Classical Configurations in Affine Planes¹

Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. The classical sequence of implications which hold between Desargues and Pappus Axioms id proved. Formally Minor and Major Desargues Axiom (as suitable properties - predicates - of an affine plane) together with all its indirect forms are introduced; the same procedure is applied to Pappus Axioms. The so called Trapezium Desargues Axiom is also considered.

MML Identifier: AFF_2.

The articles [1], and [2] provide the notation and terminology for this paper. We follow the rules: AP will denote an affine plane, a, a', b, b', c, c', o will denote elements of the points of AP, and A, C, K, M, N, P will denote subsets of the points of AP. Let us consider AP. We say that AP satisfies **PPAP** if and only if:

Given M, N, a, b, c, a', b', c'. Then if M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a' \in N$ and $b' \in N$ and $c' \in N$ and $a, b' \parallel b, a'$ and $b, c' \parallel c, b'$, then $a, c' \parallel c, a'$.

We now state the proposition

(1) Given AP. Then AP satisfies **PPAP** if and only if for all M, N, a, b, c, a', b', c' such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a' \in N$ and $b' \in N$ and $c' \in N$ and $a, b' \parallel b, a'$ and $b, c' \parallel c, b'$ holds $a, c' \parallel c, a'$.

Let us consider AP. We say that AP satisfies **PAP** if and only if: Given M, N, o, a, b, c, a', b', c'. Suppose that

- (i) M is a line,
- (ii) N is a line,
- (iii) $M \neq N$,
- (iv) $o \in M$,

¹Supported by RPBP.III-24.C2

625

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

Given AP. Then AP satisfies **PAP** if and only if for all M, N, o, a, b, c, a', b', c' such that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a'$ and $o \neq b$ and $o \neq b'$ and $o \neq c$ and $o \neq c'$ and $a \in M$ and $b \in M$ and $c \in M$ and $a' \in N$ and $b' \in N$ and

 $c' \in N$ and $a, b' \parallel b, a'$ and $b, c' \parallel c, b'$ holds $a, c' \parallel c, a'$.

Given M, N, o, a, b, c, a', b', c'. Suppose that

Let us consider AP. We say that AP satisfies PAP_1 if and only if:

(\mathbf{v})	$o \in N$,
(vi)	$o \neq a$,
(vii)	$o \neq a',$
(viii)	$o \neq b$,
(ix)	$o \neq b',$
(x)	$o \neq c$,
(xi)	$o \neq c',$
(xii)	$a \in M,$
(xiii)	$b \in M,$
(xiv)	$c \in M,$
(xv)	$a' \in N,$
(xvi)	$b' \in N,$
(xvii)	$c' \in N,$
(xviii)	$a, b' \parallel b, a',$
(xix)	$b,c' \parallel c,b'.$
Then $a, c' \parallel c, a'$.	
The following proposition is true	

(2)

(i) (ii)

(iii) (iv)

(v)

(vi)

(vii) (viii)

(ix)

 (\mathbf{x})

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

M is a line,

N is a line, $M \neq N$,

 $o \in M$, $o \in N$,

 $o \neq a$,

 $o \neq a'$,

 $o \neq b$,

 $o \neq b'$, $o \neq c$,

 $o \neq c'$,

 $a \in M$,

 $b \in M$,

 $c \in M$,

 $b' \in N$,

 $c' \in N$,

 $b \neq c$.

 $a, b' \parallel b, a',$

 $b, c' \parallel c, b',$

 $a, c' \parallel c, a',$

626

Then $a' \in N$.

One can prove the following proposition

(3) Given AP. Then AP satisfies **PAP**₁ if and only if for all M, N, o, a, b, c, a', b', c' such that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a'$ and $o \neq b$ and $o \neq b'$ and $o \neq c$ and $o \neq c'$ and $a \in M$ and $b \in M$ and $c \in M$ and $b' \in N$ and $c' \in N$ and $a, b' \parallel b, a'$ and $b, c' \parallel c, b'$ and $a, c' \parallel c, a'$ and $b \neq c$ holds $a' \in N$.

