
FORMALIZED MATHEMATICS

Vol.1, No.4, September–October 1990
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Summary. The subcategory of a category and product of cate-

gories is defined. The inclusion functor is the injection (inclusion) map E

→֒

which sends each object and each arrow of a Subcategory E of a category
C to itself (in C). The inclusion functor is faithful. Full subcategories of
C, that is, those subcategories E of C such that HomE(a, b) = HomC(b, b)
for any objects a, b of E, are defined. A subcategory E of C is full when
the inclusion functor E

→֒
is full. The proposition that a full subcategory is

determined by giving the set of objects of a category is proved. The prod-
uct of two categories B and C is constructed in the usual way. Moreover,
some simple facts on bifunctors (functors from a product category) are
proved. The final notions in this article are that of projection functors
and product of two functors (complex functors and product functors).

MML Identifier: CAT 2.

The terminology and notation used in this paper have been introduced in the
following articles: [10], [8], [3], [4], [7], [2], [6], [1], [11], [9], and [5]. For simplicity
we follow the rules: X denotes a set, C, D, E denote non-empty sets, c denotes
an element of C, and d denotes an element of D. Let us consider D, X, E, and
let F be a non-empty set of functions from X to E, and let f be a function from
D into F , and let d be an element of D. Then f(d) is an element of F .

In the sequel f denotes a function from [: C, D :] into E. The following propo-
sitions are true:

(1) curry f is a function from C into ED.

(2) curry′ f is a function from D into EC .

Let us consider C, D, E, f . Then curry f is a function from C into ED.
Then curry′ f is a function from D into EC .

The following two propositions are true:

(3) f(〈〈c, d〉〉) = (curry f(c))(d).
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(4) f(〈〈c, d〉〉) = (curry′ f(d))(c).

In the sequel B, C, D, C ′, D′ denote categories. Let us consider B, C, and
let c be an object of C. The functor B 7−→ c yielding a functor from B to C is
defined as follows:

B 7−→ c = (the morphisms of B) 7−→ idc.

One can prove the following propositions:

(5) For every object c of C holds B 7−→ c = (the morphisms of B) 7−→ idc.

(6) For every object c of C and for every morphism f of B holds (B 7−→
c)(f) = idc.

(7) For every object c of C and for every object b of B holds (Obj(B 7−→
c))(b) = c.

Let us consider C, D. The functor Funct(C,D) yields a non-empty set and
is defined by:

for an arbitrary x holds x ∈ Funct(C,D) if and only if x is a functor from C

to D.

Next we state two propositions:

(8) For every non-empty set F holds F = Funct(C,D) if and only if for an
arbitrary x holds x ∈ F if and only if x is a functor from C to D.

(9) For every element T of Funct(C,D) holds T is a functor from C to D.

Let us consider C, D. A non-empty set is called a non-empty set of functors
from C into D if:

for every element x of it holds x is a functor from C to D.

The following proposition is true

(10) For every non-empty set F holds F is a non-empty set of functors from
C into D if and only if for every element x of F holds x is a functor from
C to D.

Let us consider C, D, and let F be a non-empty set of functors from C into D.
We see that it makes sense to consider the following mode for restricted scopes
of arguments. Then all the objests of the mode element of F are a functor from
C to D.

Let A be a non-empty set, and let us consider C, D, and let F be a non-
empty set of functors from C into D, and let T be a function from A into F ,
and let x be an element of A. Then T (x) is an element of F .

Let us consider C, D. Then Funct(C,D) is a non-empty set of functors from
C into D.

Let us consider C. A category is said to be a subcategory of C if:
(i) the objects of it ⊆ the objects of C,
(ii) for all objects a, b of it and for all objects a′, b′ of C such that a = a′ and
b = b′ holds hom(a, b) ⊆ hom(a′, b′),
(iii) the composition of it ≤ the composition of C,
(iv) for every object a of it and for every object a′ of C such that a = a′ holds
ida = ida′ .
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Next we state the proposition

(11) Given C, D. Then D is a subcategory of C if and only if the following
conditions are satisfied:

(i) the objects of D ⊆ the objects of C,
(ii) for all objects a, b of D and for all objects a′, b′ of C such that a = a′

and b = b′ holds hom(a, b) ⊆ hom(a′, b′),
(iii) the composition of D ≤ the composition of C,
(iv) for every object a of D and for every object a′ of C such that a = a′

holds ida = ida′ .

