Subcategories and Products of Categories

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The subcategory of a category and product of categories is defined. The inclusion functor is the injection (inclusion) map $\stackrel{E}{\hookrightarrow}$ which sends each object and each arrow of a Subcategory E of a category C to itself (in C). The inclusion functor is faithful. Full subcategories of C, that is, those subcategories E of C such that $\operatorname{Hom}_{E}(a, b)=\operatorname{Hom}_{C}(b, b)$ for any objects a, b of E, are defined. A subcategory E of C is full when the inclusion functor $\underset{\hookrightarrow}{E}$ is full. The proposition that a full subcategory is determined by giving the set of objects of a category is proved. The product of two categories B and C is constructed in the usual way. Moreover, some simple facts on bifunctors (functors from a product category) are proved. The final notions in this article are that of projection functors and product of two functors (complex functors and product functors).

MML Identifier: CAT_2.

The terminology and notation used in this paper have been introduced in the following articles: [10], [8], [3], [4], [7], [2], [6], [1], [11], [9], and [5]. For simplicity we follow the rules: X denotes a set, C, D, E denote non-empty sets, c denotes an element of C, and d denotes an element of D. Let us consider D, X, E, and let F be a non-empty set of functions from X to E, and let f be a function from D into F, and let d be an element of D. Then $f(d)$ is an element of F.

In the sequel f denotes a function from $\{C, D \ddagger$ into E. The following propositions are true:
(1) curry f is a function from C into E^{D}.
(2) curry' f is a function from D into E^{C}.

Let us consider C, D, E, f. Then curry f is a function from C into E^{D}. Then curry' f is a function from D into E^{C}.

The following two propositions are true:
(3) $\quad f(\langle c, d\rangle)=($ curry $f(c))(d)$.

[^0]\[

$$
\begin{equation*}
f(\langle c, d\rangle)=\left(\text { curry }^{\prime} f(d)\right)(c) . \tag{4}
\end{equation*}
$$

\]

In the sequel $B, C, D, C^{\prime}, D^{\prime}$ denote categories. Let us consider B, C, and let c be an object of C. The functor $B \longmapsto c$ yielding a functor from B to C is defined as follows:
$B \longmapsto c=($ the morphisms of $B) \longmapsto \mathrm{id}_{c}$.
One can prove the following propositions:
(5) For every object c of C holds $B \longmapsto c=$ (the morphisms of $B) \longmapsto \mathrm{id}_{c}$.
(6) For every object c of C and for every morphism f of B holds ($B \longmapsto$ $c)(f)=\mathrm{id}_{c}$.
(7) For every object c of C and for every object b of B holds $(\operatorname{Obj}(B \longmapsto$ c) $)(b)=c$.

Let us consider C, D. The functor Funct (C, D) yields a non-empty set and is defined by:
for an arbitrary x holds $x \in \operatorname{Funct}(C, D)$ if and only if x is a functor from C to D.

Next we state two propositions:
(8) For every non-empty set F holds $F=\operatorname{Funct}(C, D)$ if and only if for an arbitrary x holds $x \in F$ if and only if x is a functor from C to D.
(9) For every element T of $\operatorname{Funct}(C, D)$ holds T is a functor from C to D.

Let us consider C, D. A non-empty set is called a non-empty set of functors from C into D if:
for every element x of it holds x is a functor from C to D.
The following proposition is true
(10) For every non-empty set F holds F is a non-empty set of functors from C into D if and only if for every element x of F holds x is a functor from C to D.
Let us consider C, D, and let F be a non-empty set of functors from C into D. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of F are a functor from C to D.

Let A be a non-empty set, and let us consider C, D, and let F be a nonempty set of functors from C into D, and let T be a function from A into F, and let x be an element of A. Then $T(x)$ is an element of F.

Let us consider C, D. Then $\operatorname{Funct}(C, D)$ is a non-empty set of functors from C into D.