Let us consider AP. We say that AP satisfies **DES** if and only if: Given A, P, C, o, a, b, c, a', b', c'. Suppose that

- (i) $o \in A$,
- (ii) $o \in P$,
- (iii) $o \in C$,
- (iv) $o \neq a$,
- (v) $o \neq b$,
- (vi) $o \neq c$,
- (vii) $a \in A$,
- (viii) $a' \in A$,
- (ix) $b \in P$,
- (x) $b' \in P$,
- (xi) $c \in C$,
- (xii) $c' \in C$,
- (xiii) A is a line,
- (xiv) P is a line,
- (xv) C is a line,
- (xvi) $A \neq P$,
- (xvii) $A \neq C$,
- (xviii) $a, b \parallel a', b',$
- (xix) $a, c \parallel a', c'.$

Then $b, c \parallel b', c'$.

We now state the proposition

(4) Given AP. Then AP satisfies **DES** if and only if for all A, P, C, o, a, b, c, a', b', c' such that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$ holds $b, c \parallel b', c'$.

Let us consider AP. We say that AP satisfies **DES**₁ if and only if: Given A, P, C, o, a, b, c, a', b', c'. Suppose that

- (i) $o \in A$,
- (ii) $o \in P$,
- (iii) $o \neq a$,
- (iv) $o \neq b$,
- (v) $o \neq c$,
- (vi) $a \in A$,
- (vii) $a' \in A$,

$$\begin{array}{ll} (\mathrm{viii}) & b \in P, \\ (\mathrm{ix}) & b' \in P, \\ (\mathrm{x}) & c \in C, \\ (\mathrm{xi}) & c' \in C, \\ (\mathrm{xii}) & A \mbox{ is a line}, \\ (\mathrm{xiii}) & P \mbox{ is a line}, \\ (\mathrm{xiv}) & C \mbox{ is a line}, \\ (\mathrm{xv}) & A \neq P, \\ (\mathrm{xvi}) & A \neq C, \\ (\mathrm{xvii}) & a, b \parallel a', b', \\ (\mathrm{xviii}) & a, c \parallel a', c', \\ (\mathrm{xix}) & b, c \parallel b', c', \end{array}$$

(xx) not
$$\mathbf{L}(a, b, c)$$
,

(xxi)
$$c \neq c'$$
.

Then $o \in C$.

One can prove the following proposition

Given AP. Then AP satisfies DES_1 if and only if for all A, P, C, o, (5)a, b, c, a', b', c' such that $o \in A$ and $o \in P$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$ and $b, c \parallel b', c'$ and not $\mathbf{L}(a, b, c)$ and $c \neq c'$ holds $o \in C$.

Let us consider AP. We say that AP satisfies DES_2 if and only if: Given A, P, C, o, a, b, c, a', b', c'. Suppose that

- $o \in A$, (i)
- (ii) $o \in P$,
- (iii) $o \in C$,
- (iv) $o \neq a$,
- $o \neq b$, (v)
- $o \neq c$, (vi)
- $a \in A$, (vii)
- (viii) $a' \in A$,
- (ix) $b \in P$,
- $b' \in P$, (\mathbf{x})
- $c \in C$,
- (xi)
- A is a line, (xii) P is a line,
- (xiii) C is a line,
- (xiv)
- $A \neq P$, (xv)
- $A \neq C$, (xvi)
- $a, b \parallel a', b',$ (xvii)
- $a, c \parallel a', c',$ (xviii)

 $b, c \parallel b', c'.$ (xix)

Then $c' \in C$.

One can prove the following proposition

(6) Given AP. Then AP satisfies \mathbf{DES}_2 if and only if for all A, P, C, o, a, b, c, a', b', c' such that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$ and $b, c \parallel b', c'$ holds $c' \in C$.

Let us consider AP. We say that AP satisfies **TDES** if and only if: Given K, o, a, b, c, a', b', c'. Suppose that

- (i) K is a line,
- (ii) $o \in K$,
- (iii) $c \in K$,
- (iv) $c' \in K$,
- (v) $a \notin K$,
- (vi) $o \neq c$,
- (vii) $a \neq b$,
- (viii) $\mathbf{L}(o, a, a'),$
- (ix) $\mathbf{L}(o, b, b'),$
- (iii) $\underline{a}(0,0,0)$; (x) $a, b \parallel a', b',$
- (xi) $a, c \parallel a', c',$
- (xii) $a, b \parallel K$.

Then $b, c \parallel b', c'$.