In the sequel E will be a subcategory of C. We now state several propositions:

(12) For every object e of E holds e is an object of C.

(13) The morphisms of E ⊆ the morphisms of C.

(14) For every morphism f of E holds f is a morphism of C.

(15) For every morphism f of E and for every morphism f ′ of C such that
f = f ′ holds dom f = dom f ′ and cod f = cod f ′.

(16) For all objects a, b of E and for all objects a′, b′ of C and for every
morphism f from a to b such that a = a′ and b = b′ and hom(a, b) 6= ∅
holds f is a morphism from a′ to b′.

(17) For all morphisms f , g of E and for all morphisms f ′, g′ of C such that
f = f ′ and g = g′ and dom g = cod f holds g · f = g′ · f ′.

(18) C is a subcategory of C.

(19) idE is a functor from E to C.

Let us consider C, E. The functor E
→֒

yielding a functor from E to C is
defined as follows:

E
→֒

= idE.

The following propositions are true:

(20) E
→֒

= idE .

(21) For every morphism f of E holds E
→֒

(f) = f .

(22) For every object a of E holds (Obj E
→֒

)(a) = a.

(23) For every object a of E holds E
→֒

(a) = a.

(24) E
→֒

is faithful.

(25) E
→֒

is full if and only if for all objects a, b of E and for all objects a′, b′

of C such that a = a′ and b = b′ holds hom(a, b) = hom(a′, b′).

Let C be a category structure, and let us consider D. We say that C is full
subcategory of D if and only if:

C is a subcategory of D and for all objects a, b of C and for all objects a′, b′

of D such that a = a′ and b = b′ holds hom(a, b) = hom(a′, b′).

The following propositions are true:

(26) For every C being a category structure and for every D holds C is full
subcategory of D if and only if C is a subcategory of D and for all objects
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a, b of C and for all objects a′, b′ of D such that a = a′ and b = b′ holds
hom(a, b) = hom(a′, b′).

(27) E is full subcategory of C if and only if E
→֒

is full.

(28) For every non-empty subset O of the objects of C holds
⋃
{hom(a, b) :

a ∈ O ∧ b ∈ O} is a non-empty subset of the morphisms of C.

(29) Let O be a non-empty subset of the objects of C. Let M be a non-
empty set. Suppose M =

⋃
{hom(a, b) : a ∈ O ∧ b ∈ O}. Then (the

dom-map of C) � M is a function from M into O and (the cod-map of
C) � M is a function from M into O and (the composition of C) � [: M,

M :] is a partial function from [: M, M :] to M and (the id-map of C) � O

is a function from O into M .

(30) Let O be a non-empty subset of the objects of C. Let M be a non-empty
set. Let d, c be functions from M into O. Let p be a partial function
from [: M, M :] to M . Let i be a function from O into M . Suppose
M =

⋃
{hom(a, b) : a ∈ O∧ b ∈ O} and d = (the dom-map of C) � M and

c = (the cod-map of C) � M and p = (the composition of C) � [: M, M :]
and i = (the id-map of C) � O. Then 〈O,M, d, c, p, i〉 is full subcategory
of C.

(31) Let O be a non-empty subset of the objects of C. Let M be a non-empty
set. Let d, c be functions from M into O. Let p be a partial function
from [: M, M :] to M . Let i be a function from O into M . Suppose
〈O,M, d, c, p, i〉 is full subcategory of C. Then M =

⋃
{hom(a, b) : a ∈

O ∧ b ∈ O} and d = (the dom-map of C) � M and c = (the cod-map of
C) � M and p = (the composition of C) � [: M, M :] and i = (the id-map
of C) � O.

Let X1, X2, Y1, Y2 be non-empty sets, and let f1 be a function from X1 into
Y1, and let f2 be a function from X2 into Y2. Then [: f1, f2 :] is a function from
[: X1, X2 :] into [: Y1, Y2 :].

Let A, B be non-empty sets, and let f be a partial function from [: A, A :] to
A, and let g be a partial function from [: B, B :] to B. Then |:f, g:| is a partial
function from [: [: A, B :], [: A, B :] :] to [: A, B :].

Let us consider C, D. The functor [: C, D :] yielding a category is defined as
follows:

[: C, D :] = 〈[: the objects of C, the objects of D :], [: the morphisms of C, the
morphisms of D :], [: the dom-map of C, the dom-map of D :], [: the cod-map of
C, the cod-map of D :], |: the composition of C, the composition of D:|, [: the
id-map of C, the id-map of D :]〉.

