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Summary. The subcategory of a category and product of cate-
gories is defined. The inclusion functor is the injection (inclusion) map 5
which sends each object and each arrow of a Subcategory F of a category
C' to itself (in C). The inclusion functor is faithful. Full subcategories of
C, that is, those subcategories E of C' such that Homg(a,b) = Homc (b, b)
for any objects a,b of E, are defined. A subcategory E of C' is full when

the inclusion functor i is full. The proposition that a full subcategory is

determined by giving the set of objects of a category is proved. The prod-
uct of two categories B and C' is constructed in the usual way. Moreover,
some simple facts on bifunctors (functors from a product category) are
proved. The final notions in this article are that of projection functors
and product of two functors (complex functors and product functors).

MML Identifier: CAT_2.

The terminology and notation used in this paper have been introduced in the
following articles: [10], [8], [3], [4], [7], [2], [6], [1], [11], [9], and [5]. For simplicity
we follow the rules: X denotes a set, C', D, E denote non-empty sets, ¢ denotes
an element of C, and d denotes an element of D. Let us consider D, X, E, and
let F' be a non-empty set of functions from X to E, and let f be a function from
D into F, and let d be an element of D. Then f(d) is an element of F.

In the sequel f denotes a function from [ C, D {into E. The following propo-
sitions are true:

(1)  curry f is a function from C into EP.
(2)  curry’ f is a function from D into E°.

Let us consider C, D, E, f. Then curry f is a function from C into EP.
Then curry’ f is a function from D into E€.

The following two propositions are true:
3)  F({e,d)) = (curry f(c))(d).
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(4)  f({e,d)) = (curry’ f(d))(c).

In the sequel B, C, D, C’, D’ denote categories. Let us consider B, C, and
let ¢ be an object of C. The functor B —— c¢ yielding a functor from B to C is
defined as follows:

B +—— ¢ = (the morphisms of B) — id..

One can prove the following propositions:

(5)  For every object ¢ of C holds B —— ¢ = (the morphisms of B) — id..

(6)  For every object ¢ of C' and for every morphism f of B holds (B ——
o)(f) = ide.

(7)  For every object ¢ of C' and for every object b of B holds (Obj(B +—
¢))(b) = c.

Let us consider C', D. The functor Funct(C, D) yields a non-empty set and
is defined by:

for an arbitrary = holds € Funct(C, D) if and only if x is a functor from C
to D.

Next we state two propositions:

(8)  For every non-empty set F' holds F' = Funct(C, D) if and only if for an
arbitrary = holds z € F if and only if x is a functor from C to D.

(9)  For every element T of Funct(C, D) holds T is a functor from C to D.

Let us consider C, D. A non-empty set is called a non-empty set of functors
from C into D if:
for every element x of it holds z is a functor from C to D.

The following proposition is true

(10)  For every non-empty set F' holds F' is a non-empty set of functors from

C into D if and only if for every element x of F' holds z is a functor from
C to D.

Let us consider C, D, and let F' be a non-empty set of functors from C into D.
We see that it makes sense to consider the following mode for restricted scopes

of arguments. Then all the objests of the mode element of F' are a functor from
C toD.

Let A be a non-empty set, and let us consider C, D, and let F' be a non-
empty set of functors from C into D, and let T be a function from A into F,
and let x be an element of A. Then T'(x) is an element of F'.

Let us consider C, D. Then Funct(C, D) is a non-empty set of functors from
C into D.

Let us consider C'. A category is said to be a subcategory of C if:

(i)  the objects of it C the objects of C,

(i)  for all objects a, b of it and for all objects a’, b’ of C such that a = a’ and
b =" holds hom(a,b) C hom(a’, V),
(iii)  the composition of it < the composition of C,
(iv)  for every object a of it and for every object a’ of C' such that a = a’ holds
id, = idg.
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Next we state the proposition
(11)  Given C, D. Then D is a subcategory of C' if and only if the following
conditions are satisfied:
(i)  the objects of D C the objects of C,
(ii)  for all objects a, b of D and for all objects a’, b" of C such that a = a’
and b = b’ holds hom(a, b) C hom(a’, '),
(iii)  the composition of D < the composition of C,
(iv)  for every object a of D and for every object a’ of C such that a = o
holds id, = id,.
In the sequel E will be a subcategory of C. We now state several propositions:
(12)  For every object e of E holds e is an object of C.
(13)  The morphisms of £ C the morphisms of C.
(1
(15)  For every morphism f of E and for every morphism f’ of C' such that
f = f' holds dom f = dom f’ and cod f = cod f.
(16)  For all objects a, b of E and for all objects a’, b’ of C' and for every
morphism f from a to b such that a = a’ and b = ¥’ and hom(a,b) # 0
holds f is a morphism from a’ to b'.

B

) For every morphism f of F holds f is a morphism of C.

(17)  For all morphisms f, g of E and for all morphisms f/, ¢’ of C' such that
f=f and g=¢ and domg=cod f holds g- f =¢' - f'.

(18) (' is a subcategory of C.

(19) idg is a functor from E to C.

Let us consider C, E. The functor E yielding a functor from E to C is

defined as follows:
E

o = idg.
The following propositions are true:
20) P =idp.
21 For every morphism f of E holds E( f

) )=t
22)  For every object a of E holds (Obj Z)(a) = a.
23)  For every object a of E holds Z (a) = a.

24) s faithful.

)

25 E is full if and only if for all objects a, b of E and for all objects a’, b’
of C such that a = a/ and b = b holds hom(a, b) = hom(a’,d’).
Let C be a category structure, and let us consider D. We say that C is full
subcategory of D if and only if:
C' is a subcategory of D and for all objects a, b of C' and for all objects a’, b’
of D such that a = a’ and b = V' holds hom(a,b) = hom(da’, ).

The following propositions are true:

(
(
(
(
(
(

(26)  For every C being a category structure and for every D holds C' is full
subcategory of D if and only if C' is a subcategory of D and for all objects
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a, b of C and for all objects a’, b’ of D such that a = a’ and b = b’ holds
hom(a, b) = hom(a’,d’).
(27)  E is full subcategory of C if and only if Z is full.

(28)  For every non-empty subset O of the objects of C' holds |J{hom(a,b) :
a € OAbe€ O} is a non-empty subset of the morphisms of C'.

(29) Let O be a non-empty subset of the objects of C. Let M be a non-
empty set. Suppose M = [J{hom(a,b) : a € O Ab € O}. Then (the
dom-map of C') | M is a function from M into O and (the cod-map of
C) | M is a function from M into O and (the composition of C) | | M,
M ] is a partial function from [ M, M | to M and (the id-map of C) | O
is a function from O into M.

(30) Let O be a non-empty subset of the objects of C. Let M be a non-empty
set. Let d, ¢ be functions from M into O. Let p be a partial function
from [ M, M ] to M. Let i be a function from O into M. Suppose
M = U{hom(a,b) : a € ONb € O} and d = (the dom-map of C') | M and
¢ = (the cod-map of C) | M and p = (the composition of C) | [ M, M |
and i = (the id-map of C') | O. Then (O, M,d,c,p,i) is full subcategory
of C.

(31) Let O be a non-empty subset of the objects of C. Let M be a non-empty
set. Let d, ¢ be functions from M into O. Let p be a partial function
from [ M, M ] to M. Let i be a function from O into M. Suppose
(O,M,d,c,p,i) is full subcategory of C. Then M = |J{hom(a,b) : a €
O ANb € O} and d = (the dom-map of C') | M and ¢ = (the cod-map of
C) | M and p = (the composition of C) | [ M, M ] and i = (the id-map
of C) 0.

Let X1, Xo, Y7, Y5 be non-empty sets, and let f; be a function from X into
Y1, and let f2 be a function from X5 into Y5. Then [ f1, f2] is a function from
[IXl, Xg] into [1Y1, Yé ]

Let A, B be non-empty sets, and let f be a partial function from [ A, A] to
A, and let g be a partial function from [ B, B] to B. Then |:f, ¢:| is a partial
function from [[ A, B, [ A, B]]to [ A, B].