We now state the proposition

(7) Given AP. Then AP satisfies **TDES** if and only if for all K, o, a, b, c, a', b', c' such that K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$ and $a, b \parallel K$ holds $b, c \parallel b', c'$.

Let us consider AP. We say that AP satisfies **TDES**₁ if and only if: Given K, o, a, b, c, a', b', c'. Suppose that

- (i) K is a line,
- (ii) $o \in K$,
- (iii) $c \in K$,
- (iv) $c' \in K$,
- (v) $a \notin K$,
- (vi) $o \neq c$,
- (vii) $a \neq b$,
- (viii) $\mathbf{L}(o, a, a'),$
- (ix) $a, b \parallel a', b',$
- (x) $b, c \parallel b', c',$
- (xi) $a, c \parallel a', c',$
- (xii) $a, b \parallel K$.

Then $\mathbf{L}(o, b, b')$.

One can prove the following proposition

(8) Given AP. Then AP satisfies **TDES**₁ if and only if for all K, o, a, b, c, a', b', c' such that K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $a, b \parallel a', b'$ and $b, c \parallel b', c'$ and $a, c \parallel a', c'$ and $a, b \parallel K$ holds $\mathbf{L}(o, b, b')$.

Let us consider AP. We say that AP satisfies **TDES**₂ if and only if: Given K, o, a, b, c, a', b', c'. Suppose that

- (i) K is a line,
- (ii) $o \in K$,
- (iii) $c \in K$,
- (iv) $c' \in K$,
- $(\mathbf{v}) \quad a \notin K,$
- (vi) $o \neq c$,
- (vii) $a \neq b$,
- (viii) $\mathbf{L}(o, a, a'),$
- (ix) $\mathbf{L}(o, b, b'),$
- $(\mathbf{x}) \quad b, c \parallel b', c',$
- $(xi) \quad a, c \parallel a', c',$
- $(xii) \quad a,b \parallel K.$
 - Then $a, b \parallel a', b'$.

The following proposition is true

(9) Given AP. Then AP satisfies **TDES**₂ if and only if for all K, o, a, b, c, a', b', c' such that K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and $b, c \parallel b', c'$ and $a, c \parallel a', c'$ and $a, b \parallel K$ holds $a, b \parallel a', b'$.

Let us consider AP. We say that AP satisfies **TDES**₃ if and only if: Given K, o, a, b, c, a', b', c'. Suppose that

- (i) K is a line,
- (ii) $o \in K$,
- (iii) $c \in K$,
- (iv) $a \notin K$,
- (v) $o \neq c$,
- (vi) $a \neq b$,
- (vii) $\mathbf{L}(o, a, a'),$
- (viii) $\mathbf{L}(o, b, b'),$
- (ix) $a, b \parallel a', b',$
- (x) $a, c \parallel a', c',$
- (xi) $b, c \parallel b', c',$
- (xii) $a, b \parallel K$.
 - Then $c' \in K$.

We now state the proposition

(10) Given AP. Then AP satisfies **TDES**₃ if and only if for all K, o, a, b, c, a', b', c' such that K is a line and $o \in K$ and $c \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$ and $b, c \parallel b', c'$ and $a, b \parallel K$ holds $c' \in K$.

Let us consider AP. We say that AP satisfies **des** if and only if: Given A, P, C, a, b, c, a', b', c'. Suppose that

- (i) $A \parallel P$,
- (ii) $A \parallel C$,
- $a \in A$, (iii)
- (iv) $a' \in A$,
- $b \in P$, (\mathbf{v})
- (vi) $b' \in P$,
- $c \in C$, (vii)
- (viii) $c' \in C$, (ix)
- A is a line, (x) P is a line,
- C is a line,
- (xi) $A \neq P$, (xii)
- $A \neq C$, (xiii)
- (xiv) $a, b \parallel a', b',$
- $a, c \parallel a', c'.$ (xv)
 - Then $b, c \parallel b', c'$.

The following proposition is true

(11)Given AP. Then AP satisfies **des** if and only if for all A, P, C, a, b, c, a', b', c' such that $A \parallel P$ and $A \parallel C$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$ holds $b, c \parallel b', c'$.