Let us consider C. A category is said to be a subcategory of C if:
(i) the objects of it \subseteq the objects of C,
(ii) for all objects a, b of it and for all objects a^{\prime}, b^{\prime} of C such that $a=a^{\prime}$ and $b=b^{\prime}$ holds $\operatorname{hom}(a, b) \subseteq \operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$,
(iii) the composition of it \leq the composition of C,
(iv) for every object a of it and for every object a^{\prime} of C such that $a=a^{\prime}$ holds $\mathrm{id}_{a}=\mathrm{id}_{a^{\prime}}$.

Next we state the proposition
(11) Given C, D. Then D is a subcategory of C if and only if the following conditions are satisfied:
(i) the objects of $D \subseteq$ the objects of C,
(ii) for all objects a, b of D and for all objects a^{\prime}, b^{\prime} of C such that $a=a^{\prime}$ and $b=b^{\prime}$ holds hom $(a, b) \subseteq \operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$,
(iii) the composition of $D \leq$ the composition of C,
(iv) for every object a of D and for every object a^{\prime} of C such that $a=a^{\prime}$ holds $\mathrm{id}_{a}=\mathrm{id}_{a^{\prime}}$.
In the sequel E will be a subcategory of C. We now state several propositions:
(12) For every object e of E holds e is an object of C.
(13) The morphisms of $E \subseteq$ the morphisms of C.
(14) For every morphism f of E holds f is a morphism of C.
(15) For every morphism f of E and for every morphism f^{\prime} of C such that $f=f^{\prime}$ holds $\operatorname{dom} f=\operatorname{dom} f^{\prime}$ and $\operatorname{cod} f=\operatorname{cod} f^{\prime}$.
(16) For all objects a, b of E and for all objects a^{\prime}, b^{\prime} of C and for every morphism f from a to b such that $a=a^{\prime}$ and $b=b^{\prime}$ and $\operatorname{hom}(a, b) \neq \emptyset$ holds f is a morphism from a^{\prime} to b^{\prime}.
(17) For all morphisms f, g of E and for all morphisms f^{\prime}, g^{\prime} of C such that $f=f^{\prime}$ and $g=g^{\prime}$ and $\operatorname{dom} g=\operatorname{cod} f$ holds $g \cdot f=g^{\prime} \cdot f^{\prime}$.
(18) C is a subcategory of C.
(19) id_{E} is a functor from E to C.

Let us consider C, E. The functor $\stackrel{E}{\hookrightarrow}$ yielding a functor from E to C is defined as follows:
$\stackrel{E}{\hookrightarrow}=\mathrm{id}_{E}$.
The following propositions are true:
(21) \quad For every morphism f of E holds $\underset{\hookrightarrow}{E}(f)=f$.
(22) \quad For every object a of E holds $\left(\operatorname{Obj}_{\stackrel{E}{\leftrightarrows}}^{\leftrightarrows}\right)(a)=a$.
(21) For every morphism f of E holds $\underset{\underbrace{}}{\underset{\hookrightarrow}{E}}(f)=f$.
(22) \quad For every object a of E holds $(\operatorname{Obj} \underset{\hookrightarrow}{E})(a)=a$.

$$
\begin{equation*}
\stackrel{E}{\hookrightarrow}=\operatorname{id}_{E} . \tag{20}
\end{equation*}
$$

For every object a of E holds $\stackrel{E}{\hookrightarrow}(a)=a$.
$\stackrel{E}{E}$ is faithful.
$\stackrel{E}{\Delta}$ is full if and only if for all objects a, b of E and for all objects a^{\prime}, b^{\prime} of \vec{C} such that $a=a^{\prime}$ and $b=b^{\prime}$ holds hom $(a, b)=\operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$.
Let C be a category structure, and let us consider D. We say that C is full subcategory of D if and only if:
C is a subcategory of D and for all objects a, b of C and for all objects a^{\prime}, b^{\prime} of D such that $a=a^{\prime}$ and $b=b^{\prime}$ holds hom $(a, b)=\operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$.

