Affine Localizations of Desargues Axiom ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok
Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Summary. Several affine localizations of Major Desargues Axiom together with its indirect forms are introduced. Logical relationships between these formulas and between them and the classical Desargues Axiom are demonstrated.

MML Identifier: AFF_3.

The articles [1], [3], and [2] provide the notation and terminology for this paper. We follow a convention: $A P$ denotes an affine plane, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, o, p, q$ denote elements of the points of $A P$, and A, C, P denote subsets of the points of $A P$. Let us consider $A P$. We say that $A P$ satisfies DES1 if and only if:

Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) A is a line,
(ii) P is a line,
(iii) C is a line,
(iv) $P \neq A$,
(v) $P \neq C$,
(vi) $A \neq C$,
(vii) $o \in A$,
(viii) $a \in A$,
(ix) $a^{\prime} \in A$,
(x) $o \in P$,
(xi) $b \in P$,
(xii) $\quad b^{\prime} \in P$,

[^0]```
 (xiii) \(o \in C\),
 (xiv) \(c \in C\),
 (xv) \(c^{\prime} \in C\),
 (xvi) \(\quad o \neq a\),
(xvii) \(o \neq b\),
(xviii) \(\quad o \neq c\),
 (xix) \(p \neq q\),
 (xx) not \(\mathbf{L}(b, a, c)\),
 (xxi) not \(\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)\),
(xxii) \(\quad a \neq a^{\prime}\),
(xxiii) \(\mathbf{L}(b, a, p)\),
(xxiv) \(\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)\),
(xxv) \(\mathbf{L}(b, c, q)\),
(xxvi) \(\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)\),
(xxvii) \(\quad a, c \| a^{\prime}, c^{\prime}\).
```

Then $a, c \| p, q$.

We now state the proposition
(1) Given $A P$. Then $A P$ satisfies DES1 if and only if for all $A, P, C, o$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $P \neq A$ and $P \neq C$ and $A \neq C$ and $o \in A$ and $a \in A$ and $a^{\prime} \in A$ and $o \in P$ and $b \in P$ and $b^{\prime} \in P$ and $o \in C$ and $c \in C$ and $c^{\prime} \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $p \neq q$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $a \neq a^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ holds $a, c \| p, q$.
Let us consider $A P$. We say that $A P$ satisfies DES1 $_{1}$ if and only if:
Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $P \neq A$,
(v) $P \neq C$,
(vi) $A \neq C$,
(vii) $o \in A$,
(viii) $a \in A$,
(ix) $a^{\prime} \in A$,
(x) $o \in P$,
(xi) $b \in P$,
(xii) $b^{\prime} \in P$,
(xiii) $o \in C$,
(xiv) $c \in C$,
(xv) $c^{\prime} \in C$,
(xvi) $\quad o \neq a$,
(xvii) $o \neq b$,
(xviii) $\quad o \neq c$,

$$
\begin{aligned}
& \text { (xix) } p \neq q \text {, } \\
& \text { (xx) } \quad c \neq q \text {, } \\
& \text { (xxi) } \operatorname{not} \mathbf{L}(b, a, c) \text {, } \\
& \text { (xxii) not } \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right) \text {, } \\
& \text { (xxiii) } \mathbf{L}(b, a, p) \text {, } \\
& \text { (xxiv) } \mathbf{L}\left(b^{\prime}, a^{\prime}, p\right) \text {, } \\
& \text { (xxv) } \mathbf{L}(b, c, q) \text {, } \\
& \text { (xxvi) } \mathbf{L}\left(b^{\prime}, c^{\prime}, q\right), \\
& \text { (xxvii) } \quad a, c \| p, q \text {. } \\
& \text { Then } a, c \| a^{\prime}, c^{\prime} \text {. } \\
& \text { (i) } A \text { is a line, } \\
& \text { (ii) } P \text { is a line, } \\
& \text { (iii) } C \text { is a line, } \\
& \text { (iv) } P \neq A \text {, } \\
& \text { (v) } P \neq C \text {, } \\
& \text { (vi) } A \neq C \text {, } \\
& \text { (vii) } o \in A \text {, } \\
& \text { (viii) } a \in A \text {, } \\
& \text { (ix) } a^{\prime} \in A \text {, } \\
& \text { (x) } o \in P \text {, } \\
& \text { (xi) } b \in P \text {, } \\