Let us consider AP. We say that AP satisfies des_1 if and only if:

Given A, P, C, a, b, c, a', b', c'. Suppose that

- (i) $A \parallel P$,
- (ii) $a \in A$,
- (iii) $a' \in A$,
- (iv) $b \in P$,
- $b' \in P$, (\mathbf{v})
- $c \in C$, (vi)
- (vii) $c' \in C$,
- (viii) A is a line,
- P is a line, (ix)
- C is a line, (x)
- $A \neq P$, (xi)
- $A \neq C$, (xii)
- $a, b \parallel a', b',$ (xiii)
- $a, c \parallel a', c',$ (xiv)
- (xv) $b, c \parallel b', c',$
- not $\mathbf{L}(a, b, c)$, (xvi)
- $c \neq c'$. (xvii)

Then $A \parallel C$.

The following proposition is true

(12) Given AP. Then AP satisfies $\mathbf{des_1}$ if and only if for all A, P, C, a, b, c, a', b', c' such that $A \parallel P$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$ and $b, c \parallel b', c'$ and not $\mathbf{L}(a, b, c)$ and $c \neq c'$ holds $A \parallel C$.

Let us consider AP. We say that AP satisfies **pap** if and only if:

Given M, N, a, b, c, a', b', c'. Suppose M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \parallel N$ and $M \neq N$ and $a' \in N$ and $b' \in N$ and $c' \in N$ and $a, b' \parallel b, a'$ and $b, c' \parallel c, b'$. Then $a, c' \parallel c, a'$.

The following proposition is true

(13) Given AP. Then AP satisfies **pap** if and only if for all M, N, a, b, c, a', b', c' such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \parallel N$ and $M \neq N$ and $a' \in N$ and $b' \in N$ and $c' \in N$ and $a, b' \parallel b, a'$ and $b, c' \parallel c, b'$ holds $a, c' \parallel c, a'$.

Let us consider AP. We say that AP satisfies $\mathbf{pap_1}$ if and only if: Given M, N, a, b, c, a', b', c'. Suppose that

- (i) M is a line,
- (ii) N is a line,
- (iii) $a \in M$,
- (iv) $b \in M$,
- (v) $c \in M$,
- (vi) $M \parallel N$,
- (vii) $M \neq N$,
- (viii) $a' \in N$,
- (ix) $b' \in N$,
- $(\mathbf{x}) \quad a, b' \parallel b, a',$
- (xi) $b, c' \parallel c, b',$
- (xii) $a, c' \parallel c, a',$
- (xiii) $a' \neq b'$.

Then $c' \in N$.

We now state a number of propositions:

- (14) Given AP. Then AP satisfies $\mathbf{pap_1}$ if and only if for all M, N, a, b, c, a', b', c' such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \parallel N$ and $M \neq N$ and $a' \in N$ and $b' \in N$ and $a, b' \parallel b, a'$ and $b, c' \parallel c, b'$ and $a, c' \parallel c, a'$ and $a' \neq b'$ holds $c' \in N$.
- (15) AP satisfies **PAP** if and only if AP satisfies **PAP**₁.
- (16) AP satisfies **DES** if and only if AP satisfies **DES**₁.
- (17) If AP satisfies **TDES**, then AP satisfies **TDES**₁.
- (18) If AP satisfies **TDES**₁, then AP satisfies **TDES**₂.
- (19) If AP satisfies **TDES**₂, then AP satisfies **TDES**₃.
- (20) If AP satisfies **TDES**₃, then AP satisfies **TDES**.
- (21) AP satisfies **des** if and only if AP satisfies **des**₁.
- (22) AP satisfies **pap** if and only if AP satisfies **pap**₁.

- (23) If AP satisfies **PAP**, then AP satisfies **pap**.
- (24) AP satisfies **PPAP** if and only if AP satisfies **PAP** and AP satisfies **pap**.
- (25) If AP satisfies **PAP**, then AP satisfies **DES**.
- (26) If AP satisfies **DES**, then AP satisfies **TDES**.
- (27) If AP satisfies **TDES**₁, then AP satisfies **des**₁.
- (28) If AP satisfies **TDES**, then AP satisfies **des**.
- (29) If AP satisfies **des**, then AP satisfies **pap**.

References

- [1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. *Formalized Mathematics*, 1(3):601–605, 1990.
- [2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617–621, 1990.

Received April 13, 1990