The following propositions are true:
(26) For every C being a category structure and for every D holds C is full subcategory of D if and only if C is a subcategory of D and for all objects
a, b of C and for all objects a^{\prime}, b^{\prime} of D such that $a=a^{\prime}$ and $b=b^{\prime}$ holds $\operatorname{hom}(a, b)=\operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$.
E is full subcategory of C if and only if $\underset{\hookrightarrow}{E}$ is full.
For every non-empty subset O of the objects of C holds $\bigcup\{\operatorname{hom}(a, b)$: $a \in O \wedge b \in O\}$ is a non-empty subset of the morphisms of C.
Let O be a non-empty subset of the objects of C. Let M be a nonempty set. Suppose $M=\bigcup\{\operatorname{hom}(a, b): a \in O \wedge b \in O\}$. Then (the dom-map of $C) \upharpoonright M$ is a function from M into O and (the cod-map of $C) \upharpoonright M$ is a function from M into O and (the composition of C) $\upharpoonright: M$, M : is a partial function from : M, M : to M and (the id-map of $C) \upharpoonright O$ is a function from O into M.
(30) Let O be a non-empty subset of the objects of C. Let M be a non-empty set. Let d, c be functions from M into O. Let p be a partial function from $: M, M:$ to M. Let i be a function from O into M. Suppose $M=\bigcup\{\operatorname{hom}(a, b): a \in O \wedge b \in O\}$ and $d=$ (the dom-map of $C) \upharpoonright M$ and $c=($ the cod-map of $C) \upharpoonright M$ and $p=($ the composition of $C) \upharpoonright: M, M:$ and $i=($ the id-map of $C) \upharpoonright O$. Then $\langle O, M, d, c, p, i\rangle$ is full subcategory of C.
(31) Let O be a non-empty subset of the objects of C. Let M be a non-empty set. Let d, c be functions from M into O. Let p be a partial function from $: M, M$: to M. Let i be a function from O into M. Suppose $\langle O, M, d, c, p, i\rangle$ is full subcategory of C. Then $M=\bigcup\{\operatorname{hom}(a, b): a \in$ $O \wedge b \in O\}$ and $d=($ the dom-map of $C) \upharpoonright M$ and $c=$ (the cod-map of $C) \upharpoonright M$ and $p=($ the composition of $C) \upharpoonright: M, M:$ and $i=$ (the id-map of $C) \upharpoonright O$.
Let $X_{1}, X_{2}, Y_{1}, Y_{2}$ be non-empty sets, and let f_{1} be a function from X_{1} into Y_{1}, and let f_{2} be a function from X_{2} into Y_{2}. Then : f_{1}, f_{2} : is a function from [X_{1}, X_{2}] into $: Y_{1}, Y_{2}$].

Let A, B be non-empty sets, and let f be a partial function from : A, A : to A, and let g be a partial function from $: B, B \vdots$ to B. Then $|: f, g:|$ is a partial function from $:: A, B!,[: A, B:!$ to $: A, B]$.

Let us consider C, D. The functor : C, D : yielding a category is defined as follows:
: $C, D:=\langle:$ the objects of C, the objects of $D:], \equiv$ the morphisms of C, the morphisms of $D:]$,: the dom-map of C, the dom-map of $D:]$, : the cod-map of C, the cod-map of $D:], \mid$ the composition of C, the composition of $D: \mid,:$ the id-map of C, the id-map of $D: j\rangle$.