Let us consider C', D. The functor | C, D] yielding a category is defined as
follows:

EC, D] = (} the objects of C, the objects of D ], the morphisms of C, the
morphisms of D, the dom-map of C, the dom-map of D{,| the cod-map of
C, the cod-map of D{,|: the composition of C, the composition of D:|,|[ the
id-map of C, the id-map of D {).

Next we state three propositions:

(32) [C, D] = (} the objects of C, the objects of D], [ the morphisms of
C, the morphisms of D ], | the dom-map of C, the dom-map of D ], [ the
cod-map of C, the cod-map of D ],|: the composition of C, the composi-
tion of D:|,} the id-map of C, the id-map of D {).

(33) (i) The objects of [ C, D] =} the objects of C, the objects of D i,
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(i)  the morphisms of [ C, D{ = [ the morphisms of C, the morphisms of
D,

(iii)  the dom-map of [C, D] = [ the dom-map of C, the dom-map of D ],

(iv)  the cod-map of [ C, D] = | the cod-map of C, the cod-map of D],

(v)  the composition of [ C, D] = |: the composition of C, the composition
of D,

(vi)  the id-map of [C, D] =[ the id-map of C, the id-map of D ].

(34)  For every object ¢ of C' and for every object d of D holds (c,d) is an
object of [C, D 1.

Let us consider C, D, and let ¢ be an object of C, and let d be an object of
D. Then (c,d) is an object of [ C, D .
One can prove the following propositions:

(35)  For every object cd of [ C, D] there exists an object ¢ of C' and there
exists an object d of D such that c¢d = (c,d).

(36)  For every morphism f of C and for every morphism ¢ of D holds (f, g)
is a morphism of [ C, D].

Let us consider C', D, and let f be a morphism of C', and let g be a morphism
of D. Then (f,g) is a morphism of [ C, D {.
The following propositions are true:

(37)  For every morphism fg of | C, D ] there exists a morphism f of C' and
there exists a morphism g of D such that fg = (f,g).

(38) For every morphism f of C' and for every morphism g of D holds
dom (f, g) = (dom f,dom g) and cod (f, g) = (cod f,cod g).

(39)  For all morphisms f, f’ of C and for all morphisms g, g’ of D such that
dom f’ = cod f and dom ¢’ = cod g holds (f’,¢') - (f,9) = {f"- [, 4 - g).

(40)  For all morphisms f, f’ of C' and for all morphisms g, g’ of D such that
dom (f’, g’} = cod(f,g) holds (f".¢') - (f,9) ={f"- f.4' - 9)-

(41)  For every object ¢ of C' and for every object d of D holds id (ed) =
(id.,idg ).

(42)  For all objects ¢, ¢ of C and for all objects d, d’ of D holds
hom({c,d), {¢',d')) = fhom(c, ), hom(d,d")].

(43)  For all objects ¢, ¢’ of C' and for every morphism f from ¢ to ¢’ and for
all objects d, d’ of D and for every morphism g from d to d’ such that
hom(c, ') # ) and hom(d,d") # 0 holds (f, g) is a morphism from (e, d)
to (,d').

(44)  For every functor S from [ C, C" ] to D and for every object ¢ of C' holds
curry S(id.) is a functor from C’ to D.

(45)  For every functor S from [C, C'] to D and for every object ¢’ of C’
holds curry’ S(id) is a functor from C to D.

Let us consider C, C’, D, and let S be a functor from [ C, C"] to D, and let
¢ be an object of C. The functor S(c, —) yields a functor from C’ to D and is
defined as follows:
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S(e,—) = curry S(id.).

The following three propositions are true:

(46)  For every functor S from [ C, C’] to D and for every object ¢ of C holds
S(e,—) = curry S(id.).

(47)  For every functor S from [ C, C’] to D and for every object ¢ of C' and
for every morphism f of C’ holds S(c¢, —)(f) = S({id, f}).

(48)  For every functor S from [ C, C'] to D and for every object ¢ of C' and
for every object ¢’ of C” holds (ObjS(c, —))(c") = (ObjS)({c, ).

Let us consider C, C’; D, and let S be a functor from [ C, C’] to D, and let
d be an object of C’. The functor S(—,c’) yielding a functor from C to D is
defined by:

S(—,c) = curry’ S(idy).