Next we state three propositions:

(32) [: C, D :] = 〈[: the objects of C, the objects of D :], [: the morphisms of
C, the morphisms of D :], [: the dom-map of C, the dom-map of D :], [: the
cod-map of C, the cod-map of D :], |: the composition of C, the composi-
tion of D:|, [: the id-map of C, the id-map of D :]〉.

(33) (i) The objects of [: C, D :] = [: the objects of C, the objects of D :],
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(ii) the morphisms of [: C, D :] = [: the morphisms of C, the morphisms of
D :],

(iii) the dom-map of [: C, D :] = [: the dom-map of C, the dom-map of D :],
(iv) the cod-map of [: C, D :] = [: the cod-map of C, the cod-map of D :],
(v) the composition of [: C, D :] = |: the composition of C, the composition

of D:|,
(vi) the id-map of [: C, D :] = [: the id-map of C, the id-map of D :].

(34) For every object c of C and for every object d of D holds 〈〈c, d〉〉 is an
object of [: C, D :].

Let us consider C, D, and let c be an object of C, and let d be an object of
D. Then 〈〈c, d〉〉 is an object of [: C, D :].

One can prove the following propositions:

(35) For every object cd of [: C, D :] there exists an object c of C and there
exists an object d of D such that cd = 〈〈c, d〉〉.

(36) For every morphism f of C and for every morphism g of D holds 〈〈f, g〉〉
is a morphism of [: C, D :].

Let us consider C, D, and let f be a morphism of C, and let g be a morphism
of D. Then 〈〈f, g〉〉 is a morphism of [: C, D :].

The following propositions are true:

(37) For every morphism fg of [: C, D :] there exists a morphism f of C and
there exists a morphism g of D such that fg = 〈〈f, g〉〉.

(38) For every morphism f of C and for every morphism g of D holds
dom 〈〈f, g〉〉 = 〈〈 dom f, dom g〉〉 and cod 〈〈f, g〉〉 = 〈〈 cod f, cod g〉〉.

(39) For all morphisms f , f ′ of C and for all morphisms g, g′ of D such that
dom f ′ = cod f and dom g′ = cod g holds 〈〈f ′, g′〉〉 · 〈〈f, g〉〉 = 〈〈f ′ · f, g′ · g〉〉.

(40) For all morphisms f , f ′ of C and for all morphisms g, g′ of D such that
dom 〈〈f ′, g′〉〉 = cod 〈〈f, g〉〉 holds 〈〈f ′, g′〉〉 · 〈〈f, g〉〉 = 〈〈f ′ · f, g′ · g〉〉.

(41) For every object c of C and for every object d of D holds id〈〈c,d〉〉 =

〈〈 idc, idd 〉〉.

(42) For all objects c, c′ of C and for all objects d, d′ of D holds
hom(〈〈c, d〉〉, 〈〈c′, d′〉〉) = [: hom(c, c′), hom(d, d′) :].

(43) For all objects c, c′ of C and for every morphism f from c to c′ and for
all objects d, d′ of D and for every morphism g from d to d′ such that
hom(c, c′) 6= ∅ and hom(d, d′) 6= ∅ holds 〈〈f, g〉〉 is a morphism from 〈〈c, d〉〉
to 〈〈c′, d′〉〉.

(44) For every functor S from [: C, C ′ :] to D and for every object c of C holds
curry S(idc) is a functor from C ′ to D.

(45) For every functor S from [: C, C ′ :] to D and for every object c′ of C ′

holds curry′ S(idc′) is a functor from C to D.

Let us consider C, C ′, D, and let S be a functor from [: C, C ′ :] to D, and let
c be an object of C. The functor S(c,−) yields a functor from C ′ to D and is
defined as follows:
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S(c,−) = curry S(idc).

The following three propositions are true:

(46) For every functor S from [: C, C ′ :] to D and for every object c of C holds
S(c,−) = curry S(idc).

(47) For every functor S from [: C, C ′ :] to D and for every object c of C and
for every morphism f of C ′ holds S(c,−)(f) = S(〈〈 idc, f〉〉).

(48) For every functor S from [: C, C ′ :] to D and for every object c of C and
for every object c′ of C ′ holds (Obj S(c,−))(c′) = (Obj S)(〈〈c, c′〉〉).

Let us consider C, C ′, D, and let S be a functor from [: C, C ′ :] to D, and let
c′ be an object of C ′. The functor S(−, c′) yielding a functor from C to D is
defined by:

S(−, c′) = curry′ S(idc′).