Next we state three propositions:
(32) $\quad \vdots C, D \vdots=\langle:$ the objects of C, the objects of $D:],:$ the morphisms of C, the morphisms of $D:$, , the dom-map of C, the dom-map of $D:,:$ the cod-map of C, the cod-map of $D:]$, |: the composition of C, the composition of $D: \mid$, : the id-map of C, the id-map of $D: j\rangle$.
(33) (i) The objects of $\{C, D:=$: the objects of C, the objects of $D:$,
(ii) the morphisms of : $C, D:=$: the morphisms of C, the morphisms of D:],
(iii) the dom-map of $: C, D:=$: the dom-map of C, the dom-map of $D:]$,
(iv) the cod-map of $[: C, D:=[$ the cod-map of C, the cod-map of $D:]$,
(v) the composition of $: C, D:]=\mid$: the composition of C, the composition of $D: \mid$,
(vi) the id-map of : $C, D:=$: the id-map of C, the id-map of $D:$.
(34) For every object c of C and for every object d of D holds $\langle c, d\rangle$ is an object of $: C, D:]$.
Let us consider C, D, and let c be an object of C, and let d be an object of D. Then $\langle c, d\rangle$ is an object of $: C, D:]$.

One can prove the following propositions:
(35) For every object $c d$ of : C, D : there exists an object c of C and there exists an object d of D such that $c d=\langle c, d\rangle$.
(36) For every morphism f of C and for every morphism g of D holds $\langle f, g\rangle$ is a morphism of : $C, D:]$.
Let us consider C, D, and let f be a morphism of C, and let g be a morphism of D. Then $\langle f, g\rangle$ is a morphism of $: C, D:]$.

