Classical Configurations in Affine Planes ${ }^{1}$

Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Summary. The classical sequence of implications which hold between Desargues and Pappus Axioms id proved. Formally Minor and Major Desargues Axiom (as suitable properties - predicates - of an affine plane) together with all its indirect forms are introduced; the same procedure is applied to Pappus Axioms. The so called Trapezium Desargues Axiom is also considered.

MML Identifier: AFF_2.

The articles [1], and [2] provide the notation and terminology for this paper. We follow the rules: $A P$ will denote an affine plane, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, o$ will denote elements of the points of $A P$, and A, C, K, M, N, P will denote subsets of the points of $A P$. Let us consider $A P$. We say that $A P$ satisfies PPAP if and only if:

Given $M, N, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Then if M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$, then $a, c^{\prime} \| c, a^{\prime}$.

We now state the proposition
(1) Given $A P$. Then $A P$ satisfies PPAP if and only if for all M, N, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ holds $a, c^{\prime} \| c, a^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies PAP if and only if:
Given $M, N, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) M is a line,
(ii) N is a line,
(iii) $M \neq N$,
(iv) $o \in M$,

[^0]\[

$$
\begin{array}{ll}
\text { (v) } & o \in N, \\
\text { (vi) } & o \neq a, \\
\text { (vii) } & o \neq a^{\prime}, \\
\text { (viii) } & o \neq b, \\
\text { (ix) } & o \neq b^{\prime}, \\
\text { (x) } & o \neq c, \\
\text { (xi) } & o \neq c^{\prime}, \\
\text { (xii) } & a \in M, \\
\text { (xiii) } & b \in M, \\
\text { (xiv) } & c \in M, \\
\text { (xv) } & a^{\prime} \in N, \\
\text { (xvi) } & b^{\prime} \in N, \\
\text { (xvii) } & c^{\prime} \in N, \\
\text { (xviii) } & a, b^{\prime} \| b, a^{\prime}, \\
\text { (xix) } & b, c^{\prime} \| c, b^{\prime} .
\end{array}
$$
\]

Then $a, c^{\prime} \| c, a^{\prime}$.
The following proposition is true
(2) Given $A P$. Then $A P$ satisfies PAP if and only if for all M, N, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a^{\prime}$ and $o \neq b$ and $o \neq b^{\prime}$ and $o \neq c$ and $o \neq c^{\prime}$ and $a \in M$ and $b \in M$ and $c \in M$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ holds $a, c^{\prime} \| c, a^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{P A P}_{1}$ if and only if:
Given $M, N, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $\quad M$ is a line,
(ii) N is a line,
(iii) $M \neq N$,
(iv) $o \in M$,
(v) $o \in N$,
(vi) $\quad o \neq a$,
(vii) $o \neq a^{\prime}$,
(viii) $o \neq b$,
(ix) $o \neq b^{\prime}$,
(x) $o \neq c$,
(xi) $o \neq c^{\prime}$,
(xii) $a \in M$,
(xiii) $b \in M$,
(xiv) $c \in M$,
(xv) $b^{\prime} \in N$,
(xvi) $\quad c^{\prime} \in N$,
(xvii) $\quad a, b^{\prime} \| b, a^{\prime}$,
(xviii) $\quad b, c^{\prime} \| c, b^{\prime}$,
(xix) $a, c^{\prime} \| c, a^{\prime}$,
(xx) $\quad b \neq c$.

Then $a^{\prime} \in N$.
One can prove the following proposition
(3) Given $A P$. Then $A P$ satisfies $\mathbf{P A P}_{1}$ if and only if for all M, N, o, a, $b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a^{\prime}$ and $o \neq b$ and $o \neq b^{\prime}$ and $o \neq c$ and $o \neq c^{\prime}$ and $a \in M$ and $b \in M$ and $c \in M$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ and $a, c^{\prime} \| c, a^{\prime}$ and $b \neq c$ holds $a^{\prime} \in N$.
Let us consider $A P$. We say that $A P$ satisfies DES if and only if:
Given $A, P, C, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $o \in A$,
(ii) $o \in P$,
(iii) $o \in C$,
(iv) $o \neq a$,
(v) $\quad o \neq b$,
(vi) $\quad o \neq c$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) A is a line,
(xiv) P is a line,
(xv) C is a line,
(xvi) $\quad A \neq P$,
(xvii) $\quad A \neq C$,
(xviii) $a, b \| a^{\prime}, b^{\prime}$,
(xix) $a, c \| a^{\prime}, c^{\prime}$.