& \text { (xii) } b^{\prime} \in P \text {, } \\
& \text { (xiii) } c \in C \text {, } \\
& \text { (xiv) } c^{\prime} \in C \text {, } \\
& \text { (xv) } o \neq a \text {, } \\
& \text { (xvi) } \quad o \neq b \text {, } \\
& \text { (xvii) } o \neq c \text {, } \\
& \text { (xviii) } \quad p \neq q \text {, } \\
& \text { (xix) } \operatorname{not} \mathbf{L}(b, a, c) \text {, } \\
& \text { (xx) } \operatorname{not} \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right) \text {, } \\
& \text { (xxi) } \quad c \neq c^{\prime}, \\
& \text { (xxii) } \mathbf{L}(b, a, p) \text {, } \\
& \text { (xxiii) } \mathbf{L}\left(b^{\prime}, a^{\prime}, p\right) \text {, } \\
& \text { (xxiv) } \mathbf{L}(b, c, q),
\end{aligned}
$$

The following proposition is true
(2) Given $A P$. Then $A P$ satisfies $\mathbf{D E S 1}_{\mathbf{1}}$ if and only if for all $A, P, C, o$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $P \neq A$ and $P \neq C$ and $A \neq C$ and $o \in A$ and $a \in A$ and $a^{\prime} \in A$ and $o \in P$ and $b \in P$ and $b^{\prime} \in P$ and $o \in C$ and $c \in C$ and $c^{\prime} \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $p \neq q$ and $c \neq q$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| p, q$ holds $a, c \| a^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{D E S 1}_{2}$ if and only if:
Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that

$$
\begin{aligned}
& \text { (xxv) } \quad \mathbf{L}\left(b^{\prime}, c^{\prime}, q\right), \\
& \text { (xxvi) } \quad a, c \| a^{\prime}, c^{\prime}, \\
& \text { (xxvii) } \quad a, c \| p, q \text {. } \\
& \text { Then } o \in C \text {. } \\
& \text { Next we state the proposition } \\
& \text { (3) Given } A P \text {. Then } A P \text { satisfies } \mathbf{D E S 1 ~}_{2} \text { if and only if for all } A, P, C, o \text {, } \\
& a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q \text { such that } A \text { is a line and } P \text { is a line and } C \text { is a line } \\
& \text { and } P \neq A \text { and } P \neq C \text { and } A \neq C \text { and } o \in A \text { and } a \in A \text { and } a^{\prime} \in A \text { and } \\
& o \in P \text { and } b \in P \text { and } b^{\prime} \in P \text { and } c \in C \text { and } c^{\prime} \in C \text { and } o \neq a \text { and } o \neq b \\
& \text { and } o \neq c \text { and } p \neq q \text { and not } \mathbf{L}(b, a, c) \text { and not } \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right) \text { and } c \neq c^{\prime} \text { and } \\
& \mathbf{L}(b, a, p) \text { and } \mathbf{L}\left(b^{\prime}, a^{\prime}, p\right) \text { and } \mathbf{L}(b, c, q) \text { and } \mathbf{L}\left(b^{\prime}, c^{\prime}, q\right) \text { and } a, c \| a^{\prime}, c^{\prime} \text { and } \\
& a, c \| p, q \text { holds } o \in C \text {. }
\end{aligned}
$$

Let us consider $A P$. We say that $A P$ satisfies $\mathbf{D E S 1}_{3}$ if and only if:
Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $P \neq A$,
(v) $P \neq C$,
(vi) $A \neq C$,
(vii) $o \in A$,
(viii) $a \in A$,
(ix) $a^{\prime} \in A$,
(x) $b \in P$,
(xi) $b^{\prime} \in P$,
(xii) $o \in C$,
(xiii) $c \in C$,
(xiv) $c^{\prime} \in C$,
(xv) $\quad o \neq a$,
(xvi) $\quad o \neq b$,
(xvii) $o \neq c$,
(xviii) $\quad p \neq q$,
(xix) $\operatorname{not} \mathbf{L}(b, a, c)$,
(xx) not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$,
(xxi) $\quad b \neq b^{\prime}$,
(xxii) $\quad a \neq a^{\prime}$,
(xxiii) $\mathbf{L}(b, a, p)$,
(xxiv) $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$,
(xxv) $\mathbf{L}(b, c, q)$,
(xxvi) $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$,
(xxvii) $\quad a, c \| a^{\prime}, c^{\prime}$,
(xxviii) $\quad a, c \| p, q$.

