Projective Spaces - Part I

Wojciech Leończuk¹ Warsaw University Białystok Krzysztof Prażmowski² Warsaw University Białystok

Summary. In the class of all collinearity structures a subclass of (dimension free) projective spaces, defined by means of a suitable axiom system, is singled out. Whenever a real vector space V is at least 3-dimensional, the structure ProjectiveSpace(V) is a projective space in the above meaning. Some narrower classes of projective spaces are defined: Fano projective spaces, projective planes, and Fano projective planes. For any of the above classes an explicit axiom system is given, as well as an analytical example. There is also a construction a of 3-dimensional and a 4-dimensional real vector space; these are needed to show appropriate examples of projective spaces.

MML Identifier: ANPROJ_2.

The notation and terminology used here are introduced in the following papers: [1], [5], [7], [6], [3], [4], and [2]. For simplicity we adopt the following rules: V will denote a real linear space, $p, q, r, u, v, w, y, u_1, v_1$ will denote vectors of V, a, b, c, d, a_1, b_1 will denote real numbers, and z will be arbitrary. We now state three propositions:

- (1) Suppose for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0. Then u is a proper vector and v is a proper vector and w is a proper vector and u, v and w are not lineary dependent and u and v are not proportional.
- (2) Given u, v, u₁, v₁. Suppose for all a, b, a₁, b₁ such that ((a · u + b · v) + a₁ · u₁) + b₁ · v₁ = 0_V holds a = 0 and b = 0 and a₁ = 0 and b₁ = 0. Then u is a proper vector and v is a proper vector and u and v are not proportional and u₁ is a proper vector and v₁ is a proper vector and u₁ are not proper vector and u, v and u₁ are not lineary dependent and u₁, v₁ and u are not lineary dependent.

767

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C6.

²Supported by RPBP.III-24.C2.

(3) Suppose for every w there exist a, b, c such that $w = (a \cdot p + b \cdot q) + c \cdot r$ and for all a, b, c such that $(a \cdot p + b \cdot q) + c \cdot r = 0_V$ holds a = 0 and b = 0 and c = 0. Then for every u, u_1 there exists y such that p, q and y are lineary dependent and u, u_1 and y are lineary dependent and y is a proper vector.

We follow a convention: A is a non-empty set, f, g, h, f_1 are elements of \mathbb{R}^A , and x_1, x_2, x_3, x_4 are elements of A. We now state a number of propositions:

- (4) Suppose $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$. Then there exist f, g, h such that for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 but if $z \neq x_1$, then f(z) = 0 and for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 but if $z \neq x_2$, then g(z) = 0 and for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 but if $z \neq x_3$, then h(z) = 1 but if $z \neq x_3$, then h(z) = 1 but if $z \neq x_3$, then h(z) = 0.
- (5) Suppose that
- (i) $x_1 \in A$,
- (ii) $x_2 \in A$,
- (iii) $x_3 \in A$,
- (iv) $x_1 \neq x_2$,
- (v) $x_1 \neq x_3$,
- (vi) $x_2 \neq x_3$,
- (vii) for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 but if $z \neq x_1$, then f(z) = 0,
- (viii) for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 but if $z \neq x_2$, then g(z) = 0,
- (ix) for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 but if $z \neq x_3$, then h(z) = 0.

Then for all a, b, c such that

 $\begin{aligned} +_{\mathbb{R}^{A}}(+_{\mathbb{R}^{A}}(\cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f \rangle), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h \rangle)) &= \mathbf{0}_{\mathbb{R}^{A}} \\ \text{holds } a = 0 \text{ and } b = 0 \text{ and } c = 0. \end{aligned}$

- (6) Suppose $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$. Then there exist f, g, h such that for all a, b, c such that $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)) = \mathbf{0}_{\mathbb{R}^A}$ holds a = 0and b = 0 and c = 0.
- (7) Suppose that
- (i) $A = \{x_1, x_2, x_3\},\$
- (ii) $x_1 \neq x_2$,
- (iii) $x_1 \neq x_3$,
- (iv) $x_2 \neq x_3$,
- (v) for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 but if $z \neq x_1$, then f(z) = 0,
- (vi) for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 but if $z \neq x_2$, then g(z) = 0,
- (vii) for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 but if $z \neq x_3$, then h(z) = 0.