The following propositions are true:
(37) For every morphism $f g$ of $: C, D$: there exists a morphism f of C and there exists a morphism g of D such that $f g=\langle f, g\rangle$.
(38) For every morphism f of C and for every morphism g of D holds $\operatorname{dom}\langle f, g\rangle=\langle\operatorname{dom} f, \operatorname{dom} g\rangle$ and $\operatorname{cod}\langle f, g\rangle=\langle\operatorname{cod} f, \operatorname{cod} g\rangle$.
(39) For all morphisms f, f^{\prime} of C and for all morphisms g, g^{\prime} of D such that $\operatorname{dom} f^{\prime}=\operatorname{cod} f$ and dom $g^{\prime}=\operatorname{cod} g$ holds $\left\langle f^{\prime}, g^{\prime}\right\rangle \cdot\langle f, g\rangle=\left\langle f^{\prime} \cdot f, g^{\prime} \cdot g\right\rangle$.
(40) For all morphisms f, f^{\prime} of C and for all morphisms g, g^{\prime} of D such that $\operatorname{dom}\left\langle f^{\prime}, g^{\prime}\right\rangle=\operatorname{cod}\langle f, g\rangle$ holds $\left\langle f^{\prime}, g^{\prime}\right\rangle \cdot\langle f, g\rangle=\left\langle f^{\prime} \cdot f, g^{\prime} \cdot g\right\rangle$.
(41) For every object c of C and for every object d of D holds id ${ }_{\langle c, d\rangle}=$ $\left\langle\mathrm{id}_{c}, \mathrm{id}_{d}\right\rangle$.
(42) For all objects c, c^{\prime} of C and for all objects d, d^{\prime} of D holds $\operatorname{hom}\left(\langle c, d\rangle,\left\langle c^{\prime}, d^{\prime}\right\rangle\right)=\left[: \operatorname{hom}\left(c, c^{\prime}\right), \operatorname{hom}\left(d, d^{\prime}\right):\right]$.
(43) For all objects c, c^{\prime} of C and for every morphism f from c to c^{\prime} and for all objects d, d^{\prime} of D and for every morphism g from d to d^{\prime} such that $\operatorname{hom}\left(c, c^{\prime}\right) \neq \emptyset$ and $\operatorname{hom}\left(d, d^{\prime}\right) \neq \emptyset$ holds $\langle f, g\rangle$ is a morphism from $\langle c, d\rangle$ to $\left\langle c^{\prime}, d^{\prime}\right\rangle$.
(44) For every functor S from : C, C^{\prime} : to D and for every object c of C holds curry $S\left(\mathrm{id}_{c}\right)$ is a functor from C^{\prime} to D.
(45) For every functor S from $: C, C^{\prime}$: to D and for every object c^{\prime} of C^{\prime} holds curry' $S\left(\mathrm{id}_{c^{\prime}}\right)$ is a functor from C to D.
Let us consider C, C^{\prime}, D, and let S be a functor from : C, C^{\prime} : to D, and let c be an object of C. The functor $S(c,-)$ yields a functor from C^{\prime} to D and is defined as follows:
$S(c,-)=$ curry $S\left(\mathrm{id}_{c}\right)$.
The following three propositions are true:
(46) For every functor S from $: C, C^{\prime} \vdots$ to D and for every object c of C holds $S(c,-)=\operatorname{curry} S\left(\mathrm{id}_{c}\right)$.
(47) For every functor S from $: C, C^{\prime}$] to D and for every object c of C and for every morphism f of C^{\prime} holds $S(c,-)(f)=S\left(\left\langle\operatorname{id}_{c}, f\right\rangle\right)$.
(48) For every functor S from $: C, C^{\prime}$] to D and for every object c of C and for every object c^{\prime} of C^{\prime} holds $(\operatorname{Obj} S(c,-))\left(c^{\prime}\right)=(\operatorname{Obj} S)\left(\left\langle c, c^{\prime}\right\rangle\right)$.
Let us consider C, C^{\prime}, D, and let S be a functor from : C, C^{\prime} : to D, and let c^{\prime} be an object of C^{\prime}. The functor $S\left(-, c^{\prime}\right)$ yielding a functor from C to D is defined by:
$S\left(-, c^{\prime}\right)=$ curry $^{\prime} S\left(\mathrm{id}_{c^{\prime}}\right)$.
We now state several propositions:
(49) For every functor S from $\left\{C, C^{\prime} \ddagger\right.$ to D and for every object c^{\prime} of C^{\prime} holds $S\left(-, c^{\prime}\right)=$ curry' $S\left(\mathrm{id}_{c^{\prime}}\right)$.
(50) For every functor S from : C, C^{\prime} : to D and for every object c^{\prime} of C^{\prime} and for every morphism f of C holds $S\left(-, c^{\prime}\right)(f)=S\left(\left\langle f, \operatorname{id}_{c^{\prime}}\right\rangle\right)$.
(51) For every functor S from : C, C^{\prime}] to D and for every object c of C and for every object c^{\prime} of C^{\prime} holds $\left(\operatorname{Obj} S\left(-, c^{\prime}\right)\right)(c)=(\operatorname{Obj} S)\left(\left\langle c, c^{\prime}\right\rangle\right)$.
(52) Let L be a function from the objects of C into Funct (B, D). Let M be a function from the objects of B into Funct (C, D). Suppose that
(i) for every object c of C and for every object b of B holds $(M(b))\left(\mathrm{id}_{c}\right)=$ $(L(c))\left(\mathrm{id}_{b}\right)$,
(ii) for every morphism f of B and for every morphism g of C holds $(M(\operatorname{cod} f))(g) \cdot(L(\operatorname{dom} g))(f)=(L(\operatorname{cod} g))(f) \cdot(M(\operatorname{dom} f))(g)$.
Then there exists a functor S from $: B, C$: to D such that for every morphism f of B and for every morphism g of C holds $S(\langle f, g\rangle)=$ $(L(\operatorname{cod} g))(f) \cdot(M(\operatorname{dom} f))(g)$.
(53) Let L be a function from the objects of C into $\operatorname{Funct}(B, D)$. Let M be a function from the objects of B into Funct (C, D). Suppose there exists a functor S from $: B, C$ 引 to D such that for every object c of C and for every object b of B holds $S(-, c)=L(c)$ and $S(b,-)=M(b)$. Then for every morphism f of B and for every morphism g of C holds $(M(\operatorname{cod} f))(g) \cdot(L(\operatorname{dom} g))(f)=(L(\operatorname{cod} g))(f) \cdot(M(\operatorname{dom} f))(g)$.
(54) $\quad \pi_{1}(($ the morphisms of $C) \times($ the morphisms of $D))$ is a functor from : $C, D:]$ to C.
(55) $\quad \pi_{2}(($ the morphisms of $C) \times($ the morphisms of $D))$ is a functor from [C, D] to D.
We now define two new functors. Let us consider C, D. The functor $\pi_{1}(C \times$ $D)$ yields a functor from : C, D : to C and is defined as follows:
$\pi_{1}(C \times D)=\pi_{1}(($ the morphisms of $C) \times($ the morphisms of $D))$.
The functor $\pi_{2}(C \times D)$ yielding a functor from $: C, D$] to D is defined as follows: $\pi_{2}(C \times D)=\pi_{2}(($ the morphisms of $C) \times($ the morphisms of $D))$.

