Subcategories and Products of Categories

Czesław Byliński¹ Warsaw University Białystok

Summary. The subcategory of a category and product of categories is defined. The *inclusion functor* is the injection (inclusion) map $\overset{E}{_}$, which sends each object and each arrow of a Subcategory E of a category C to itself (in C). The inclusion functor is faithful. Full subcategories of C, that is, those subcategories E of C such that $\operatorname{Hom}_{E}(a,b) = \operatorname{Hom}_{C}(b,b)$ for any objects a, b of E, are defined. A subcategory E of C is full when the inclusion functor $\overset{E}{_}$ is full. The proposition that a full subcategory is determined by giving the set of objects of a category is proved. The product of two categories B and C is constructed in the usual way. Moreover, some simple facts on *bifunctors* (functors from a product category) are proved. The final notions in this article are that of projection functors and product of two functors (complex functors and product functors).

MML Identifier: CAT_2.

The terminology and notation used in this paper have been introduced in the following articles: [10], [8], [3], [4], [7], [2], [6], [1], [11], [9], and [5]. For simplicity we follow the rules: X denotes a set, C, D, E denote non-empty sets, c denotes an element of C, and d denotes an element of D. Let us consider D, X, E, and let F be a non-empty set of functions from X to E, and let f be a function from D into F, and let d be an element of D. Then f(d) is an element of F.

In the sequel f denotes a function from $[:C,\ D\]$ into E. The following propositions are true:

- (1) curry f is a function from C into E^D .
- (2) curry' f is a function from D into E^C .

Let us consider C, D, E, f. Then curry f is a function from C into E^{D} . Then curry' f is a function from D into E^{C} .

The following two propositions are true:

(3) $f(\langle c, d \rangle) = (\operatorname{curry} f(c))(d).$

¹Supported by RPBP.III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 (4) $f(\langle c, d \rangle) = (\operatorname{curry}' f(d))(c).$

In the sequel B, C, D, C', D' denote categories. Let us consider B, C, and let c be an object of C. The functor $B \mapsto c$ yielding a functor from B to C is defined as follows:

 $B \longmapsto c = (\text{the morphisms of } B) \longmapsto \text{id}_c.$

One can prove the following propositions:

- (5) For every object c of C holds $B \mapsto c = (\text{the morphisms of } B) \mapsto \text{id}_c$.
- (6) For every object c of C and for every morphism f of B holds $(B \mapsto c)(f) = \mathrm{id}_c$.
- (7) For every object c of C and for every object b of B holds $(Obj(B \mapsto c))(b) = c.$

Let us consider C, D. The functor Funct(C, D) yields a non-empty set and is defined by:

for an arbitrary x holds $x \in \text{Funct}(C, D)$ if and only if x is a functor from C to D.

Next we state two propositions:

- (8) For every non-empty set F holds F = Funct(C, D) if and only if for an arbitrary x holds $x \in F$ if and only if x is a functor from C to D.
- (9) For every element T of $\operatorname{Funct}(C, D)$ holds T is a functor from C to D.

Let us consider C, D. A non-empty set is called a non-empty set of functors from C into D if:

for every element x of it holds x is a functor from C to D.

The following proposition is true

(10) For every non-empty set F holds F is a non-empty set of functors from C into D if and only if for every element x of F holds x is a functor from C to D.

Let us consider C, D, and let F be a non-empty set of functors from C into D. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objects of the mode element of F are a functor from C to D.

Let A be a non-empty set, and let us consider C, D, and let F be a nonempty set of functors from C into D, and let T be a function from A into F, and let x be an element of A. Then T(x) is an element of F.

Let us consider C, D. Then $\operatorname{Funct}(C, D)$ is a non-empty set of functors from C into D.