Then for every element h' of \mathbb{R}^A there exist a, b, c such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)).$

- (8) Suppose $A = \{x_1, x_2, x_3\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$. Then there exist f, g, h such that for every element h' of \mathbb{R}^A there exist a, b, csuch that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)).$
- (9) Suppose $A = \{x_1, x_2, x_3\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$. Then there exist f, g, h such that for all a, b, c such that $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle a, f \rangle),$ $\cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)) = \mathbf{0}_{\mathbb{R}^A}$ holds a = 0 and b = 0 and c = 0 and for every element h' of \mathbb{R}^A there exist a, b, c such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle a, f \rangle),$ $\cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)).$
- (10) There exists a non-trivial real linear space V and there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.
- (11) Suppose $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_4 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then there exist f, g, h, f_1 such that for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 but if $z \neq x_1$, then f(z) = 0 and for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 but if $z \neq x_3$, then h(z) = 0 and for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 but if $z \neq x_3$, then h(z) = 1 but if $z \neq x_4$, then $f_1(z) = 1$ but if $z \neq x_4$, then $f_1(z) = 0$.
- (12) Suppose that
 - (i) $x_1 \in A$,
 - (ii) $x_2 \in A$,
 - (iii) $x_3 \in A$,
 - (iv) $x_4 \in A$,
 - (v) $x_1 \neq x_2$,
 - (vi) $x_1 \neq x_3$,
- (vii) $x_1 \neq x_4$,
- (viii) $x_2 \neq x_3$,
- (ix) $x_2 \neq x_4$,
- (x) $x_3 \neq x_4$,
- (xi) for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 but if $z \neq x_1$, then f(z) = 0,
- (xii) for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 but if $z \neq x_2$, then g(z) = 0,
- (xiii) for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 but if $z \neq x_3$, then h(z) = 0,
- (xiv) for every z such that $z \in A$ holds if $z = x_4$, then $f_1(z) = 1$ but if $z \neq x_4$, then $f_1(z) = 0$. Given a, b, c, d. Suppose

 $+_{\mathbb{R}^{A}}(+_{\mathbb{R}^{A}}(+_{\mathbb{R}^{A}}(\langle a, f \rangle), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h \rangle)), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle d, f_{1} \rangle)) = \mathbf{0}_{\mathbb{R}^{A}}.$ Then a = 0 and b = 0 and c = 0 and d = 0.

- (13) Suppose $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_4 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then there exist f, g, h, f_1 such that for all a, b, c, d such that $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\langle a, f \rangle), \langle a, f \rangle)), \langle a, f \rangle)), \langle a, f \rangle), \langle a, f \rangle), \langle a, f \rangle), \langle a, f \rangle \rangle = \mathbf{0}_{\mathbb{R}^A}$ holds a = 0 and b = 0 and c = 0 and d = 0.
- (14) Suppose that
 - (i) $A = \{x_1, x_2, x_3, x_4\},\$
 - (ii) $x_1 \neq x_2$,
 - (iii) $x_1 \neq x_3$,
 - (iv) $x_1 \neq x_4$,
 - (v) $x_2 \neq x_3$,
 - (vi) $x_2 \neq x_4$,
- (vii) $x_3 \neq x_4$,
- (viii) for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 but if $z \neq x_1$, then f(z) = 0,
- (ix) for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 but if $z \neq x_2$, then g(z) = 0,
- (x) for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 but if $z \neq x_3$, then h(z) = 0,
- (xi) for every z such that $z \in A$ holds if $z = x_4$, then $f_1(z) = 1$ but if $z \neq x_4$, then $f_1(z) = 0$. Then for every element k' of \mathbb{P}^A there exist a k is disuch that k'.

Then for every element h' of \mathbb{R}^A there exist a, b, c, d such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A} (\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle c, h \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle d, f_1 \rangle)).$

- (15) Suppose $A = \{x_1, x_2, x_3, x_4\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then there exist f, g, h, f_1 such that for every element h' of \mathbb{R}^A there exist a, b, c, d such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle d, f_1 \rangle)).$
- (16) Suppose $A = \{x_1, x_2, x_3, x_4\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then there exist f, g, h, f_1 such that for all a, b, c, d such that $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}(\langle b, g \rangle)),$ $\cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle d, f_1 \rangle)) = \mathbf{0}_{\mathbb{R}^A}$ holds a = 0 and b = 0 and c = 0 and d = 0 and for every element h' of \mathbb{R}^A there exist a, b, c, d such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle d, f_1 \rangle)).$
- (17) There exists a non-trivial real linear space V and there exist u, v, w, u_1 such that for all a, b, c, d such that $((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0 and for every y there exist a, b, c, d such that $y = ((a \cdot u + b \cdot v) + c \cdot w) + d \cdot u_1$.