Then $o \in P$.
Next we state the proposition
(4) Given $A P$. Then $A P$ satisfies $\mathbf{D E S 1}_{\mathbf{3}}$ if and only if for all $A, P, C, o$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $P \neq A$ and $P \neq C$ and $A \neq C$ and $o \in A$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $o \in C$ and $c \in C$ and $c^{\prime} \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $p \neq q$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $b \neq b^{\prime}$ and $a \neq a^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, c \| p, q$ holds $o \in P$.
Let us consider $A P$. We say that $A P$ satisfies DES2 if and only if:
Given $A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $A \neq P$,
(v) $A \neq C$,
(vi) $P \neq C$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $\quad b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) $A \| P$,
(xiv) $A \| C$,
(xv) $\operatorname{not} \mathbf{L}(b, a, c)$,
(xvi) not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$,
(xvii) $p \neq q$,
(xviii) $\quad a \neq a^{\prime}$,
(xix) $\mathbf{L}(b, a, p)$,
(xx) $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$,
(xxi) $\mathbf{L}(b, c, q)$,
(xxii) $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$,
(xxiii) $\quad a, c \| a^{\prime}, c^{\prime}$.

Then $a, c \| p, q$.
We now state the proposition
(5) Given $A P$. Then $A P$ satisfies DES2 if and only if for all $A, P, C, a$, $a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $A \neq P$ and $A \neq C$ and $P \neq C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and $A \| P$ and $A \| C$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $p \neq q$ and $a \neq a^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ holds $a, c \| p, q$.
Let us consider $A P$. We say that $A P$ satisfies DES2 ${ }_{1}$ if and only if:
Given $A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $A \neq P$,
(v) $A \neq C$,
(vi) $P \neq C$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) $A \| P$,
(xiv) $A \| C$,
(xv) $\operatorname{not} \mathbf{L}(b, a, c)$,
(xvi) not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$,
(xvii) $\quad p \neq q$,
(xviii) $\quad \mathbf{L}(b, a, p)$,
(xix) $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$,
$(\mathrm{xx}) \quad \mathbf{L}(b, c, q)$,
(xxi) $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$,
(xxii) $\quad a, c \| p, q$.

Then $a, c \| a^{\prime}, c^{\prime}$.
We now state the proposition
(6) Given $A P$. Then $A P$ satisfies DES2 $_{1}$ if and only if for all $A, P, C, a$, $a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $A \neq P$ and $A \neq C$ and $P \neq C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and $A \| P$ and $A \| C$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $p \neq q$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| p, q$ holds $a, c \| a^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies DES2 2 if and only if:
Given $A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $A \neq P$,
(v) $A \neq C$,
(vi) $P \neq C$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) $A \| C$,
(xiv) $\operatorname{not} \mathbf{L}(b, a, c)$,

```
 (xv) not L L (b},\mp@subsup{a}{}{\prime},\mp@subsup{c}{}{\prime})
 (xvi) }p\not=q
 (xvii) a\not=\mp@subsup{a}{}{\prime},
(xviii) L
 (xix) \mathbf{L}(\mp@subsup{b}{}{\prime},\mp@subsup{a}{}{\prime},p),
 (xx) }\mathbf{L}(b,c,q)
 (xxi) \mathbf{L}(\mp@subsup{b}{}{\prime},\mp@subsup{c}{}{\prime},q),
 (xxii) a,c| | ', c',
 (xxiii) a,c|p,q.