We now state several propositions:

(49) For every functor S from [: C, C ′ :] to D and for every object c′ of C ′

holds S(−, c′) = curry′ S(idc′).

(50) For every functor S from [: C, C ′ :] to D and for every object c′ of C ′

and for every morphism f of C holds S(−, c′)(f) = S(〈〈f, idc′ 〉〉).

(51) For every functor S from [: C, C ′ :] to D and for every object c of C and
for every object c′ of C ′ holds (Obj S(−, c′))(c) = (Obj S)(〈〈c, c′〉〉).

(52) Let L be a function from the objects of C into Funct(B,D). Let M be
a function from the objects of B into Funct(C,D). Suppose that

(i) for every object c of C and for every object b of B holds (M(b))(idc) =
(L(c))(idb),

(ii) for every morphism f of B and for every morphism g of C holds
(M(cod f))(g) · (L(dom g))(f) = (L(cod g))(f) · (M(dom f))(g).
Then there exists a functor S from [: B, C :] to D such that for every
morphism f of B and for every morphism g of C holds S(〈〈f, g〉〉) =
(L(cod g))(f) · (M(dom f))(g).

(53) Let L be a function from the objects of C into Funct(B,D). Let M

be a function from the objects of B into Funct(C,D). Suppose there
exists a functor S from [: B, C :] to D such that for every object c of C

and for every object b of B holds S(−, c) = L(c) and S(b,−) = M(b).
Then for every morphism f of B and for every morphism g of C holds
(M(cod f))(g) · (L(dom g))(f) = (L(cod g))(f) · (M(dom f))(g).

(54) π1( (the morphisms of C)× (the morphisms of D)) is a functor from
[: C, D :] to C.

(55) π2( (the morphisms of C)× (the morphisms of D)) is a functor from
[: C, D :] to D.

We now define two new functors. Let us consider C, D. The functor π1(C ×
D) yields a functor from [: C, D :] to C and is defined as follows:

π1(C × D) = π1( (the morphisms of C)× (the morphisms of D)).
The functor π2(C×D) yielding a functor from [: C, D :] to D is defined as follows:

π2(C × D) = π2( (the morphisms of C)× (the morphisms of D)).
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One can prove the following propositions:

(56) π1(C × D) = π1( (the morphisms of C)× (the morphisms of D)).

(57) π2(C × D) = π2( (the morphisms of C)× (the morphisms of D)).

(58) For every morphism f of C and for every morphism g of D holds π1(C×
D)(〈〈f, g〉〉) = f .

(59) For every object c of C and for every object d of D holds (Obj π1(C ×
D))(〈〈c, d〉〉) = c.

(60) For every morphism f of C and for every morphism g of D holds π2(C×
D)(〈〈f, g〉〉) = g.

(61) For every object c of C and for every object d of D holds (Obj π2(C ×
D))(〈〈c, d〉〉) = d.

(62) For every functor T from C to D and for every functor T ′ from C to
D′ holds 〈T, T ′〉 is a functor from C to [: D, D′ :].

Let us consider C, D, D′, and let T be a functor from C to D, and let T ′ be
a functor from C to D′. Then 〈T, T ′〉 is a functor from C to [: D, D′ :].

One can prove the following propositions:

(63) For every functor T from C to D and for every functor T ′ from C to
D′ and for every object c of C holds
(Obj〈T, T ′〉)(c) = 〈〈(Obj T )(c), (Obj T ′)(c)〉〉.

(64) For every functor T from C to D and for every functor T ′ from C ′ to
D′ holds [: T, T ′ :] = 〈T · π1(C × C ′), T ′ · π2(C × C ′)〉.

(65) For every functor T from C to D and for every functor T ′ from C ′ to
D′ holds [: T, T ′ :] is a functor from [: C, C ′ :] to [: D, D′ :].

Let us consider C, C ′, D, D′, and let T be a functor from C to D, and let
T ′ be a functor from C ′ to D′. Then [: T, T ′ :] is a functor from [: C, C ′ :] to [: D,

D′ :].

One can prove the following proposition

(66) For every functor T from C to D and for every functor T ′ from C ′ to
D′ and for every object c of C and for every object c′ of C ′ holds (Obj[: T,

T ′ :])(〈〈c, c′〉〉) = 〈〈(Obj T )(c), (Obj T ′)(c′)〉〉.
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