Let us consider C. A category is said to be a subcategory of C if:

(i) the objects of it \subseteq the objects of C,

(ii) for all objects a, b of it and for all objects a', b' of C such that a = a' and b = b' holds hom $(a, b) \subseteq hom(a', b')$,

(iii) the composition of it \leq the composition of C,

(iv) for every object a of it and for every object a' of C such that a = a' holds $id_a = id_{a'}$.

Next we state the proposition

- (11) Given C, D. Then D is a subcategory of C if and only if the following conditions are satisfied:
 - (i) the objects of $D \subseteq$ the objects of C,
 - (ii) for all objects a, b of D and for all objects a', b' of C such that a = a' and b = b' holds $hom(a, b) \subseteq hom(a', b')$,
 - (iii) the composition of $D \leq$ the composition of C,
 - (iv) for every object a of D and for every object a' of C such that a = a' holds $id_a = id_{a'}$.

In the sequel E will be a subcategory of C. We now state several propositions:

- (12) For every object e of E holds e is an object of C.
- (13) The morphisms of $E \subseteq$ the morphisms of C.
- (14) For every morphism f of E holds f is a morphism of C.
- (15) For every morphism f of E and for every morphism f' of C such that f = f' holds dom f = dom f' and cod f = cod f'.
- (16) For all objects a, b of E and for all objects a', b' of C and for every morphism f from a to b such that a = a' and b = b' and $hom(a, b) \neq \emptyset$ holds f is a morphism from a' to b'.
- (17) For all morphisms f, g of E and for all morphisms f', g' of C such that f = f' and g = g' and dom $g = \operatorname{cod} f$ holds $g \cdot f = g' \cdot f'$.
- (18) C is a subcategory of C.
- (19) id_E is a functor from E to C.

Let us consider C, E. The functor $\stackrel{E}{\hookrightarrow}$ yielding a functor from E to C is defined as follows:

$$\overset{\scriptscriptstyle L}{\hookrightarrow} = \mathrm{id}_E$$

The following propositions are true:

(20)
$$\stackrel{E}{\hookrightarrow} = \mathrm{id}_E.$$

- (21) For every morphism f of E holds $\stackrel{E}{\frown}(f) = f$.
- (22) For every object a of E holds $(Obj \stackrel{E}{\hookrightarrow})(a) = a$.
- (23) For every object a of E holds $\stackrel{E}{\rightharpoonup}(a) = a$.
- (24) $\stackrel{E}{\smile}$ is faithful.
- (25) $\overset{E}{\subseteq}$ is full if and only if for all objects a, b of E and for all objects a', b' of C such that a = a' and b = b' holds hom(a, b) = hom(a', b').

Let C be a category structure, and let us consider D. We say that C is full subcategory of D if and only if:

C is a subcategory of D and for all objects a, b of C and for all objects a', b' of D such that a = a' and b = b' holds hom(a, b) = hom(a', b').

The following propositions are true:

(26) For every C being a category structure and for every D holds C is full subcategory of D if and only if C is a subcategory of D and for all objects

a, b of C and for all objects a', b' of D such that a = a' and b = b' holds hom(a, b) = hom(a', b').