Then $b, c \| b^{\prime}, c^{\prime}$.
We now state the proposition
(4) Given $A P$. Then $A P$ satisfies DES if and only if for all A, P, C, o, a, $b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ holds $b, c \| b^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{D E S}_{1}$ if and only if:
Given $A, P, C, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $o \in A$,
(ii) $o \in P$,
(iii) $o \neq a$,
(iv) $o \neq b$,
(v) $\quad o \neq c$,
(vi) $a \in A$,
(vii) $a^{\prime} \in A$,

```
(viii) \(b \in P\),
    (ix) \(b^{\prime} \in P\),
    (x) \(c \in C\),
    (xi) \(c^{\prime} \in C\),
    (xii) \(A\) is a line,
    (xiii) \(P\) is a line,
    (xiv) \(C\) is a line,
    (xv) \(A \neq P\),
    (xvi) \(A \neq C\),
(xvii) \(a, b \| a^{\prime}, b^{\prime}\),
(xviii) \(\quad a, c \| a^{\prime}, c^{\prime}\),
    (xix) \(b, c \| b^{\prime}, c^{\prime}\),
    (xx) \(\operatorname{not} \mathbf{L}(a, b, c)\),
(xxi) \(c \neq c^{\prime}\).
```

 Then \(o \in C\).
 One can prove the following proposition
(5) Given $A P$. Then $A P$ satisfies $\mathbf{D E S}_{\mathbf{1}}$ if and only if for all A, P, C, o, $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $o \in A$ and $o \in P$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and not $\mathbf{L}(a, b, c)$ and $c \neq c^{\prime}$ holds $o \in C$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{D E S}_{\mathbf{2}}$ if and only if:
Given $A, P, C, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $o \in A$,
(ii) $o \in P$,
(iii) $o \in C$,
(iv) $o \neq a$,
(v) $o \neq b$,
(vi) $o \neq c$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $b^{\prime} \in P$,
(xi) $c \in C$,
(xii) A is a line,
(xiii) P is a line,
(xiv) C is a line,
(xv) $A \neq P$,
(xvi) $A \neq C$,
(xvii) $\quad a, b \| a^{\prime}, b^{\prime}$,
(xviii) $\quad a, c \| a^{\prime}, c^{\prime}$,
(xix) $b, c \| b^{\prime}, c^{\prime}$.

Then $c^{\prime} \in C$.

One can prove the following proposition
(6) Given $A P$. Then $A P$ satisfies $\mathbf{D E S}_{\mathbf{2}}$ if and only if for all A, P, C, o, $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ holds $c^{\prime} \in C$.
Let us consider $A P$. We say that $A P$ satisfies TDES if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $c^{\prime} \in K$,
(v) $a \notin K$,
(vi) $o \neq c$,
(vii) $a \neq b$,
(viii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(ix) $\mathbf{L}\left(o, b, b^{\prime}\right)$,
(x) $a, b \| a^{\prime}, b^{\prime}$,
(xi) $a, c \| a^{\prime}, c^{\prime}$,
(xii) $\quad a, b \| K$.

Then $b, c \| b^{\prime}, c^{\prime}$.
We now state the proposition
(7) Given $A P$. Then $A P$ satisfies TDES if and only if for all K, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $c^{\prime} \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, b \| K$ holds $b, c \| b^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{T D E S}_{\mathbf{1}}$ if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $c^{\prime} \in K$,
(v) $a \notin K$,
(vi) $o \neq c$,
(vii) $a \neq b$,
(viii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(ix) $a, b \| a^{\prime}, b^{\prime}$,
(x) $b, c \| b^{\prime}, c^{\prime}$,
(xi) $a, c \| a^{\prime}, c^{\prime}$,
(xii) $a, b \| K$.

Then $\mathbf{L}\left(o, b, b^{\prime}\right)$.
One can prove the following proposition
(8) Given $A P$. Then $A P$ satisfies TDES $_{\mathbf{1}}$ if and only if for all K, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $c^{\prime} \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, b \| K$ holds $\mathbf{L}\left(o, b, b^{\prime}\right)$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{T D E S}_{2}$ if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $c^{\prime} \in K$,
(v) $a \notin K$,
(vi) $\quad o \neq c$,
(vii) $a \neq b$,
(viii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(ix) $\mathbf{L}\left(o, b, b^{\prime}\right)$,
(x) $b, c \| b^{\prime}, c^{\prime}$,
(xi) $a, c \| a^{\prime}, c^{\prime}$,
(xii) $a, b \| K$.

Then $a, b \| a^{\prime}, b^{\prime}$.
The following proposition is true
(9) Given $A P$. Then $A P$ satisfies $\mathbf{T D E S}_{\mathbf{2}}$ if and only if for all K, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $c^{\prime} \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $b, c \| b^{\prime}, c^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, b \| K$ holds $a, b \| a^{\prime}, b^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{T D E S}_{\mathbf{3}}$ if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $a \notin K$,
(v) $o \neq c$,
(vi) $a \neq b$,
(vii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(viii) $\mathbf{L}\left(o, b, b^{\prime}\right)$,
(ix) $a, b \| a^{\prime}, b^{\prime}$,
(x) $a, c \| a^{\prime}, c^{\prime}$,
(xi) $b, c \| b^{\prime}, c^{\prime}$,
(xii) $\quad a, b \| K$.

Then $c^{\prime} \in K$.
We now state the proposition
(10) Given $A P$. Then $A P$ satisfies TDES $_{3}$ if and only if for all K, o, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and $a, b \| K$ holds $c^{\prime} \in K$.