We follow the rules: V is a non-trivial real linear space, u, v, w, y, w_1 are vectors of V, and p, p_1 , p_2 , q, q_1 , r, r_1 , r_2 are elements of the points of the projective space over V. The following propositions are true:

(18) p, q and r are collinear if and only if there exist u, v, w such that p = the direction of u and q = the direction of v and r = the direction of w and u is a proper vector and v is a proper vector and w is a proper vector and u, v and w are lineary dependent.

- (19) p, q and p are collinear and p, p and q are collinear and p, q and q are collinear.
- (20) If $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear, then r, r_1 and r_2 are collinear.
- (21) If p, q and r are collinear, then p, r and q are collinear and q, p and r are collinear and r, q and p are collinear and r, p and q are collinear and q, r and p are collinear.
- (22) If p, p_1 and p_2 are collinear and p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear, then there exists r_2 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear.
- (23) If p, p_1 and p_2 are not collinear and p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear, then there exists r_2 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear.
- (24) If p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear, then there exists r_2 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear.
- (25) Suppose p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear. Then p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.
- (26) If there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0, then there exist p, q, r such that p, q and r are not collinear.
- (27) Suppose there exist u, v, w_1 such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w_1 = 0_V$ holds a = 0 and b = 0 and c = 0. Then for every p, q there exists r such that $p \neq r$ and $q \neq r$ and p, q and r are collinear.
- (28) Suppose that

(i) there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.

Then there exist elements x_1, x_2 of the points of the projective space over V such that $x_1 \neq x_2$ and for every r_1, r_2 there exists q such that x_1, x_2 and q are collinear and r_1, r_2 and q are collinear.

- (29) If there exist elements x_1, x_2 of the points of the projective space over V such that $x_1 \neq x_2$ and for every r_1, r_2 there exists q such that x_1, x_2 and q are collinear and r_1, r_2 and q are collinear, then for every p, p_1, q, q_1 there exists r such that p, p_1 and r are collinear and q, q_1 and r are collinear.
- (30) Suppose that
 - (i) there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.

Then for every p, p_1 , q, q_1 there exists r such that p, p_1 and r are collinear and q, q_1 and r are collinear.

- (31) Suppose that
 - (i) there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.

Then there exist p, q, r such that p, q and r are not collinear and for every p, p_1 , q, q_1 there exists r such that p, p_1 and r are collinear and q, q_1 and r are collinear.

A collinearity structure is said to be a projective space defined in terms of collinearity if:

(i) for all elements p, q, r, r_1, r_2 of the points of it such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,

(ii) for all elements p, q, r of the points of it holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,

(iii) for all elements p, p_1 , p_2 , r, r_1 of the points of it such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of it such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,

(iv) for every elements p, q of the points of it there exists an element r of the points of it such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,

(v) there exist elements p, q, r of the points of it such that p, q and r are not collinear.

Next we state three propositions:

- (32) Let CS be a collinearity structure. Then CS is a projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1, r_2 of the points of CS such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (ii) for all elements p, q, r of the points of CS holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (iii) for all elements p, p_1 , p_2 , r, r_1 of the points of CS such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of CS such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
 - (iv) for every elements p, q of the points of CS there exists an element r of the points of CS such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (v) there exist elements p, q, r of the points of CS such that p, q and r are not collinear.
- (33) For every projective space CS defined in terms of collinearity holds CS is a proper collinearity space.
- (34) If there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0, then the projective space over V is a

projective space defined in terms of collinearity.

A projective space defined in terms of collinearity is called a Fanoian projective space defined in terms of collinearity if:

Let $p_1, r_2, q, r_1, q_1, p, r$ be elements of the points of it. Suppose p_1, r_2 and q are collinear and r_1, q_1 and q are collinear and p_1, r_1 and p are collinear and r_2, q_1 and p are collinear and p_1, q_1 and r are collinear and r_2, r_1 and r are collinear and p_1, q_1 and r are collinear and r_2, r_1 and r are collinear and r_1, r_2 and r_1 are collinear or p_1, r_2 and q_1 are collinear or p_1, r_2 and r_1 are collinear or p_1, r_1 and q_1 are collinear or r_2, r_1 and q_1 are collinear.

The following propositions are true:

- (35) Let CS be a projective space defined in terms of collinearity. Then CS is a Fanoian projective space defined in terms of collinearity if and only if for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of CS such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.
- (36) Let CS be a collinearity structure. Then CS is a Fanoian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1, r_2 of the points of CS such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (ii) for all elements p, q, r of the points of CS holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (iii) for all elements p, p_1 , p_2 , r, r_1 of the points of CS such that p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear there exists an element r_2 of the points of CS such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear,
 - (iv) for every elements p, q of the points of CS there exists an element r of the points of CS such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (v) there exist elements p, q, r of the points of CS such that p, q and r are not collinear,
 - (vi) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of CS such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.
- (37) If there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0, then the projective space over V is a Fanoian projective space defined in terms of collinearity.