One can prove the following propositions:
(56) $\quad \pi_{1}(C \times D)=\pi_{1}(($ the morphisms of $C) \times($ the morphisms of $D))$.
(57) $\quad \pi_{2}(C \times D)=\pi_{2}(($ the morphisms of $C) \times($ the morphisms of $D))$.
(58) For every morphism f of C and for every morphism g of D holds $\pi_{1}(C \times$ $D)(\langle f, g\rangle)=f$.
(59) For every object c of C and for every object d of D holds $\left(\operatorname{Obj} \pi_{1}(C \times\right.$ $D)(\langle c, d\rangle)=c$.
(60) For every morphism f of C and for every morphism g of D holds $\pi_{2}(C \times$ $D)(\langle f, g\rangle)=g$.
(61) For every object c of C and for every object d of D holds $\left(\operatorname{Obj} \pi_{2}(C \times\right.$ $D)(\langle c, d\rangle)=d$.
(62) For every functor T from C to D and for every functor T^{\prime} from C to D^{\prime} holds $\left\langle T, T^{\prime}\right\rangle$ is a functor from C to : D, D^{\prime}].
Let us consider C, D, D^{\prime}, and let T be a functor from C to D, and let T^{\prime} be a functor from C to D^{\prime}. Then $\left\langle T, T^{\prime}\right\rangle$ is a functor from C to $: D, D^{\prime}$:.

One can prove the following propositions:
(63) For every functor T from C to D and for every functor T^{\prime} from C to D^{\prime} and for every object c of C holds $\left(\operatorname{Obj}\left\langle T, T^{\prime}\right\rangle\right)(c)=\left\langle(\operatorname{Obj} T)(c),\left(\operatorname{Obj} T^{\prime}\right)(c)\right\rangle$.
(64) For every functor T from C to D and for every functor T^{\prime} from C^{\prime} to D^{\prime} holds : $T, T^{\prime}:=\left\langle T \cdot \pi_{1}\left(C \times C^{\prime}\right), T^{\prime} \cdot \pi_{2}\left(C \times C^{\prime}\right)\right\rangle$.
(65) For every functor T from C to D and for every functor T^{\prime} from C^{\prime} to D^{\prime} holds $: T, T^{\prime}$; is a functor from : $C, C^{\prime} \ddagger$ to $\left.: D, D^{\prime}:\right]$.
Let us consider $C, C^{\prime}, D, D^{\prime}$, and let T be a functor from C to D, and let T^{\prime} be a functor from C^{\prime} to D^{\prime}. Then $\left[T, T^{\prime}:\right.$ is a functor from $\left[C, C^{\prime}:\right]$ to $: D$, D^{\prime};

One can prove the following proposition
(66) For every functor T from C to D and for every functor T^{\prime} from C^{\prime} to D^{\prime} and for every object c of C and for every object c^{\prime} of C^{\prime} holds (Objः T, $\left.T^{\prime} \vdots\right)\left(\left\langle c, c^{\prime}\right\rangle\right)=\left\langle(\operatorname{Obj} T)(c),\left(\operatorname{Obj} T^{\prime}\right)\left(c^{\prime}\right)\right\rangle$.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[2] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1 (3):521-527, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 31, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