Let us consider $A P$. We say that $A P$ satisfies des if and only if:
Given $A, P, C, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $A \| P$,
(ii) $A \| C$,
(iii) $a \in A$,
(iv) $a^{\prime} \in A$,
(v) $b \in P$,
(vi) $b^{\prime} \in P$,
(vii) $c \in C$,
(viii) $c^{\prime} \in C$,
(ix) A is a line,
(x) P is a line,
(xi) C is a line,
(xii) $A \neq P$,
(xiii) $A \neq C$,
(xiv) $a, b \| a^{\prime}, b^{\prime}$,
(xv) $a, c \| a^{\prime}, c^{\prime}$.

Then $b, c \| b^{\prime}, c^{\prime}$.
The following proposition is true
(11) Given $A P$. Then $A P$ satisfies des if and only if for all A, P, C, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that $A \| P$ and $A \| C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ holds $b, c \| b^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies des_{1} if and only if:
Given $A, P, C, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $A \| P$,
(ii) $a \in A$,
(iii) $a^{\prime} \in A$,
(iv) $b \in P$,
(v) $b^{\prime} \in P$,
(vi) $c \in C$,
(vii) $c^{\prime} \in C$,
(viii) A is a line,
(ix) P is a line,
(x) C is a line,
(xi) $A \neq P$,
(xii) $A \neq C$,
(xiii) $a, b \| a^{\prime}, b^{\prime}$,
(xiv) $a, c \| a^{\prime}, c^{\prime}$,
(xv) $b, c \| b^{\prime}, c^{\prime}$,
(xvi) $\operatorname{not} \mathbf{L}(a, b, c)$,
(xvii) $\quad c \neq c^{\prime}$.

Then $A \| C$.
The following proposition is true
(12) Given $A P$. Then $A P$ satisfies des_{1} if and only if for all A, P, C, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $A \| P$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and not $\mathbf{L}(a, b, c)$ and $c \neq c^{\prime}$ holds $A \| C$.
Let us consider $A P$. We say that $A P$ satisfies pap if and only if:
Given $M, N, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \| N$ and $M \neq N$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$. Then $a, c^{\prime} \| c, a^{\prime}$.

The following proposition is true
(13) Given $A P$. Then $A P$ satisfies pap if and only if for all M, N, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \| N$ and $M \neq N$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ holds $a, c^{\prime} \| c, a^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{p a p}_{1}$ if and only if:
Given $M, N, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) M is a line,
(ii) $\quad N$ is a line,
(iii) $a \in M$,
(iv) $b \in M$,
(v) $c \in M$,
(vi) $M \| N$,
(vii) $\quad M \neq N$,
(viii) $\quad a^{\prime} \in N$,
(ix) $b^{\prime} \in N$,
(x) $a, b^{\prime} \| b, a^{\prime}$,
(xi) $b, c^{\prime} \| c, b^{\prime}$,
(xii) $a, c^{\prime} \| c, a^{\prime}$,
(xiii) $\quad a^{\prime} \neq b^{\prime}$.

Then $c^{\prime} \in N$.
We now state a number of propositions:
(14) Given $A P$. Then $A P$ satisfies pap pan $_{1}$ if anly if for all M, N, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \| N$ and $M \neq N$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ and $a, c^{\prime} \| c, a^{\prime}$ and $a^{\prime} \neq b^{\prime}$ holds $c^{\prime} \in N$.
(15) $\quad A P$ satisfies PAP if and only if $A P$ satisfies $\mathbf{P A P}_{\mathbf{1}}$.
(16) $\quad A P$ satisfies DES if and only if $A P$ satisfies $\mathbf{D E S}_{\mathbf{1}}$.
(17) If $A P$ satisfies TDES, then $A P$ satisfies $\mathbf{T D E S}_{\mathbf{1}}$.
(18) If $A P$ satisfies $\mathbf{T D E S}_{\mathbf{1}}$, then $A P$ satisfies $\mathbf{T D E S}_{\mathbf{2}}$.
(19) If $A P$ satisfies $\mathbf{T D E S}_{\mathbf{2}}$, then $A P$ satisfies $\mathbf{T D E S}_{\mathbf{3}}$.
(20) If $A P$ satisfies $\mathbf{T D E S}_{3}$, then $A P$ satisfies TDES.
(21) $A P$ satisfies des if and only if $A P$ satisfies des $_{\mathbf{1}}$.
$A P$ satisfies pap if and only if $A P$ satisfies $\mathbf{p a p}_{1}$.
(23) If $A P$ satisfies PAP, then $A P$ satisfies pap.
(24) $A P$ satisfies PPAP if and only if $A P$ satisfies PAP and $A P$ satisfies pap.
(25) If $A P$ satisfies PAP, then $A P$ satisfies DES.
(26) If $A P$ satisfies DES, then $A P$ satisfies TDES.
(27) If $A P$ satisfies TDES $_{\mathbf{1}}$, then $A P$ satisfies des $_{\boldsymbol{1}}$.
(28) If $A P$ satisfies TDES, then $A P$ satisfies des.
(29) If $A P$ satisfies des, then $A P$ satisfies pap.

References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C2