A projective space defined in terms of collinearity is called a projective plane defined in terms of collinearity if:

for every elements p, p_1 , q, q_1 of the points of it there exists an element r of the points of it such that p, p_1 and r are collinear and q, q_1 and r are collinear.

We now state three propositions:

- (38) For every projective space CPS defined in terms of collinearity holds CPS is a projective plane defined in terms of collinearity if and only if for every elements p, p_1 , q, q_1 of the points of CPS there exists an element r of the points of CPS such that p, p_1 and r are collinear and q, q_1 and r are collinear.
- (39) Let CS be a collinearity structure. Then CS is a projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1, r_2 of the points of CS such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (ii) for all elements p, q, r of the points of CS holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (iii) for every elements p, q of the points of CS there exists an element r of the points of CS such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (iv) there exist elements p, q, r of the points of CS such that p, q and r are not collinear,
 - (v) for every elements p, p_1 , q, q_1 of the points of CS there exists an element r of the points of CS such that p, p_1 and r are collinear and q, q_1 and r are collinear.
- (40) Suppose that
 - (i) there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.

Then the projective space over V is a projective plane defined in terms of collinearity.

A projective plane defined in terms of collinearity is said to be a Fanoian projective plane defined in terms of collinearity if:

Let $p_1, r_2, q, r_1, q_1, p, r$ be elements of the points of it. Suppose p_1, r_2 and q are collinear and r_1, q_1 and q are collinear and p_1, r_1 and p are collinear and r_2, q_1 and p are collinear and p_1, q_1 and r are collinear and r_2, r_1 and r are collinear and p_1, q_1 and r are collinear and r_2, r_1 and r are collinear and r_1, r_2 and r_1 are collinear or p_1, r_2 and q_1 are collinear or p_1, r_2 and r_1 are collinear or p_1, r_1 and q_1 are collinear or r_2, r_1 and q_1 are collinear.

Next we state four propositions:

(41) Let CS be a projective plane defined in terms of collinearity. Then CS is a Fanoian projective plane defined in terms of collinearity if and only if for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of CS such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and p are collinear and p_1 , r_2 and q are collinear and r_2 , q_1 and p are collinear and p_1 , r_2 and q_1 are collinear and r_2 , r_1 and p are collinear and p_1 , r_2 and q_1 are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1

are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.

- (42) Let CS be a collinearity structure. Then CS is a Fanoian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
 - (i) for all elements p, q, r, r_1, r_2 of the points of CS such that $p \neq q$ and p, q and r are collinear and p, q and r_1 are collinear and p, q and r_2 are collinear holds r, r_1 and r_2 are collinear,
 - (ii) for all elements p, q, r of the points of CS holds p, q and p are collinear and p, p and q are collinear and p, q and q are collinear,
 - (iii) for every elements p, q of the points of CS there exists an element r of the points of CS such that $p \neq r$ and $q \neq r$ and p, q and r are collinear,
 - (iv) there exist elements p, q, r of the points of CS such that p, q and r are not collinear,
 - (v) for every elements p, p_1 , q, q_1 of the points of CS there exists an element r of the points of CS such that p, p_1 and r are collinear and q, q_1 and r are collinear,
 - (vi) for all elements p_1 , r_2 , q, r_1 , q_1 , p, r of the points of CS such that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and r are collinear and r_2 , r_1 and r are collinear and p, q and r are collinear holds p_1 , r_2 and q_1 are collinear or p_1 , r_2 and r_1 are collinear or p_1 , r_1 and q_1 are collinear or r_2 , r_1 and q_1 are collinear.
- (43) Suppose that
 - (i) there exist u, v, w such that for all a, b, c such that $(a \cdot u + b \cdot v) + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = (a \cdot u + b \cdot v) + c \cdot w$.

Then the projective space over V is a Fanoian projective plane defined in terms of collinearity.

(44) For every CS being a collinearity structure holds CS is a Fanoian projective plane defined in terms of collinearity if and only if CS is a Fanoian projective space defined in terms of collinearity and for every elements p, p_1, q, q_1 of the points of CS there exists an element r of the points of CS such that p, p_1 and r are collinear and q, q_1 and r are collinear.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. *Formalized Mathematics*, 1(4):761–766, 1990.
- [3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.

- [4] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.
- [5] Andrzej Trybulec. Enumerated sets. *Formalized Mathematics*, 1(1):25–34, 1990.
- [6] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [7] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.

Received June 15, 1990