We now state several propositions:

(49)  For every functor S from [C, C'] to D and for every object ¢’ of C’
holds S(—, ) = curry’ S(id).

(50)  For every functor S from [C, C’] to D and for every object ¢ of C’
and for every morphism f of C holds S(—,c)(f) = S({f,ide )).

(51)  For every functor S from [ C, C'] to D and for every object ¢ of C' and
for every object ¢’ of C’ holds (ObjS(—,))(c) = (ObjS)({c,')).

(52)  Let L be a function from the objects of C' into Funct(B, D). Let M be
a function from the objects of B into Funct(C, D). Suppose that

(i)  for every object ¢ of C' and for every object b of B holds (M (b))(id.) =
(L(c))(ide),

(ii)  for every morphism f of B and for every morphism g of C' holds
(M(cod £))(g) - (L(dom g))(f) = (L(cod 9))(f) - (M(dom f))(g).
Then there exists a functor S from [ B, C'] to D such that for every
morphism f of B and for every morphism ¢g of C holds S({f,g)) =
(L(cod ))(F) - (M(dom £))(g).

(53)  Let L be a function from the objects of C into Funct(B, D). Let M
be a function from the objects of B into Funct(C, D). Suppose there
exists a functor S from [ B, C'] to D such that for every object ¢ of C
and for every object b of B holds S(—,¢) = L(c) and S(b,—) = M(b).
Then for every morphism f of B and for every morphism ¢ of C' holds
(M(cod £))(g) - (L(dom g)){() = (L(cod ))(f) - (M(dom f))(g).

(54)  m1( (the morphisms of C)x (the morphisms of D)) is a functor from
FC, D] to C.

(55)  ma( (the morphisms of C')x (the morphisms of D)) is a functor from
tC, D] to D.

We now define two new functors. Let us consider C, D. The functor 71 (C x
D) yields a functor from [ C, D] to C and is defined as follows:

71 (C x D) = m1( (the morphisms of C')x (the morphisms of D)).

The functor m2(C x D) yielding a functor from [ C, D | to D is defined as follows:

mo(C' x D) = my( (the morphisms of C')x (the morphisms of D)).
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One can prove the following propositions:
(56) 71 (C x D) = my( (the morphisms of C')x (the morphisms of D)).
(57)  m2(C x D) = my( (the morphisms of C')x (the morphisms of D)).
(58)  For every morphism f of C' and for every morphism g of D holds 71 (C' x

D)({f.9)) = f.

(59)  For every object ¢ of C' and for every object d of D holds (Objm(C X
D))({c,d)) = c.

(60)  For every morphism f of C' and for every morphism ¢ of D holds 75(C' x

D)((f,9) =g

(61)  For every object ¢ of C' and for every object d of D holds (Objma(C x
D))({¢,d)) = d.

(62)  For every functor T from C to D and for every functor 7’ from C' to
D’ holds (T, T") is a functor from C to [ D, D'}.

Let us consider C, D, D', and let T be a functor from C to D, and let T’ be
a functor from C to D’. Then (T,T") is a functor from C to [ D, D'].

One can prove the following propositions:

(63)  For every functor T from C to D and for every functor 7" from C' to
D’ and for every object ¢ of C holds
(ObJ(T, T"))(c) = ((Obj T)(c), (Obj T")(c))-

(64)  For every functor T from C to D and for every functor 7’ from C’ to
D' holds [T, T"] = (T -7 (C x C"), T" - mo(C x C")).

(65)  For every functor T from C to D and for every functor T’ from C” to
D' holds [T, T"] is a functor from [C, C'] to [ D, D"].

Let us consider C, C’, D, D', and let T be a functor from C to D, and let
T' be a functor from C’ to D’. Then [T, T"] is a functor from [ C, C'{ to [ D,
D'y

One can prove the following proposition

(66)  For every functor T from C to D and for every functor T’ from C’ to
D’ and for every object ¢ of C and for every object ¢’ of C’ holds (Obj} T,
T"{)({e, ') = {(ObjT)(c), (Obj T")(c")).
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