- (27) E is full subcategory of C if and only if $\stackrel{E}{\hookrightarrow}$ is full.
- (28) For every non-empty subset O of the objects of C holds $\bigcup \{ \hom(a, b) : a \in O \land b \in O \}$ is a non-empty subset of the morphisms of C.
- (29) Let O be a non-empty subset of the objects of C. Let M be a nonempty set. Suppose $M = \bigcup \{ \hom(a, b) : a \in O \land b \in O \}$. Then (the dom-map of $C) \upharpoonright M$ is a function from M into O and (the cod-map of $C) \upharpoonright M$ is a function from M into O and (the composition of $C) \upharpoonright [M, M]$ is a partial function from [M, M] to M and (the id-map of $C) \upharpoonright O$ is a function from O into M.
- (30) Let O be a non-empty subset of the objects of C. Let M be a non-empty set. Let d, c be functions from M into O. Let p be a partial function from [M, M] to M. Let i be a function from O into M. Suppose $M = \bigcup \{ \hom(a, b) : a \in O \land b \in O \}$ and $d = (\text{the dom-map of } C) \upharpoonright M$ and $c = (\text{the cod-map of } C) \upharpoonright M$ and $p = (\text{the composition of } C) \upharpoonright [M, M]$ and $i = (\text{the id-map of } C) \upharpoonright O$. Then $\langle O, M, d, c, p, i \rangle$ is full subcategory of C.
- (31) Let O be a non-empty subset of the objects of C. Let M be a non-empty set. Let d, c be functions from M into O. Let p be a partial function from [M, M] to M. Let i be a function from O into M. Suppose $\langle O, M, d, c, p, i \rangle$ is full subcategory of C. Then $M = \bigcup \{ \hom(a, b) : a \in O \land b \in O \}$ and $d = (\text{the dom-map of } C) \upharpoonright M$ and $c = (\text{the cod-map of } C) \upharpoonright M$ and $p = (\text{the composition of } C) \upharpoonright [M, M]$ and $i = (\text{the id-map of } C) \upharpoonright O$.

Let X_1 , X_2 , Y_1 , Y_2 be non-empty sets, and let f_1 be a function from X_1 into Y_1 , and let f_2 be a function from X_2 into Y_2 . Then $[f_1, f_2]$ is a function from $[X_1, X_2]$ into $[Y_1, Y_2]$.

Let A, B be non-empty sets, and let f be a partial function from [A, A] to A, and let g be a partial function from [B, B] to B. Then |:f, g:| is a partial function from [[A, B], [A, B]] to [A, B].

Let us consider C, D. The functor [C, D] yielding a category is defined as follows:

 $[C, D] = \langle [$ the objects of C, the objects of D], [the morphisms of C, the morphisms of D], [the dom-map of C, the dom-map of D], [the cod-map of C, the cod-map of D], [the composition of C, the composition of D], [the id-map of D],

Next we state three propositions:

- (32) $[C, D] = \langle [$ the objects of C, the objects of D], [the morphisms of C, the morphisms of D], [the dom-map of C, the dom-map of D], [the cod-map of C, the cod-map of D], [the composition of C, the composition of D, the id-map of D], [the id-map of D].
- (33) (i) The objects of [C, D] = [the objects of C, the objects of D],

- (ii) the morphisms of [C, D] = [the morphisms of C, the morphisms of D],
- (iii) the dom-map of [C, D] = [the dom-map of C, the dom-map of D],
- (iv) the cod-map of [C, D] = [the cod-map of C, the cod-map of D],
- (v) the composition of [C, D] = |: the composition of C, the composition of D:|,
- (vi) the id-map of [C, D] = [the id-map of C, the id-map of D].
- (34) For every object c of C and for every object d of D holds $\langle c, d \rangle$ is an object of [C, D].

Let us consider C, D, and let c be an object of C, and let d be an object of D. Then $\langle c, d \rangle$ is an object of [C, D].

One can prove the following propositions:

- (35) For every object cd of [C, D] there exists an object c of C and there exists an object d of D such that $cd = \langle c, d \rangle$.
- (36) For every morphism f of C and for every morphism g of D holds $\langle f, g \rangle$ is a morphism of [C, D].

Let us consider C, D, and let f be a morphism of C, and let g be a morphism of D. Then $\langle f, g \rangle$ is a morphism of [C, D].