 Then }A|P\mathrm{ .
 Next we state the proposition
(7) Given \(A P\). Then \(A P\) satisfies DES2 \(_{2}\) if and only if for all \(A, P, C\), \(a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q\) such that \(A\) is a line and \(P\) is a line and \(C\) is a line and \(A \neq P\) and \(A \neq C\) and \(P \neq C\) and \(a \in A\) and \(a^{\prime} \in A\) and \(b \in P\) and \(b^{\prime} \in P\) and \(c \in C\) and \(c^{\prime} \in C\) and \(A \| C\) and not \(\mathbf{L}(b, a, c)\) and not \(\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)\) and \(p \neq q\) and \(a \neq a^{\prime}\) and \(\mathbf{L}(b, a, p)\) and \(\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)\) and \(\mathbf{L}(b, c, q)\) and \(\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)\) and \(a, c \| a^{\prime}, c^{\prime}\) and \(a, c \| p, q\) holds \(A \| P\).
Let us consider \(A P\). We say that \(A P\) satisfies DES2 \(_{3}\) if and only if:
Given \(A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q\). Suppose that
(i) \(A\) is a line,
(ii) \(P\) is a line,
(iii) \(C\) is a line,
(iv) \(A \neq P\),
(v) \(A \neq C\),
(vi) \(P \neq C\),
(vii) \(a \in A\),
(viii) \(a^{\prime} \in A\),
(ix) \(b \in P\),
(x) \(\quad b^{\prime} \in P\),
(xi) \(c \in C\),
(xii) \(c^{\prime} \in C\),
(xiii) \(A \| P\),
(xiv) \(\operatorname{not} \mathbf{L}(b, a, c)\),
(xv) \(\operatorname{not} \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)\),
(xvi) \(p \neq q\),
(xvii) \(\quad c \neq c^{\prime}\),
(xviii) \(\mathbf{L}(b, a, p)\),
(xix) \(\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)\),
(xx) \(\mathbf{L}(b, c, q)\),
(xxi) \(\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)\),
(xxii) \(a, c \| a^{\prime}, c^{\prime}\),
(xxiii) \(\quad a, c \| p, q\).
Then \(A \| C\).
We now state a number of propositions:
```

(8) Given $A P$. Then $A P$ satisfies $\mathrm{DES2}_{3}$ if and only if for all $A, P, C$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $A \neq P$ and $A \neq C$ and $P \neq C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and $A \| P$ and $\operatorname{not} \mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $p \neq q$ and $c \neq c^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, c \| p, q$ holds $A \| C$.
(9) If $A P$ satisfies DES1, then $A P$ satisfies DES11.
(10) If $A P$ satisfies $\mathbf{D E S 1}_{\mathbf{1}}$, then $A P$ satisfies DES1.
(11) If $A P$ satisfies DES, then $A P$ satisfies DES1.
(12) If $A P$ satisfies DES, then $A P$ satisfies DES12.
(13) If $A P$ satisfies $\mathbf{D E S 1}_{2}$, then $A P$ satisfies $\mathbf{D E S 1}_{3}$.
(14) If $A P$ satisfies $\mathbf{D E S 1}_{2}$, then $A P$ satisfies DES.
(15) If $A P$ satisfies $\mathbf{D E S 2}_{1}$, then $A P$ satisfies DES2.
(16) $A P$ satisfies DES2 $_{1}$ if and only if $A P$ satisfies DES2 ${ }_{3}$.
(17) $A P$ satisfies DES2 if and only if $A P$ satisfies DES2 2 .
(18) If $A P$ satisfies $\mathbf{D E S 1 3}_{3}$, then $A P$ satisfies DES2 $\mathbf{1}_{1}$.

## References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Classical configurations in affine planes. Formalized Mathematics, 1(4):625-633, 1990.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.


[^0]:    ${ }^{1}$ Supported by RPBP.III-24.C2

