is said to be a proper collinearity space if:
there exist points a, b, c of it such that a, b and c are not collinear.
The following proposition is true
(18) $C L S P$ is a proper collinearity space if and only if there exist a, b, c such that a, b and c are not collinear.

[^1]We follow a convention: $C L S P$ will be a proper collinearity space and a, b, p, q, r will be points of $C L S P$. We now state the proposition
(19) For all p, q such that $p \neq q$ there exists r such that p, q and r are not collinear.
Let us consider $C L S P$. A set is called a line of $C L S P$ if:
there exist a, b such that $a \neq b$ and it $=\operatorname{Line}(a, b)$.
The following propositions are true:
(20) For every set X holds X is a line of $C L S P$ if and only if there exist a, b such that $a \neq b$ and $X=\operatorname{Line}(a, b)$.
(21) If $a \neq b$, then Line (a, b) is a line of $C L S P$.

In the sequel P, Q are lines of $C L S P$. The following propositions are true:
(22) If $a=b$, then $\operatorname{Line}(a, b)=$ the points of $C L S P$.
(23) For every P there exist a, b such that $a \neq b$ and $a \in P$ and $b \in P$.
(24) If $a \neq b$, then there exists P such that $a \in P$ and $b \in P$.
(25) If $p \in P$ and $q \in P$ and $r \in P$, then p, q and r are collinear.
(26) If $P \subseteq Q$, then $P=Q$.
(27) If $p \neq q$ and $p \in P$ and $q \in P$, then $\operatorname{Line}(p, q) \subseteq P$.
(28) If $p \neq q$ and $p \in P$ and $q \in P$, then $\operatorname{Line}(p, q)=P$.
(29) If $p \neq q$ and $p \in P$ and $q \in P$ and $p \in Q$ and $q \in Q$, then $P=Q$.
(30) $P=Q$ or $P \cap Q=\emptyset$ or there exists p such that $P \cap Q=\{p\}$.
(31) If $a \neq b$, then Line $(a, b) \neq$ the points of $C L S P$.

References

[1] Wanda Szmielew. From Affine to Euclidean Geometry. Volume 27, PWN - D.Reidel Publ. Co., Warszawa - Dordrecht, 1983.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.B5.

[^1]: ${ }^{2}$ The propositions (3)-(4) became obvious.