The following propositions are true:

- (37) For every morphism fg of [C, D] there exists a morphism f of C and there exists a morphism g of D such that $fg = \langle f, g \rangle$.
- (38) For every morphism f of C and for every morphism g of D holds $\operatorname{dom} \langle f, g \rangle = \langle \operatorname{dom} f, \operatorname{dom} g \rangle$ and $\operatorname{cod} \langle f, g \rangle = \langle \operatorname{cod} f, \operatorname{cod} g \rangle$.
- (39) For all morphisms f, f' of C and for all morphisms g, g' of D such that dom $f' = \operatorname{cod} f$ and dom $g' = \operatorname{cod} g$ holds $\langle f', g' \rangle \cdot \langle f, g \rangle = \langle f' \cdot f, g' \cdot g \rangle$.
- (40) For all morphisms f, f' of C and for all morphisms g, g' of D such that $\operatorname{dom} \langle f', g' \rangle = \operatorname{cod} \langle f, g \rangle$ holds $\langle f', g' \rangle \cdot \langle f, g \rangle = \langle f' \cdot f, g' \cdot g \rangle$.
- (41) For every object c of C and for every object d of D holds $\operatorname{id}_{\langle c,d \rangle} = \langle \operatorname{id}_c, \operatorname{id}_d \rangle$.
- (42) For all objects c, c' of C and for all objects d, d' of D holds $\hom(\langle c, d \rangle, \langle c', d' \rangle) = [\hom(c, c'), \hom(d, d')].$
- (43) For all objects c, c' of C and for every morphism f from c to c' and for all objects d, d' of D and for every morphism g from d to d' such that $\hom(c, c') \neq \emptyset$ and $\hom(d, d') \neq \emptyset$ holds $\langle f, g \rangle$ is a morphism from $\langle c, d \rangle$ to $\langle c', d' \rangle$.
- (44) For every functor S from [C, C'] to D and for every object c of C holds curry $S(id_c)$ is a functor from C' to D.
- (45) For every functor S from [C, C'] to D and for every object c' of C' holds curry' $S(\operatorname{id}_{c'})$ is a functor from C to D.

Let us consider C, C', D, and let S be a functor from [C, C'] to D, and let c be an object of C. The functor S(c, -) yields a functor from C' to D and is defined as follows:

 $S(c, -) = \operatorname{curry} S(\operatorname{id}_c).$

The following three propositions are true:

- (46) For every functor S from [C, C'] to D and for every object c of C holds $S(c, -) = \operatorname{curry} S(\operatorname{id}_c).$
- (47) For every functor S from [C, C'] to D and for every object c of C and for every morphism f of C' holds $S(c, -)(f) = S(\langle \operatorname{id}_c, f \rangle)$.
- (48) For every functor S from [C, C'] to D and for every object c of C and for every object c' of C' holds $(\text{Obj} S(c, -))(c') = (\text{Obj} S)(\langle c, c' \rangle).$

Let us consider C, C', D, and let S be a functor from [C, C'] to D, and let c' be an object of C'. The functor S(-, c') yielding a functor from C to D is defined by:

 $S(-,c') = \operatorname{curry}' S(\operatorname{id}_{c'}).$

We now state several propositions:

- (49) For every functor S from [C, C'] to D and for every object c' of C' holds $S(-, c') = \operatorname{curry}' S(\operatorname{id}_{c'})$.
- (50) For every functor S from [C, C'] to D and for every object c' of C' and for every morphism f of C holds $S(-,c')(f) = S(\langle f, id_{c'} \rangle)$.
- (51) For every functor S from [C, C'] to D and for every object c of C and for every object c' of C' holds $(Obj S(-,c'))(c) = (Obj S)(\langle c, c' \rangle).$
- (52) Let L be a function from the objects of C into $\operatorname{Funct}(B, D)$. Let M be a function from the objects of B into $\operatorname{Funct}(C, D)$. Suppose that
 - (i) for every object c of C and for every object b of B holds $(M(b))(\mathrm{id}_c) = (L(c))(\mathrm{id}_b),$
 - (ii) for every morphism f of B and for every morphism g of C holds $(M(\operatorname{cod} f))(g) \cdot (L(\operatorname{dom} g))(f) = (L(\operatorname{cod} g))(f) \cdot (M(\operatorname{dom} f))(g)$. Then there exists a functor S from [B, C] to D such that for every morphism f of B and for every morphism g of C holds $S(\langle f, g \rangle) = (L(\operatorname{cod} g))(f) \cdot (M(\operatorname{dom} f))(g)$.
- (53) Let L be a function from the objects of C into $\operatorname{Funct}(B, D)$. Let M be a function from the objects of B into $\operatorname{Funct}(C, D)$. Suppose there exists a functor S from [B, C] to D such that for every object c of C and for every object b of B holds S(-, c) = L(c) and S(b, -) = M(b). Then for every morphism f of B and for every morphism g of C holds $(M(\operatorname{cod} f))(g) \cdot (L(\operatorname{dom} g))(f) = (L(\operatorname{cod} g))(f) \cdot (M(\operatorname{dom} f))(g)$.
- (54) $\pi_1($ (the morphisms of $C) \times$ (the morphisms of D)) is a functor from [C, D] to C.
- (55) $\pi_2($ (the morphisms of $C) \times$ (the morphisms of D)) is a functor from [C, D] to D.

We now define two new functors. Let us consider C, D. The functor $\pi_1(C \times D)$ yields a functor from [C, D] to C and is defined as follows:

 $\pi_1(C \times D) = \pi_1($ (the morphisms of $C) \times$ (the morphisms of D)).

The functor $\pi_2(C \times D)$ yielding a functor from [C, D] to D is defined as follows: $\pi_2(C \times D) = \pi_2($ (the morphisms of $C) \times$ (the morphisms of D)). One can prove the following propositions:

- (56) $\pi_1(C \times D) = \pi_1($ (the morphisms of $C) \times$ (the morphisms of D)).
- (57) $\pi_2(C \times D) = \pi_2($ (the morphisms of $C) \times$ (the morphisms of D)).
- (58) For every morphism f of C and for every morphism g of D holds $\pi_1(C \times D)(\langle f, g \rangle) = f$.
- (59) For every object c of C and for every object d of D holds $(\text{Obj} \pi_1(C \times D))(\langle c, d \rangle) = c.$
- (60) For every morphism f of C and for every morphism g of D holds $\pi_2(C \times D)(\langle f, g \rangle) = g$.
- (61) For every object c of C and for every object d of D holds $(\text{Obj}\pi_2(C \times D))(\langle c, d \rangle) = d.$
- (62) For every functor T from C to D and for every functor T' from C to D' holds $\langle T, T' \rangle$ is a functor from C to [D, D'].

Let us consider C, D, D', and let T be a functor from C to D, and let T' be a functor from C to D'. Then $\langle T, T' \rangle$ is a functor from C to [D, D'].

One can prove the following propositions:

- (63) For every functor T from C to D and for every functor T' from C to D' and for every object c of C holds $(\operatorname{Obj}(T, T'))(c) = \langle (\operatorname{Obj} T)(c), (\operatorname{Obj} T')(c) \rangle.$
- (64) For every functor T from C to D and for every functor T' from C' to D' holds $[T, T'] = \langle T \cdot \pi_1(C \times C'), T' \cdot \pi_2(C \times C') \rangle$.
- (65) For every functor T from C to D and for every functor T' from C' to D' holds [T, T'] is a functor from [C, C'] to [D, D'].

Let us consider C, C', D, D', and let T be a functor from C to D, and let T' be a functor from C' to D'. Then [T, T'] is a functor from [C, C'] to [D, D'].

One can prove the following proposition

(66) For every functor T from C to D and for every functor T' from C' to D' and for every object c of C and for every object c' of C' holds (Obj[T, T'])($\langle c, c' \rangle$) = $\langle (Obj T)(c), (Obj T')(c') \rangle$.

References

- Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
- [2] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [3] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

- [5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409–420, 1990.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357– 367, 1990.
- [8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [9] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received May 31, 1990